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Abstract

Existing methods dealing with object instance re-
identification (OIRe-ID) look for the best visual features
match of a target object within a set of frames. Due to
the nature of the problem, relying only on the visual ap-
pearance of object instances is likely to provide many false
matches when there are multiple objects with similar ap-
pearance or multiple instances of same object class present
in the scene. We focus on a rigid scene setup and to limit
the negative effects of the aforementioned cases, we pro-
pose to exploit the background information. We believe that
this would be particularly helpful in a rigid environment
with a lot of reoccurring identical models of objects since
it would provide rich context information. We introduce an
attention-based mechanism to the existing Mask R-CNN ar-
chitecture such that we learn to encode the important and
distinct information in the background jointly with the fore-
ground features relevant to rigid real-world scenarios. To
evaluate the proposed approach, we run compelling exper-
iments on the ScanNet dataset. Results demonstrate that
we outperform significantly compared to different baselines
and SOTA methods.

1. Introduction
In the field of computer vision, multiple object match-

ing and association are two of the classical problems that
find applications in many distributed systems tackling video
surveillance, semantic scene understanding, and Simultane-
ous Localization And Mapping (SLAM) tasks among oth-
ers. Such tasks are particularly challenging in indoor en-
vironments where the scenes are generally cluttered with
many objects that makes it difficult to correctly identify
and track a specific object instance among a set of almost-
identical ones (see Figure 1 for a few samples). The prob-
lem is further compounded by the common wide baselines
shared among different/temporally disjointed views. Rely-
ing on the visual appearance to re-identify object instances

Figure 1. Few samples from the ScanNet dataset [6]. Different
similar-looking object instances are difficult to differentiate with
each other. However, the context information provided by the
background can play a relevant role to ease the re-identification
of a particular instance in multiple views.

in different images is thus a very complex task facing a
variety of challenges for the association problem, i.e.: oc-
clusions, motion blur, misdetections, etc. To address such
challenges, existing re-identification methods can be cate-
gorized into two major groups of approaches: appearance-
based and motion-based. Appearance-based approaches are
the most widely investigated ones because motion-based
systems suffer from spatio-temporal constraints. Such
methods try to localize each object instance based on a mo-
tion model, that, due to the possibility of severe and uncon-
trollable trajectories through the frames, tends to fail when
the same object instance is perceived after a long time.

A closely related task to the object instance re-
identification is the person re-identification problem where
the goal is to re-associate the image of a query person
among a set of (gallery) instances already acquired by mul-
tiple disjoint cameras at different time instants. Existing
person re-identification methods try to learn discriminative
features based on person’s appearance (e.g., [16, 11]). The
problem of associating a unique ID to instances of objects is
however different since the aim is to associate multiple un-
known objects between different (overlapping) views [18].
A closely related previous work, re-OBJ [1] recognized the
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Figure 2. An example scene with a collection of chairs. (Left) If only foreground appearance is considered, they are identical chairs across
multiple views, marked as F in insets. Any affine-invariant descriptor would easily match the incorrect chairs. (Right) However, if we also
consider the background there is useful discriminative information such as other objects, the wall or the skirting board, marked as B in
insets.

challenge of re-identification of multiple object instances
in multiple views in an indoor scenario for the first time.
re-OBJ [1] proposed to jointly encode the foreground ap-
pearance of different object instances along with partial
observations of the background for an object instance re-
identification framework suited for a rigid environment.

Most of the previous attempts for object re-identification
utilize CNN-based neural networks. CNNs rely on a cou-
ple of implicit inductive biases that help them to generalize
well on lesser data [10]: 1) Locality: the neighbouring pix-
els in an image are related. CNNs use sliding filters over
a small patch of an image to exploit local dependencies.
2) Weight Sharing: different parts of the image are pro-
cessed in an identical fashion regardless of their absolute
location. Moreover, the downsampling operations such as
pooling and strided convolutions further compress the in-
formation loosing a lot of relevant features in the process.
Although, CNNs have proved to be quite successful in gen-
eral classification tasks, they are unable to make relation-
ship among distant-pixels and such lack of crucial spatial
information make them not so suitable for tasks like object
instance re-identification. Furthermore, most of the exist-
ing algorithms in the literature rely on building a model of
the target objects by learning the appearance of only the tar-
get objects in the foreground and by applying the learned
appearance model to match the target objects across multi-
ple views. But, re-OBJ [1] shows that if only the objects in
the foreground are considered, then any affine-invariant de-
scriptor would learn to find similarities between two incor-
rect instances because they look very similar as only learnt
from their foreground appearances (see Figure 2). How-
ever, if we consider a static indoor scenario where large
displacement in the camera motion is unlikely and so the
background of an instance cannot undergo a sudden drastic
change, then the background can provide highly discrim-

