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Abstract

Because anomalous samples cannot be used for train-
ing, many anomaly detection and localization methods use
pre-trained networks and non-parametric modeling to esti-
mate encoded feature distribution. However, these meth-
ods neglect the impact of position and neighborhood in-
formation on the distribution of normal features. To over-
come this, we propose a new algorithm, PNI, which es-
timates the normal distribution using conditional proba-
bility given neighborhood features, modeled with a multi-
layer perceptron network. Moreover, position informa-
tion is utilized by creating a histogram of representative
features at each position. Instead of simply resizing the
anomaly map, the proposed method employs an additional
refine network trained on synthetic anomaly images to bet-
ter interpolate and account for the shape and edge of the
input image. We conducted experiments on the MVTec
AD benchmark dataset and achieved state-of-the-art per-
formance, with 99.56% and 98.98% AUROC scores in
anomaly detection and localization, respectively. Code
is available at https://github.com/wogur110/
PNI_Anomaly_Detection.

1. Introduction
In industrial inspection [1], delivering defective products

to customers due to detection failure can be costly, and false
detection can increase manufacturing costs. Therefore, high
prediction accuracy alone is insufficient, and low false pos-
itive rate (FPR) and false negative rate (FNR) are preferred.
Additionally, collecting abnormal samples can be difficult,
making it almost impossible to build a supervised model
for the task. Thus, anomaly detection methods that use only
normal samples are adopted. Anomaly localization quanti-
fies the anomaly of each pixel in an input image, allowing
users to identify where the defect is located and improve
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Figure 1: Examples from MVTec AD [1]. The normal
images (left) and the anomalous images (second column)
overlaid by ground truth mask are followed by the anomaly
maps from PatchCore [21] (third column) and our proposed
approach (right). The contours overlaid on anomaly maps
are from thresholds optimizing F1 scores of anomaly local-
ization.

manufacturing processes. Figure 1 displays example im-
ages and results of an existing method and our proposed
approach from the MVTec AD benchmark dataset.

Since there are only normal samples available for train-
ing, conventional classification methods cannot be used.
One approach is to generate defective samples to train clas-
sifiers with supervised learning [29, 28, 22]. CutPaste [17],
for instance, used masks of rectangular and scar shapes to
learn representation in a self-supervised manner. However,
these methods show relatively low performance compared
to other recent methods due to the lack of realism in ab-
normal patterns. To overcome this difficulty, many recently
proposed methods [6, 21] adopt a pre-trained network such
as pre-trained ResNet [11] using ImageNet [8], which inten-
sively learned low-level image features from a super large-
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sized dataset.
Various methods are utilized to model the distribution

of normal features that are transformed by a pre-trained
network. For example, PatchCore [21] sub-samples rep-
resentative features from the extracted normal features to
achieve efficient non-parametric modeling of nominal fea-
tures. Similarly, CFLOW-AD [9] uses normalizing flow
to model the normal feature distribution. However, these
methods quantify the anomalies of input feature vectors in-
dependently, without considering the correlation between
neighboring features. Additionally, normal features can be
abnormal if they are in the wrong position. For instance,
in the first row of Figure 1, the top-view cables are nor-
mal only when the color order is correct, as shown in the
first column image. However, if the color order is incor-
rect, the product is defective, even though all the local fea-
tures are normal. Existing representation-based approaches,
such as PatchCore, cannot capture this type of abnormality.
Although CFLOW-AD adopted position encoding blocks,
the implicit method appears insufficient to model positional
information and overlooks the correlation between normal
features.

To address this problem, this paper utilizes position and
neighborhood information in simple yet effective ways. At
each position of the encoded feature dimension, a histogram
of all the training features is constructed to model a con-
ditional probability distribution given the positional infor-
mation. Meanwhile, an MLP (multi-layer perceptron) net-
work models the probability distribution of normal features
conditioned by neighboring features, where the input is the
concatenated neighboring features. Through this process,
the MLP network observes a large support region, while
the features remain local, allowing the proposed method
to produce a finely detailed localization map. These two
distributions are combined to estimate the likelihood and
anomaly score of an input image and its pixels during test-
ing. While PatchCore serves as a baseline to demonstrate
the validity of the proposed ideas, they can be applied to
any representation-based method that uses a pre-trained net-
work to generate input features and non-parametric model-
ing of normal features.

