PARTS: Unsupervised segmentation with slots, attention and independence
maximization - Supplementary Material

Daniel Zoran* Rishabh Kabra* Alexander Lerchner Danilo J. Rezende
DeepMind
London, UK

{danielzoran,rkabra,lerchner,danilor}@deepmind.com

1. Datasets
1.1. Playroom

PLAYROOM [, 4] is a dataset of trajectories collected by running a pre-trained, embodied agent in a procedurally sampled
3D room generated in Unity [5]. The room is seen from the agent’s ego-centric perspective. Transitions between frames are
the result of the agent’s movement; each action is 10-dimensional representing the agent’s degrees of freedom. Objects can be
of 34 different types, 10 different colors, and have continuously varying sizes. The environment was made available originally
to facilitate certain language tasks at https://github.com/deepmind/dm_fast_mapping. We will release our
version of the dataset publicly to facilitate further work on this domain.

1.2. CLEVRER

We use the dataset released by [8]at http://clevrer.csail .mit.edu/. Weignore the original question answering
task for our work. We drop every second frame from the original sequences to make transitions more significant. For the
results in Section 4.1, we train PARTS on the first 25 subsampled steps. We also resize the original 320x420 images to
64x64 using bilinear downsampling. We don’t use any action information for our experiments on CLEVRER. To evaluate the
segmentation performance, we use the ground-truth masks and accompanying scripts released by [9] at https://github.
com/BorealisAI/Spatio-Temporal.

1.3. Robotics Arm

ROBOTICS ARM is a dataset of real-world videos of a Sawyer robotic arm and uniformly colored cubes captured by a fixed
camera. The arm acts according to a policy trained to pick up and stack the objects. Each action is 7-dimensional. The dataset
was introduced by [2].

2. Model

We now provide the full model parameters for all experiments. In the ablation experiments (Table 2 in the main paper)
we used the same parameters for the baseline models as well (where applicable). This was done to control the performance
difference due to architectural changes (attention, priors etc.) rather than leave it to the capacity of different components.

2.1. Hyperparameters

The latent size Dy, We use is 64. We train all models with 7 slots (though we instantiate some with 10 slots in Section
5 of the main paper). The output variance o, is set to 0.09 in all experiments. We clip the optimizer gradient norm to 5.0
and the internal gradient V£ to a norm of 10.0. All mask logits outputs from the decoder are passed through a 10 tanh(z)
non linearity to improve stability. Models were trained with batch size 64 with a learning rate of 1e — 4 using the RMSProp
optimizer for 1M iterations (ablations were run with batch size 32 for 400k iterations).

2.2. Architecture

Convolutional encoder £. The convolutional encoder is a 5 layer convolutional network with 64, 128, 128, 256, 256 output
channels respectively. Kernels are 5 x 5 in size, the stride is 1, and padding is set to "SAME” such that the size is preserved

https://github.com/deepmind/dm_fast_mapping
http://clevrer.csail.mit.edu/
https://github.com/BorealisAI/Spatio-Temporal
https://github.com/BorealisAI/Spatio-Temporal

throughout. We used ReL.U activation functions on all layers other than the last one (which is fed directly as input to the
slot-attention encoder). The inputs it receives are the observation @, the log likelihood image logp(z|z) which is output from
the decoder.

Slot Attention Encoder SA. We follow the original implementation of [6], including all layer norms, but without unrolling
iterations and without using a GRU in the updates. The slot, value and key size are all set to 2Dy;,;. The input to the slot
attention which is used to form the queries is a concatenation along the channel dimension of the current predicted slot
posterior parameters A;, the gradient of the loss with respect to them V, £ and the last taken action a;_;. The inputs used to
form the keys and values are the outputs of the convolutional encoder above. The outputs s%”lpm from the attention step are

used in the parameter update described next.

Posterior parameter update f. We take the output of the slot attention above s, ™", and concatenate the current predicted
posterior parameters A, the gradient V, L, the previous action a;—; and pass them through a two layer MLP (with 256
hidden units at each layer) to obtain the final parameter update AX which is added to the current estimate to form the
observation-informed posterior for this time step .

Spatial broadcast decoder D. We use a soft spatial broadcast decoder (following [6]). We use 6 convolutional layers with
stride 1, kernel size 1, and 512 output channels each with ReLU activations, other than the last layer which outputs 4 channels
and has no activation function. The first 3 are used as the component means and the last channel as the mask logits.

Prediction network P. We follow the same architecture in [2]: a 2-layer transformer (with hidden size of 1024) followed
by a slot-wise LSTM with hidden size of 256. The input to the prediction module is the observation-informed posterior from
the previous time-step ;1 to which we tile and concatenate the last action a;_;. The output is the posterior used to decode
and generate the loss.