Figure 3. Left: The image of an object instance in a static scene.
Centre: The image of the instance viewed through Grad-CAM [22]
highlighting gradient weighted high importance regions. Right:
Guided Grad-CAM image to show the pixel-space gradient visu-
alizations to better understand the discriminative features present
in the background.

inative information. Consider, two different views of the
same static scene where the objects are stationary and only
the camera is moving, the background might contain ex-
tremely important cues such as border between the wall and
the floor, other objects in vicinity and other useful discrim-
inative features present in the scene (see Figure 3).

Taking inspiration from [1], we propose to use
transformer-based models such as ViT [9]) to harness the
long-range dependencies from the background information
in addition to the foreground appearance in order to dis-
criminate among multiple instances of the same semantic
class and also among the objects that have a similar ap-
pearance as shown intuitively in Figures 1 and 2. To in-
clude the background information, we use an off-the-shelf
object detector, i.e. Mask-RCNN (sec. 3.1), and obtain fore-
ground & background masks of the objects with the bound-
ing boxes that are expanded (see sec. 4) to include a sub-
stantial background around the object within the bounding
boxes. Then, to capture and encode the spatial and con-
text information around each selected region, we leverage
the recent concepts behind the transformer-based models
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(e.g., ViT [9]) instead of CNN-based models. The archi-
tecture of self-attention-based models allows them to have
minimal inductive biases. ViT interprets an image as a
sequence of patches and, to process such a sequence, it
uses a self-attention mechanism that models the relation-
ships between its elements. The multi-headed self-attention
allows ViT to attend to all the patches of the sequence in
parallel and harness long-range dependencies between sev-
eral patches across different frames. Precisely, foregrounds
and the masked backgrounds are fed to a pre-trained ViT
model [9] (sec. 3.2) to extract the region encodings, which
are then further processed by a self-attention mechanism
that will separately embed foreground and background in-
formation into query, key and value to better exploit the in-
teraction between the foreground and background context.
The resulting embedding is then considered into a triplet-
based network architecture (see Figure 6) with the pairwise
ranking model to learn similarity at the instance level for a
triple-based ranking loss function.

Thorough experiments conducted on the ScanNet
dataset [6] demonstrate that our method significantly out-
performs existing approaches and yields to substantial im-
provements over different baselines.

2. Related Work
The object re-identification task is well-studied in the lit-

erature. However, it has mostly been presented as a per-
son re-identification problem. The object re-identification
task aims to re-identify objects in the images by using vi-
sual search to retrieve a similar set of images for a given
query image of the target object. Earlier models [4, 5, 23]
in the literature simply extract features like Gabor filters,
SIFT [17], HOG [7] features to learn image similarity.
However, the representations using the hand-crafted fea-
tures were limiting the performance of such methods. Some
deep learning-based models successful in image classifica-
tion [15] have been used to learn features from the images
but these models could not retrieve the fine-grained distinc-
tion between similar images. [24] proposed a pairwise rank-
ing model in order to learn fine-grained image similarity.
Pairwise ranking model was successfully used to learn im-
age ranking models in [5, 12, 19]. FaceNet [20] used a sim-
ilar ranking model but replaced verification loss [21] with
triplet loss for the verification, recognition and clustering.