Representation-based approaches have a limitation in de-
picting detailed anomaly maps because local features are
extracted from image patches of moderate size. When the
patch size is small, enough information may not be ex-
tracted, leading to degraded detection performance. On the
other hand, a large patch size may result in a blurred local-
ization map. To overcome this problem, we trained an addi-
tional refinement network with synthetic abnormal images,
which improves the detail of the localization map. While
the simulation of synthetic abnormalities was explored in
previous works [17, 32, 34], the proposed approach is dif-
ferentiated by its design of refinement network architec-

ture and loss function aimed at correcting representation-
based distances, and by introducing various defect gener-
ation methods to enhance refinement robustness. It’s im-
portant to note that synthetic images are not used to en-
code input images or to estimate anomaly scores. They
are used only to train the refinement network. This is dif-
ferent from existing methods. By using synthetic images
and corresponding anomaly maps generated by the above-
mentioned method, the refinement network learns how to
revise the anomaly map to look like the ground truth mask.

The proposed method resulted in a decrease in FNR from
1.83% to 0.95% compared to the current state-of-the-art
method [21]. This reduction means that customers receive
48% fewer defective products. Additionally, The FPR was
reduced from 4.07% to 1.50%, which means that 63% fewer
good products are wasted. Although the improvement in the
area under the receiver operating characteristic (AUROC)
metric, 0.46%, may seem small, it can provide significant
benefits to industrial manufacturing.

In summary, our contributions are threefold. Firstly, we
demonstrate the effectiveness of using conditional normal
feature distribution based on position and neighborhood
information for anomaly detection and localization. Sec-
ondly, we validate that training a refinement network with
synthetic datasets can significantly enhance performance.
Finally, we provide insight into the factors that contribute
to the noticeable improvement with the ablation study.

2. Related Work
We selected PatchCore [21] as our baseline because it

employs a generic representation-based structure using non-
parametric modeling and exhibits state-of-the-art perfor-
mance. PatchCore aggregates local patch features from
normal training data and selects a representative subset
through greedy coreset subsampling [23]. During testing,
the anomaly score for each patch feature is calculated pixel-
wise by performing a nearest neighbor search from the core-
set. Our proposed method utilizes the same process for fea-
ture vector creation, which we have summarized for com-
pleteness in this paper. However, it’s worth noting that any
other feature extraction process can be used because our
proposed method is independent of the process used.

With a pre-trained network ϕ, an input image is con-
verted into hierarchical features ϕi,j = ϕj(xi), where j de-
notes the hierarchy level of ϕ. For instance, in ResNet-50
[11], j ∈ 1, 2, 3, 4 represents the final output of each reso-
lution block. We denote the feature map ϕi,j ∈ Rcj×hj×wj

as a three-dimensional tensor, where cj , hj , and wj are the
number of channels, height, and width, respectively. To
avoid using too high or low-level features, the intermediate
features ϕi,2 and ϕi,3 are concatenated and used. As the spa-
tial sizes (h,w) of these features are different, the smaller
one is resized to be the same size as the larger one: (h∗, w∗),
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where h∗ = max(h2, h3) and w∗ = max(w2, w3). Then,
they are concatenated to obtain ϕ∗

i ∈ Rc∗×h∗×w∗
, where

c∗ = c2 + c3. Furthermore, to increase the receptive field
of feature maps, the pixel-level feature Φi(h,w) is extended
to incorporate neighborhood features within a specific patch
size p. Adaptive average pooling is performed to output a
single feature of dimension d at (h,w). Through this pro-
cess, the input image is converted into a set of local patch-
level features Φi ∈ Rd×h∗×w∗

, where d denotes the dimen-
sion of the feature vector.