2.3. Loss

At each time step we use the decoder output to calculate the loss £ using the ELBO calculated with the decoder outputs. We
use the loss to calculate the gradient with respect to the posterior parameters as the likelihood image (both used in refinining
the posterior parameters).

2.4. Full algorithm

Here we describe the full model algorithm, which is similar to [3, 7], but using all the above modules.

Algorithm 1: PARTS inference algorithm - for time-step ¢

Input: observation x; previous action a;_1,
previous posterior parameters ALY ; € R¥>2Ps previous core state hy_;
Predict: A2, h; = P([A\r_1,ar1], he_1)
for n in {1..N}; // N=1 in most experiments
Sample: p,logo = A1z, ~ N(p, o) € REX D
Decode C),, mj;, = D(z;)
Loss £; = — Y, muN (x¢|Cy, 04) + D, (N (p,0) | N(0,1))
if training for segmentation or within prediction burn-in period then
Bottom-up encoding: O; = &(x¢, log, (x¢|2¢))

Attend: s, = [)\?717V>\?_1£,at,1}. spP = S A(sy, O) 5 // slot attention

Refine: AP = A\~ + f([sp"™ A7, Vyni L, a01]) 5 // obtain posterior
else

Al =)‘?71 ; // no update
end

end for

Segmentation performance of PARTS over the full sequence length

On Playroom On CLEVRER
0.8000 10000
0.7461 0.9217
0.7000
0.8000
o 06000 o 07000
S S
[o 0.6000
: 0.5000 :
- AL 05000
[[
< 04000 < 54000
0.3000
0.3000
0.2000
0.2000 : : : 0.1000 4 : . : . .
2 4 3 8 10 12 14 16 0 5 10 15 20 pL3
Timestep Timestep

Figure 1. Improvement of segmentation performance over time.

3. More Results

3.1. Segmentation

To shed more light on the segmentation results (Section 4.1 in the main paper), we plot the segmentation score over time to
illustrate the effect of refinement in Figure 1. We also provide more visualizations of the model’s final reconstruction and
segmentation outputs in Figures 2 and 3. Finally, we analyze the model in two settings different from how it was trained to
showcase its generalization and consistency: in Figure 4, we show the model’s improved performance on cluttered scenes
when it is initialized with more slots. In Figure 5, we unroll the model on longer sequences than it was trained on to ensure
slot consistency and stability. Note that this is distinct from the prediction/roll-out setting described in Section 4.2.

3.2. Prediction/Unroll

In Section 4.2 of the main paper, we described a training regime where the model observes a number of burn-in steps (where
refinement is enabled), but is forced to make predictions for subsequent steps without any observation (i.e. no refinement).
The ELBO is optimized as usual for all steps. To illustrate the benefit of this regime, we attach two videos where PARTS is
unrolled even longer than in the main paper, for a total of 40 time-steps. The first video (prediction_no_burn-in_baseline.gif)
is from a model which was trained for 16 steps with no burn-in (i.e. similar to the models in Section 4.1). The second video
(prediction_trained_with_burn-in.gif) is from a model which was trained for 8 burn-in steps followed by 8 prediction steps.

The videos contain 4 columns each: the target image, decoded reconstruction, ground-truth segmentation, and decoded
segmentation respectively. There is a red border in the videos around those frames when the model is receiving observations
for refinement. Subsequent frames (without the red border) involve predictions from the transition module alone. The second
model clearly performs better: it is able to predict the table in the room persists from a brief glimpse. It justifiably fails to
predict the window on the wall because it never sees it during the burn-in period. The baseline model, on the other hand, fails
completely after it stops receiving observations.

3.3. Latent Traversals

We attach videos containing a superset of latent traversals visualized in the main paper (Figure 9). The first video
(latent_traversals_playroom.gif) is on PLAYROOM while the second (latent_traversals_robotics_arm.gif) is on ROBOTICS
ARM. On PLAYROOM, we initialize the model with 10 slots instead of the usual 7.

The videos show reconstructed images at different traversal points over time, with perturbations spaced linearly from —2.0
to 2.0. Each frame shows different slots being traversed along the rows and latent dimensions along the columns. We can only
visualize a subset of the 64 latents the model was trained on, but do visualize all the slots. Note that the last row (separated by
a white line from the rows above) shows all slots being traversed at once (rather than slotwise per-latent traversals). This helps
illustrate the cross-slot factors such as viewpoint described in Section 5.3.