Most of the previous studies like [24, 20, 21, 3, 11] rely
on learning an appearance-based transfer function for a ro-
bust re-identification system. Moreover, [11] extracted fea-
tures from three different modalities such as the chromatic
content, spatial arrangement of colors and local motifs de-
rived from different parts of the human body to accumu-
late local features. In [19], the authors trained a model to
rank images based on the relative attributes among the im-
ages with the similar attributes. OASIS [5] computes local

distance [12] to learn an image similarity ranking model
in addition to the hand-crafted features. However, these
appearance-based methods are good at identifying only the
intra-class variation, they usually fail to perform well in
identifying recurring multiple instances of the same object
class in different views. The applications that involve com-
putation of image similarity like re-identification, image re-
trieval, search-by-example require learning a fine-grained
image similarity that can also distinguish the differences
between different images of the same category. Thus, we
focus on the objects’ relationship to the background in or-
der to learn a unique discriminative feature for a particu-
lar object instance. We take inspiration from a closely re-
lated work [1] that encodes the foreground appearance and
partial observations of the background using a pre-trained
ResNet [14] for identifying multiple instances of objects
with same semantic class in different views. Instead of
a CNN-based architecture like ResNet, we propose to use
ViT [9] to generate the joint features which are then further
processed by an additional self-attention block which finds
long-range dependencies between different image patches
and maintains the vital spatial resolution at the output to
learn a unique discriminative representation for each object
instance.

3. OIRe-ID Framework
3.1. Object Detection

Our method builds upon any off-the-shelf object detec-
tion algorithm such as Mask-RCNN [13] which uses region-
based object detector like Faster R-CNN to detect objects.
Mask-RCNN not only provides a bounding box around an
object but also performs image segmentation and provides
a mask representing a set of pixels belonging to the same
object. We use Mask-RCNN to extract bounding boxes in-
cluding masks as separate images and resize them into im-
ages of a fixed size in order to train our network to learn
a visual encoding of the objects’ mask and the background
surrounding them within the bounding boxes (see Figure 4).

3.2. Foreground and Background Joint Feature

For each object of the input images, we create two sets of
images F = {If , Ib}. Using the detections obtained from
Mask-RCNN, one set is created by extracting masks repre-
senting objects in the foreground (If ). The other set only
contains the background with the subtracted foreground
(Ib). As shown in Figure 4, a pair of images is taken from
each set to pass through two identical streams to learn an
encoding for the masked foreground and the background.
Each of the images, the masked background and the masked
foreground is input to a ViT [9] model pre-trained on Ima-
geNet [8] dataset.

An input image I to ViT is divided into N fixed-size
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Figure 4. Our network takes expanded bounding boxes (see sec. 3.2)containing masked foreground and masked background of different
object instances. Each masked pair is fed to a ViT [9] network to generate a embeddings of dimensions (N + 1) × D, which are then
concatenated to provide a joint representation of 2(N + 1)×D before passed down to a self-attention block.

Figure 5. Architecture of ViT [9]. An input image is first divided
into equal size patches to form a sequence. Then, a learnable posi-
tion embedding is added for spatial information and an extra learn-
able cls token is added before the input sequence to the encoder.

patches (Itp|t = 1, 2, ...., N ). An extra learnable cls em-
bedding token denoted as Icls is pre-pended to the input
sequences (See Figure 5). The embeddings of dimension
R(N+1)×D obtained as an ouput from ViT are representa-
tion of the two images retaining spatial and semantic con-
text. These embeddings are then concatenated to provide
a joint embedding and further processed by a self-attention
block giving a final representation R2(N+1)×D.

3.3. Triplet Loss for Instance Re-identification

To effectively handle object instance re-identification,
an optimal system should be able to distinguish not only
among the images of different objects but also among dif-
ferent instances of objects of the same semantic class. Espe-
cially considering the rigid and static indoor scenario where
multiple instances of the same object category are present,
it is highly challenging to re-identify a particular object in-
stance amongst others. As shown in Figure 6, the final em-
beddings are arranged into a triplet of images for passing

Figure 6. Triplet sampling of the joint embeddings. The joint em-
beddings are segregated into embeddings of the anchor image A,
positive image P and a negative Image N which are fed into three
identical networks for optimizing the triplet loss.

down to a triplet-based training architecture.