3. Method
3.1. Overview

Assume that x represents the spatial coordinates
(h,w) in the patch-level feature Φi. In most existing
representation-based methods [5, 6, 21], the anomaly score
of the patch-level feature S(x) is estimated as the negative
log-likelihood of p(Φi(x)), given by

S(x) = − log p(Φi(x)), (1)

where p(Φi(x)) represents the probability that Φi(x) is nor-
mal and is modeled using trained normal features.

In this paper, we argue that the probability should be
modeled based on the position and neighboring features.
As shown in Figure 1, electric wires are located within their
sheaths (as seen in the left image of the first row), while
transistors in the normal dataset are typically located at the
center of the images (as seen in the left image of the third
row). Denoting position and neighborhood information as
Ω, the anomaly score S(x) is represented as negative log-
likelihood of conditional probability of Φi(x) given Ω:

S(x) = − log p(Φi(x)|Ω). (2)

To model the conditional probability from training fea-
tures, we introduce the embedding coreset Cemb. The fea-
ture vectors of Cemb are sub-sampled from all normal fea-
tures in all training images using a greedy coreset sub-
sampling method [23]. Each element of Cemb delegates a
group of similar normal features. In a given circumstance,
the number of occurrences of normal features associated
with an embedding coreset vector c ∈ Cemb is proportional
to the probability that c is normal in that condition p(c|Ω).
The normal probability of a patch p(Φi(x)|Ω) is expressed
with Cemb as follows:

p (Φi(x)|Ω) =
∑

c∈Cemb

p(Φi(x)|c,Ω) p(c|Ω). (3)

While the computation is challenging with a large size of
Cemb, it has been observed that p(c|Ω) is a sparse distribu-
tion with many small values that can be ignored. To take
advantage of this property, (3) is approximated as follows:

p (Φi(x)|Ω) ≈ max
c∈Cemb

p (Φi(x)|c,Ω) Tτ (p(c|Ω)) , (4)

where Tτ (x) is defined as:

Tτ (x) =

{
1, if x > τ

0, otherwise.
(5)

To stop considering insignificant values of p(c|Ω), the
threshold function is applied. Applying Tτ (x), p(c|Ω) with
moderate probability becomes one. Using this thresholding
technique and the maximum operation in equation (4), it is
possible to identify the coreset feature that is most similar
to Φi(x) while rejecting improbable cemb features. While
this approximation may not be intuitive, it can significantly
reduce computation time with only a small decrease in per-
formance. τ lower than 1/|Cemb| guarantees at least one
of c in Cemb be a normal feature. In this paper, we set
τ = 1/(2|Cemb|) without optimizing.

To generate an anomaly score map, scores are estimated
for all features in an input image. However, the resolution
of the score map may differ from that of the original input,
so it is resized using bi-linear interpolation and smoothed
with a Gaussian kernel of σ = 8 as described in [21]. Note
that the parameter σ is not extensively optimized. While
Gaussian smoothing is performed to eliminate noisy values,
it may damage the detailed information of the score map.
Therefore, an additional pixelwise refinement step is per-
formed to enhance the resized score map and make it more
consistent with the edges, textures, and shapes of defects
and objects in the input image.

3.2. Modeling Normal Feature Distribution

To model the normal feature distribution p(c|Ω), it is ap-
proximated as an average of the two probabilities as:

p(c|Ω) ≈ p(c|Np(x)) + p(c|x)
2

, (6)

where p(c|Np(x)) is the normal feature distribution in
neighborhood information and it is modeled using an MLP.
To model p(c|x), the normal feature distribution in posi-
tion information, histograms are constructed by counting
the normal training features at every position x as shown
in Figure 2. To train the MLP and create the histograms,
using a small size for Cemb is preferable. However, reduc-
ing the size of Cemb can lead to a decrease in the accuracy
of the normal probability of the input vector, p(Φi(x)|c,Ω).
To address this issue, we introduce the distribution coreset,
Cdist, which is sub-sampled from the embedding coreset
Cemb using the same method as in [23]. In our implemen-
tation, both coresets are calculated simultaneously because
Cdist is a subset of Cemb, and the mapping from cemb vec-
tors to cdist vectors is calculated at the beginning. There-
fore, p(cemb|Ω) in equation (4) is changed to p(cdist|Ω) ac-
cording to the corresponding cdist vectors.