Reconstruction and segmentation results on the Playoom

Target image

Reconstruction
(PARTS)

Ground-truth
segmentation

Segmentation
(PARTS)

Reconstruction and segmentation results on the Playoom

Target image
|

Ground-truth Reconstruction
segmentation (PARTS)

Segmentation
(PARTS)

Figure 2. PARTS reconstruction and segmentation visualizations compared to target ground-truth on PLAYROOM data. Each column shows
the final step of a length-16 sequence. We use the same model we used in Section 4.1. It was trained and evaluated with refinement enabled
on every time-step.

References

[1] Josh Abramson, Arun Ahuja, Arthur Brussee, Federico Carnevale, Mary Cassin, Stephen Clark, Andrew Dudzik, Petko Georgiev,
Aurelia Guy, Tim Harley, et al. Imitating interactive intelligence. arXiv preprint arXiv:2012.05672, 2020. 1

[2] Antonia Creswell, Rishabh Kabra, Chris Burgess, and Murray Shanahan. Unsupervised object-based transition models for 3d partially
observable environments. arXiv preprint arXiv:2103.04693,2021. 1,2

[3] Klaus Greff, Rapha€l Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel Zoran, Loic Matthey, Matthew
Botvinick, and Alexander Lerchner. Multi-object representation learning with iterative variational inference. In International Conference

']
g
E
°
2
B

segmentation

(PARTS)

Reconstruction and segmentation results on CLEVRER

Figure 3. PARTS reconstruction and segmentation visualizations compared to target ground-truth on CLEVRER data. Each column shows the
last step of a length-25 sequence. We use the same model we used in Section 4.1. It was trained and evaluated with refinement enabled on
every time-step.

(4]
(3]

(6]

(7]
(8]

(9]

on Machine Learning, pages 2424-2433. PMLR, 2019. 2

Felix Hill, Olivier Tieleman, Tamara von Glehn, Nathaniel Wong, Hamza Merzic, and Stephen Clark. Grounded language learning fast
and slow. arXiv preprint arXiv:2009.01719, 2020. 1

Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper, Chris Elion, Chris Goy, Yuan Gao, Hunter Henry,
Marwan Mattar, et al. Unity: A general platform for intelligent agents. arXiv preprint arXiv:1809.02627,2018. 1

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob Uszkoreit, Alexey Dosovit-
skiy, and Thomas Kipf. Object-centric learning with slot attention. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 11525-11538. Curran Associates, Inc., 2020. 2

Rishi Veerapaneni, John D Co-Reyes, Michael Chang, Michael Janner, Chelsea Finn, Jiajun Wu, Joshua Tenenbaum, and Sergey Levine.
Entity abstraction in visual model-based reinforcement learning. In Conference on Robot Learning, pages 1439-1456. PMLR, 2020. 2
Kexin Yi*, Chuang Gan*, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B. Tenenbaum. Clevrer: Collision
events for video representation and reasoning. In International Conference on Learning Representations, 2020. 1

Polina Zablotskaia, Edoardo A Dominici, Leonid Sigal, and Andreas M Lehrmann. Unsupervised video decomposition using spatio-
temporal iterative inference. arXiv preprint arXiv:2006.14727, 2020. 1

Target/
ground-truth

PARTS
3 slots

PARTS PARTS
10 slots 7 slots 5 slots

PARTS

12 slots

REERERENE
NE NP

PARTS

Image/recon

Reconstructions and segmentations when PARTS is initialized with a different number of slots
Segmentation

bt

al

Image/recon

EE RO IN (RS
BRI T

Segmentation

Image/recon

B2 1510 .

Segmentation

Image/recon

Segmentation

A0 A [2

Figure 4. PARTS reconstruction and segmentation visualizations on PLAYROOM data when the model is initialized with a different number
of slots than the number it was trained with. We use the same model here as in Section 4.1, which was trained with K = 7 slots. Adding
more slots helps the model process cluttered scenes more accurately.

and ions when PARTS is ed on longer than training

segmentation

segmentation

Target image (PARTS) (PARTS) Target image (PARTS) (PARTS)

t=1

t=7 t=4

t=10

t=16 =13

t=19

t=31 =28 t=25

t=34

=37

t=40

t=43

=22

Figure 5. PARTS reconstruction and segmentation visualizations on CLEVRER data. We use the same model here as in Section 4.1, which was
trained on length-25 sequences. Here we run the model on length-45 sequences, and visualize every third time-step. The model maintains
the precision of its results and a consistent object-slot assignment (despite collisions) over the extended horizon. Even when a shape is
ambiguous (e.g. when it is newly introduced in the scene), the model is able to refine its parameters over time.