A triplet constitutes three kinds of images: an anchor
which is the query template, a positive and a negative image.
A positive image is simply a transformed anchor image. A
negative image has to be carefully selected for an effective
re-identification at the instance level.

For instance, an image pair of two different classes of
objects (say, a cup and a table) is definitely an example of
anchor-negative pair but two different instances of the same
object (say, two different cups on the table) is also consid-
ered an anchor-negative pair. We use a triplet-based net-
work architecture with the pairwise ranking model to learn
image similarity for the triple-based ranking loss function,
inspired from [24]. Consider, a set of F = f1, ....fF im-
ages and si,j = s(fi, fj) representing the pairwise simi-
larity score between the images fi and fj . The score s is
higher for more similar images and is lower for more dis-
similar images. If we have a triplet ti = (fiA, fiP , fiN )
where fiA, fiP and fiN are the anchor, positive and nega-
tive images, respectively, then the training goal is to learn
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an embedding function such that:

D(fiA, fiP ) < D(fiA, fiN ), s(fiA, fiP ) > s(fiA, fiN )
(1)

where D(.) is the squared Euclidean distance in the embed-
dings space. A triplet incorporates a relative ranking based
on the similarity between the anchor, positive and the nega-
tive images.

The triplet ranking loss function is given as:

l(fiA, fiP , fiN ) = max{0,M+D(fiA, fiP )−D(fiA, fiN )}
(2)

where M is a parameter called margin that regulates
the gap between the pairwise distance: (fiA, fiP ) and
(fiA, fiN ). The model learns to minimize the distance be-
tween more similar images and maximize the distance be-
tween the dissimilar ones.

4. Experiments
Training data. To evaluate the performance of our pro-

posed method, we use a video dataset, ScanNet [6] for our
experiments which consists of 1500 indoor RGBD scans an-
notated with 3D camera poses, surface reconstructions, and
mesh segmentation related to several object categories. To
generate our training data, we employ Mask-RCNN over
a subset of 863 scenes randomly selected from the whole
ScanNet dataset. Overall, Mask-RCNN generated 646, 156
object detections with masks belonging to 29 object classes
(see Table 1). We use the ground-truth available with the
dataset to evaluate the accuracy of Mask-RCNN on the
ScanNet images. We discarded the detections for which
no ground-truth annotations were available. We estimated
bounding box overlap ratio between the ground truth (GT)
bounding boxes and the Mask-RCNN detections to collect
valid detections. The overlap ratio was chosen to be higher
than 60% and the label of the detected object should match
with the GT label for any detection to be considered a valid
detection.

Finally, we found around 9.11% of the total detec-
tions (around 58876) to be considered valid for the ex-
periments. The regions contained by the bounding boxes
were stretched by an additional 10 pixels in all directions to
obtain loosely-fitted bounding boxes around the objects to
allow larger background information around each object’s
foreground mask within the bounding boxes. These regions
are resized to 224 × 224 and stored according to the ob-
ject’s class and it’s observed instances in a particular scene.
At the end, the foreground masks and the background masks
were extracted from these regions and stored as separate im-
ages for each object category. The data is split into a 3-fold
cross-validation manner with 39250 images for training and
19626 images for test over 1701 instances of objects.

Table 1. Category-wise number of views and unique instances ob-
tained from ScanNet after filtering out only the valid detections
selected based on object’s label and the bounding box overlap ra-
tio with the ground-truth [1]

No. of Views and Unique Instances Per Object Class
Class No. of Views No. of Instances Class No. of Views No. of Instances

bicycle 110 6 toilet 1755 103
bench 27 4 tv 562 46

backpack 1563 117 laptop 600 41
handbag 486 32 mouse 59 6
suitcase 377 30 keyboard 1879 67

sports ball 379 21 microwave 667 61
bottle 903 27 oven 72 6
cup 278 25 toaster 11 4