To model p(cdist|Ω), a simple MLP network is trained
with neighboring features Np(x) of input feature Φi(x).
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Figure 2: Overview of PNI algorithm. At train time, normal samples are converted to feature map Φi using ImageNet
pre-trained model ϕ. Aggregated patch-level features are subsampled to generate embedding coreset Cemb and distribution
coreset Cdist using the greedy subsampling method. After storing the coresets, normal feature distribution given neighbor-
hood and position information is trained with MLP and histogram respectively. A pixelwise refinement network is trained
separately using synthetic defect images. At inference time, anomaly score for local test feature is evaluated using the trained
normal feature models. At last, the refinement step is performed to improve the anomaly map considering the input image.

Np(x) is defined as a set of features that are within a p× p
patch, excluding x itself as follows:

Np(x) = {Φi(m,n) | |m− h| ≤ p/2,

|n− w| ≤ p/2, (m,n) ̸= (h,w)},
(7)

where Φi(m,n) is feature vector at position (m,n) in the
feature map Φi. The MLP takes an input of a 1-dimensional
vector obtained by concatenating all features in Np(x) and
has NMLP sequential layers with cMLP channels. Batch
normalization and ReLU activation functions are used be-
tween layers. The output of the MLP has |Cdist| nodes,
with the value of each node representing the probability of
the corresponding distribution coreset feature. The ground
truth used for training is a one-hot vector, where the distri-
bution coreset index closest to the true center feature vec-
tor is one, and the cross-entropy loss is calculated with the
MLP output. To address the overconfidence of the trained
deep neural network models, temperature scaling [10] with
temperature T = 2 is applied to make the confidence values

more realistic.
Position information x is also crucial and can signifi-

cantly affect the probability of Φi(x) being a normal fea-
ture, especially in object-type images. To capture the po-
sition information, we generate p(cdist|x) by accumulating
the indices of Cdist for each position x in all training im-
ages ∀xi, using Algorithm 1. In this process, features in the
p × p neighborhood are accumulated in the histogram for
robust estimation.

To calculate p(Φi(x)|cemb,Ω) in (4), we assume that
p(Φi(x)|cemb) is independent of Ω, since cemb contains all
the information in Ω related to Φi(x). Then, p(Φi(x)|cemb)
is expressed in terms of an exponent of the distance between
Φi(x) and cemb as in most existing methods:

p(Φi(x)|cemb,Ω) ≈ p(Φi(x)|cemb) ≈ e−λ||Φi(x)−cemb||2 ,
(8)

where λ is a hyperparameter of an exponential function, and
we set λ = 1 without optimizing.
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Algorithm 1 Calculation of p(cdist|x)

1: Initialize hist(·|x) as a zero vector of R|cdist| for all x
2: for all training images xi do
3: for all coordinates x do
4: idx← find an index of nearest cdist to Φi(x)
5: hist(idx|x)← hist(idx|x) + 1
6: end for
7: end for
8: p(cdist|x)← normalize (hist (·|x))

(a) (b) (c) (d)

Figure 3: Examples of defect images generated by (a) Cut-
Paste, (b) CutPaste (scar), (c) DRÆM, and (d) manual draw-
ing. The area corresponding to the defects are highlighted.

3.3. Pixelwise Refinement

We further improve the reliability of the anomaly map by
using a refinement network f , trained in a supervised man-
ner using an artificially created defect image dataset D. Let
θ be parameters of f . We aim to train optimal parameters

θ∗ = argmin
θ

∑
(I,Â,A)∈D

ℓ(f(I, Â; θ), A). (9)

D is composed of (I, Â, A) pairs. I is an artificially gen-
erated anomaly image, and A represents the ground-truth
anomaly map of I , with 1 assigned to defect regions and 0
assigned to others. Â is an anomaly map estimated from the
proposed algorithm. We normalize each map into [0, 1]. ℓ
is a loss function between the refine Ã ≜ f(I, Â; θ) and the
ground-truth A.

we create four different types of data for the dataset
D with the same ratio. These four methods include Cut-
Paste [17], CutPaste (scar) [17], DRÆM [32], and manual
drawing. As pointed out in CutPaste, training with defects
of varying sizes and shapes together prevents the network
from optimizing in a naive direction and enables better gen-
eralization performance. This is a significant advantage in
cases where real abnormal data is unknown. Figure 3 shows
the defect image examples generated by 4 methods from
normal MVTec AD training data. Defects generated by
each method have distinct characteristics. CutPaste creates
rectangular defects in larger areas, while CutPaste (scar)
produces more detailed and thinner defects. DRÆM and
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Figure 4: Schematic structure of the refinement network.

manual methods generate a more complex variety of defect
patterns.

We adopt the encoder-decoder architecture for f .
The network structure is based on [16] that uses
DenseNet161 [13] as the backbone, but we introduce two
modifications to it. First, the refinement network takes 4-
channel inputs of an RGB image I and an anomaly map
Â. Second, we apply the early fusion method [14] and fuse
the features of I and Â after the first convolution layer. A
schematic structure of the pixelwise refinement network is
presented in Figure 4.

To train f , we use a loss function consisting of two
terms: ℓ = (ℓreg + ℓgrad)/2. The regression loss ℓreg is
calculated using L2-norm between Ã and A.

ℓreg =
||Ã−A||2

HW
, (10)

where H and W are the width and height of A. Next, the
gradient loss ℓgrad is

ℓgrad =
||∇hÃ−∇hA||2 + ||∇wÃ−∇wA||2

2HW
, (11)

where ∇h and ∇w are partial derivative operations in the
vertical and horizontal directions, respectively. ℓgrad im-
proves the refinement results by making the network’s train-
ing more concentrated near the edges of the defect region.

4. Experimental Results
4.1. Implementation Details

Datasets We adopt three popular industrial datasets,
MVTec AD [1], BTAD [19], and VisA[35] to evaluate the
proposed PNI. MVTec AD includes 15 subcategories, con-
sisting of 10 object categories and 5 texture categories.
The dataset contains a total of 5, 354 color images, in-
cluding 3, 629 defect-free training images and 1, 725 test
images that include both normal and anomalous images
with ground-truth defect masks. Anomalous images are la-
beled with various types of defects. BTAD is an industrial
anomaly detection dataset with 3 subcategories and a total
of 2, 830 color images. Of these, 1, 800 training images are
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Table 1: Anomaly detection and localization AUROC scores on MVTec AD [1] are presented. The first and second num-
bers indicate I-AUROC (image-level detection score) and P-AUROC (pixel-level localization score), respectively. Sub-total
averages are provided for object and texture categories. For each category, the best result is boldfaced.

RIAD [33] InTra [20] CutPaste [17] FastFlow [30] Tsai et al. [24] CFLOW-AD [9] PatchCore [21] PNI

Object

Bottle 99.9 98.4 100 97.1 98.3 97.6 100 97.7 100 98.6 100 98.76 100 98.6 100 98.87
Cable 81.9 84.2 70.3 91.0 80.6 90.0 100 98.4 98.8 98.2 97.59 97.64 99.5 98.4 99.76 99.10
Capsule 88.4 92.8 86.5 97.7 96.2 97.4 100 99.1 97.2 97.9 97.68 98.98 98.1 98.8 99.72 99.34
Hazelnut 83.3 96.1 95.7 98.3 97.3 97.3 100 99.1 99.6 97.8 99.98 98.82 100 98.7 100 99.37
Metal nut 88.5 92.5 96.9 93.3 99.3 93.1 100 98.5 97.8 99.1 99.26 98.56 100 98.4 100 99.29
Pill 83.8 95.7 90.2 98.3 92.4 95.7 99.4 99.2 97.7 98.8 96.82 98.95 96.6 97.4 96.89 99.03
Screw 84.5 98.8 95.7 99.5 86.3 96.7 97.8 99.4 94.1 98.5 91.89 98.10 98.1 99.4 99.51 99.60
Toothbrush 100 98.9 100 98.9 98.3 98.1 94.4 98.9 100 99.0 99.65 98.56 100 98.7 99.72 99.09
Transistor 90.9 87.7 95.8 96.1 95.5 93.0 99.8 97.3 98.9 97.7 95.21 93.28 100 96.3 100 98.04
Zipper 98.1 97.8 99.4 99.2 99.4 99.3 99.5 98.7 99.5 98.6 98.48 98.41 99.4 98.8 99.87 99.43