chair 38203 508 sink 2694 157
couch 1371 75 refrigerator 60 11

potted plant 1294 55 book 3124 65
bed 83 17 clock 25 6

bowl 121 8 person 260 8
dining table 1853 185 teddy bear 47 8

vase 13 2 - - -

We performed experiments in three different setups as
in [1]. In all the experimental setups, we used pre-trained
ViT [9] on the ImageNet [8] dataset as the feature extractor
backbone. no-train: In this configuration, the full image
regions were matched directly against each other by using
an L2 distance-based metric, without any training. full:
In this configuration, our proposed model is trained using
the full images without extracting separate foreground and
background masks. concat: In this experimental setup,
the approach proposed in this paper is used by training
the model with the concatenated embeddings obtained from
masked foregrounds and the backgrounds. In concat setup,
the model undergoes a triplet-based training which learns
to minimize the difference between the anchor fiA and the
positive fiP images while maximizing the difference be-
tween the anchor fiA and the negative fiN images at the
same time.

Evaluation Metrics. We use the standard Cumulative
Matching Characteristic (CMC) and Rank-1 accuracy as the
metric to evaluate the performance of our method against
other existing methods. The performance of the framework
is judged by the number of good matches of the probe image
with a gallery of images in rank-1.

Table 2. Ablation study with different experimental setups to eval-
uate our method on the ScanNet with Rank-1,-5,-20 and -50 accu-
racy values. concat depicts the proposed approach.

type Rank-1(%) Rank-5(%) Rank-20(%) Rank-50(%)
no-train 68.7 77.06 81.78 92.71

full 75.79 88 91.22 96.25
concat 83.89 94.61 99.42 100

Analysis Table 2 shows the performance based on the
three different experimental setups on the ScanNet dataset
in regards to rank-1 accuracy. The results show that the
proposed method represented as concat in the table was able
to improve the rank-1 accuracy by 15.19% and 8.1% against
no-train and full, respectively.
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Figure 7. Visualizing the matches found in no-train, full and concat experimental setups. The right matches with the probe image are
highlighted in green color. The red bounding box highlight a match that contains a different instance of the same object class. We can
observe that in such indoor scenarios, the background information can be highly useful in order to discriminate among different instances
of the same object.

Figure 7 shows that the proposed method, concat was
able to find the best match with the probe image. Other se-
tups, no-train and full tried to match with an image where

the object has either same color or the shape. However, the
proposed method, concat could not only handle the intra-
class variations but could also distinguish among different
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Figure 8. Examples of challenges faced by standard object track-
ing and association algorithms like deepSort in a cluttered envi-
ronment. (Top) ID switching for the same object instance (Chair
40 highlighted in yellow box) and, (Bottom) When camera revisits
the same region later, same object instance is assigned a different
ID (Bottle 4 highlighted in red box)

instances of the objects with same semantic class. However,
occasionally our method could not identify the exact in-
stance but found a match with another instance of the same
object category as highlighted in red bounding box.
Comparison with state-of-the-art To evaluate our ap-
proach with the state-of-the-art methods, we compare our
method with the previous works, re-OBJ [1] and deep-
Sort [25] which is a multi-object tracking algorithm re-
purposed here as a rank-1 re-ID method. deepSort [25]
is based on SORT [2] algorithm that utilizes deep appear-
ance descriptors for better accuracy in multiple object track-
ing. deepSort employs a deep association metric by learn-
ing discriminative feature embeddings offline on a pedes-
trian dataset. For our evaluation, we fed two random pairs
of images obtained from the ScanNet scenes to deepSort to
associate multiple objects. We evaluated the performance
by measuring the percentage of matched object instances
across all the image pairs. Figure 8 shows the kind of chal-
lenges that standard object matching or tracking algorithms
face in re-identifying objects in cluttered indoor scenes.

While the deepSort was able to match a few objects (bot-
tle in blue bounding box) in multiple frames but lost many
objects such as chair (in yellow bounding box) and another
bottle (in red bounding box), especially, when the camera
revisits the same region of the scene at a different point of
time. Since such environments are cluttered with several
objects and there are multiple instances of similar looking
objects are present, state-of-the-art object matching and as-
sociation algorithms fail to perform well.