Average 89.9 94.3 93.0 96.9 94.3 95.8 99.1 98.6 98.4 98.4 97.66 98.01 99.2 98.4 99.55 99.12

Texture

Carpet 84.2 96.3 98.8 99.2 93.1 98.3 100 99.4 93.4 98.4 98.73 99.23 98.7 99.0 100 99.40
Grid 99.6 98.8 100 98.8 99.9 97.5 99.7 98.3 100 98.5 99.60 96.89 98.2 98.7 98.41 99.20
Leather 100 99.4 100 99.5 100 99.5 100 99.5 99.3 99.1 100 99.61 100 99.3 100 99.56
Tile 98.7 89.1 98.2 94.4 93.4 90.5 100 96.3 96.2 94.4 99.88 97.71 98.7 95.6 100 98.40
Wood 93.0 85.8 97.5 88.7 98.6 95.5 100 97.0 99.7 97.5 99.12 94.49 99.2 95.0 99.56 97.04

Average 95.1 93.9 98.9 96.1 97.0 96.3 99.9 98.1 97.7 97.6 99.47 97.59 99.0 97.5 99.59 98.72

Average 91.7 94.2 95.0 96.6 95.2 96.0 99.4 98.5 98.1 98.1 98.26 97.87 99.1 98.1 99.56 98.98

normal, and the remaining test images include both normal
and anomalous images with ground-truth masks. VisA in-
cludes 12 subcategories, consisting of 4 single instances, 4
multiple instances, and 4 complex structures, and contains
a total of 10, 821 color images, including 9, 621 normal and
1, 200 anomalous ones. The anomalous images are evenly
distributed with 100 images per subcategory, and ground-
truth masks for the anomalous regions are provided. As
in [5, 6, 29, 21], images from all datasets are resized to
512× 512 and center-cropped to 480× 480 to remove neg-
ligible boundary pixels.

Evaluation Metrics To access the performance of the
proposed PNI, we use two metrics, AUROC (Area Un-
der the Receiver Operator Curve) and AUPRO (per-region-
overlap curve), as done in [21, 24, 7]. AUROC is measured
at the image level (I-AUROC) for anomaly detection perfor-
mance and at the pixel level (P-AUROC) for anomaly local-
ization performance. AUPRO evaluates the anomaly local-
ization performance by assigning equal weight to anoma-
lous regions of different sizes in the image. AUPRO ad-
dresses the drawback of P-AUROC, where a prediction re-
sult in a single large anomalous region may have a greater
impact than those in many small anomalous regions. High
AUPRO indicates that the algorithm provides good anomaly
localization results for both large and small anomalous re-
gions.

Parameter Setup Similar to [17, 21], we trained two
models: a single network-based model and an ensemble
network-based model. For the single model, WideResNet-
101 [31] pre-trained on ImageNet [8] data is used as the

feature extractor. Also, for the ensemble model, ResNext-
101 [27] and DenseNet-201 [13] are additionally used as
feature extractors. The subsampling ratio to generate the
embedding coreset is set to 0.01, and the size of the distri-
bution coreset |Cdist| is set to 2, 048. In the training pro-
cess of p(cdist|x) and p(cdist|Np(x)), the patch size of the
neighborhood p is set to 9. The MLP network for the nor-
mal feature distribution consists of 10 fully-connected lay-
ers and each layer includes 2, 048 neurons. We train the
MLP network using the Adam optimizer [15] for 15 epochs
with a 10−3 learning rate and batch size 2, 048. Also, we
adopt step learning rate decaying [12] with γ = 0.1 and 5
step size. We don’t use any data augmentation since each
category has different permissible augmentation based on
the characteristics of the images.

In the training process of the refinement network, we use
the Adam optimizer for 55,000 iterations with a 10−4 learn-
ing rate and batch size 8. Also, we perform online data aug-
mentation, including random horizontal flip, rotation, and
color change in an online manner. In inference, we fuse Ã
at 0.1 ratio with Â to obtain the final anomaly map.

4.2. MVTec AD

AUROC Table 1 shows the performance of anomaly de-
tection and localization for 15 subcategories of the MVTec
AD dataset. We compare our proposed PNI algorithm with
several conventional algorithms [33, 20, 17, 30, 24, 9, 21]
in terms of I-AUROC and P-AUROC. Here, the results of
single model versions of the proposed PNI algorithm, Cut-
Paste, and PatchCore are compared. Also, the results of
CFLOW-AD use an evaluation protocol that selects the best
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Table 2: Comparison of anomaly detection and localization
results on MVTec AD [1]. The proposed PNI is compared
to recent algorithms in terms of I-AUROC, P-AUROC, and
AUPRO. For AUPRO, sub-total averages are provided for
both object and texture subcategories additionally.

AUROC AUPRO

Image Pixel Object Texture Average

Patch SVDD [29] 92.1 95.7 - - -
SPADE [5] 85.5 96.0 93.4 88.4 91.7
PaDiM [6] 95.3 97.5 91.6 93.1 92.1
RIAD [33] 91.7 94.2 - - -
CutPaste [17] 95.2 96.0 - - -
DRÆM [32] 98.0 97.3 - - -
FastFlow [30] 99.4 98.5 - - -
SOMAD [18] 97.9 97.8 94.1 91.6 93.3
InTra [20] 95.0 96.6 - - -
MB-PFM [26] 97.5 97.3 92.3 94.6 93.0
NSA [22] 97.2 96.3 90.4 92.2 91.0
IKD [3] - 97.81 93.30 91.05 92.55
PatchCore [21] 99.1 98.1 93.3 93.6 93.4
Reverse Distillation [7] 98.5 97.8 93.4 95.0 93.9
Tsai et al. [24] 98.1 98.1 95.7 95.0 95.5
PEFM [25] - 98.30 95.30 95.95 95.52
CDO [4] - 98.22 94.57 94.90 94.68
PNI 99.56 98.98 96.34 95.47 96.05

Uniformed Students [2] - - 90.8 92.7 91.4
CutPaste (ensemble) [17] 96.1 - - - -
PatchCore (ensemble) [21] 99.6 98.2 - - 94.9
CFLOW-AD [9] 98.26 98.62 93.58 96.65 94.60
PNI (Ensemble) 99.63 99.06 96.83 96.00 96.55

results from training with various hyperparameters. Some
of the conventional algorithms provide multiple models by
varying the experimental settings, and we provide detailed
information on this in the supplementary document.

The proposed PNI algorithm shows the best anomaly
detection performance of 99.56% I-AUROC and anomaly
localization performance of 98.98% P-AUROC, surpass-
ing FastFlow by 0.16% and 0.48%, respectively. Although
FastFlow with CaiT shows high performance based on a
powerful transformer, there is a noticeable performance
drop in a few classes, leading to a decrease in the average
score. Our motivation for using position and neighborhood
information can be more beneficial in object-type images,
and the results support this guess. PNI significantly out-
performs conventional algorithms in object classes, with
considerable improvements in the localization of transis-
tor, metal nut, and bottle classes. Moreover, the average
I-AUROC of PNI for object classes is 99.55%, showing
a 43.8% reduction in error compared to the second-best
PatchCore. Using neighborhood information for each pixel
is also effective in measuring the anomaly at that position,
even for texture classes. In addition, pixelwise refinement
works effectively on texture subcategories. The synthesized
defect images used in network training handle various and
complex defects occurring in real texture images well.

Table 3: The Ablation Results on MVTec AD. We analyze
the effects of the three main components of the proposed
PNI algorithm, namely neighborhood information ‘N’, po-
sition information ‘P’, and pixelwise refinement ’R’. Each
experiment is compared in terms of I-AUROC, P-AUROC,
and P-F1-max (maximum F1-score at the pixel level).