Table 3 shows the comparison in performance of our
method to multiple pedestrian tracking algorithm, deep-

Table 3. Rank-1 accuracy of our method in comparison to state-
of-the-art multiple object tracking algorithm, deepSort [25] and
CNN-based re-OBJ [1]

method Rank-1(%)
deepSort 49.60
re-OBJ 77.85

ours 83.89

Sort and the state-of-the-art CNN-based object instance
re-identification method, re-OBJ. deepSort and re-OBJ
achieved a rank-1 accuracy of 49.60% and 77.85%, respec-
tively, against the rank-1 accuracy of 83.89% obtained with
our method.

4.1. Experiments with person re-ID Baseline

To compare the performance of our method with other
existing state-of-the-art methods in object re-ID, we per-
formed some experiments with the methods for person re-
identification methods.

OSNet We used one such baseline re-ID method like
Omni-Scale Feature Learning for Person Re-Identification
(OSNet) [27] on our data. OSNet tries to address person re-
identification (ReID) as an instance-level recognition prob-
lem by not only capturing different spatial scales but also
encapsulating a combination of multiple scales. The au-
thors define a combination of features of both homogeneous
and heterogeneous scales as omni-scale features. For exam-
ple, features of variable homogeneous scale while identify-
ing a person in multiple cameras would be a combination
of global-scale features like the whole body region includ-
ing the clothes and the corresponding local-scale features
like the shoes, glasses etc. But, these features could be
shared among different individuals like two different peo-
ple wearing the similar clothes and shoes. Thus, apart from
these features of variable homogeneous scales, more com-
plicated and richer features would be required. For exam-
ple, when two people are wearing the clothes of same color
(say, a white shirt), a specific logo in the front could be
the distinguishing factor between the two. Although, the
logo alone won’t be distinctive enough on its own without
the consideration of the clothes as a context which might
otherwise be confused with several other patterns in the
scene. Thus, the unique combination of small-scale fea-
tures like the logo size on the shirt and the medium scale
features like the upper-body size of the person could consti-
tute the features of variable heterogeneous scales. In this
work, a deep CNN-based ReID is proposed for learning
these so called omni-scale features. This is achieved by
designing a residual block composed of multiple convolu-
tional streams, each detecting features at a certain scale. Im-
portantly, a novel unified aggregation gate is introduced to
dynamically fuse multi-scale features with input-dependent
channel-wise weights.
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Table 4. Performance of our method in comparison to person re-
ID methods. The best performing type of setups is highlighted in
bold.

method Rank-1(%) Rank-5(%) Rank-10(%) Rank-20(%)
OSNet 69 85.7 89 91.3
DGNet 58.3 76 83.7 92.4
re-OBJ 77.85 91.55 - 98.36

ours 83.89 94.61 - 99.42

DGNet Another baseline method we used for our exper-
iments is Joint Discriminative and Generative Learning for
Person Re-identification (DGNet) [26]. DGNet proposes a
joint framework to couple the discriminative and generative
learning to improve the learned re-id embeddings by lever-
aging the generated data. The generative module separately
encodes each target (person) into an appearance code and
a structure code, and a discriminative module shares the
appearance encoder with the generative module. The ap-
pearance space encodes appearance of the person and other
related semantic features including color of clothing, shoes,
texture and style etc. while the structure space encode geo-
metrical and spatial information including body size, vol-
ume of hair, pose, background and viewpoint, etc. By
switching the appearance or structure codes, the generative
module is able to generate high-quality cross-id composed
images, which are then fed back online to the appearance
encoder which is further used to improve the discrimina-
tive module. The results in comparison to the proposed ap-
proach are given in Table 4.

5. Conclusion

The contribution of this paper was to explore the intu-
ition that the information obtained from the background sur-
rounding the detected target objects in a rigid scene could
be highly useful in discriminating two near-identical ob-
jects or two instances of the same object class. The dis-
criminative features learned from the explicit concatenated
foreground and background can be utilized to re-identify
objects at the instance-level throughout the dataset. Our ex-
periments have shown that the proposed method based on
self-attention-based transformer model performs well even
in the case of highly cluttered rigid environments like the
indoor scenes obtained from ScanNet dataset. In future, we
plan to explore if the temporal information obtained from
multiple views in a video dataset can be integrated with our
object instance re-identification system for a robust multiple
object tracking algorithm in case of rigid and static scenes.
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