N P R
I-AUROC P-AUROC P-F1-max

Object Texture Avg. Object Texture Avg. Object Texture Avg.

- - - 99.01 98.75 98.92 98.70 97.15 98.18 60.06 49.92 57.08
✓ - - 99.38 99.55 99.44 98.79 98.29 98.62 67.91 58.54 64.79
✓ ✓ - 99.46 99.46 99.46 99.04 98.33 98.80 69.30 58.43 65.67
✓ ✓ ✓ 99.55 99.59 99.56 99.12 98.72 98.98 69.90 61.23 67.01
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Figure 5: Precision-recall curve at the pixel-level for the
hazelnut and tile subcategories of MVTec AD. The pro-
posed PNI algorithm and three ablation settings in Table 3
are compared. The F1-max scores for each setting are indi-
cated on the right side of the legend.

AUPRO Table 2 compares the PNI with conventional al-
gorithms, including the AUPRO metric. The performance
of each algorithm is compared in terms of the average for
object categories, texture categories, and overall. Detailed
performance for all subcategories is discussed in the supple-
mental document. Some algorithms [2, 17, 21, 9] propose
models that use multiple networks. At the bottom of Ta-
ble 2, we compare those results with the ensemble network-
based PNI.

PNI also shows superior performance over conventional
algorithms in AUPRO. In overall AUPRO, PNI outperforms
the second-best PFFM [25] by 0.53%, with a score of
96.05%. As mentioned in the previous analysis, our ap-
proach of using position and neighborhood information is
more effective for object subcategories, and PNI surpasses
the second-best Tsai et al. [24] by 0.64%. In the texture sub-
categories as well, PNI shows the second-best performance.
Furthermore, PNI (Ensemble) exhibits the best performance
in AUROC and AUPRO, object, and texture subcategories,
surpassing the results of all conventional algorithms without
exception.

Ablation Study We conducted an ablation study to ver-
ify the effect of using the three components of our proposed
PNI algorithm: neighborhood information, position infor-
mation, and pixelwise refinement. Table 3 shows the results,
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Figure 6: Visualization of anomaly localization results of PNI on the MVTec AD. Input images with ground-truth masks
(top), predicted masks (mid), and predicted anomaly maps (bottom) are provided.

Table 4: Comparison of anomaly detection and localiza-
tion results on MVTec AD [1]. The loss function of the
refinement network is replaced with two alternatives ℓCE

and ℓfocal, and then compared.

AUROC AUPRO

Image Pixel Object Texture Average

Trained by ℓCE 99.56 99.01 96.62 95.72 96.32
Trained by ℓfocal 99.61 99.03 96.69 96.11 96.50
PNI (Ensemble) 99.63 99.06 96.83 96.00 96.55

and the following observations can be made:

• The baseline without the three components is identical
to PatchCore and performs similarly.

• Since the baseline deals with normal features uncon-
ditionally, the remaining models in the ablation study
outperform the performance of the baseline.

• The use of neighborhood information improves over-
all performance significantly, enhancing the I-AUROC
performance from 98.92% to 99.44%, which reduces
the error by approximately 48.1%.

• Position information provides an additional gain in ob-
ject subcategories in all three metrics, but little im-
provement is observed in texture subcategories. This
result makes sense as the motivation for using position
information is irrelevant to texture subcategories.

• Pixelwise refinement is more effective in texture sub-
categories and has complementary properties with po-
sition information.

Figure 5 compares the ablation settings using precision-
recall curves and F1-max in two subcategories of MVTec:
hazelnut and tile. Consistent with Table 3, significant im-
provements are observed for neighborhood information and
position information in the object category, hazelnut. Also,
in the texture category, tile, neighborhood information, and
pixelwise refinement demonstrate better efficacy.
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Figure 7: Histograms of anomaly scores for the metal nut
subcategory in MVTec AD evaluated by PatchCore (left)
and PNI (right) are shown. The green and red indicate
the distribution of anomaly scores for normal and anoma-
lous pixels, respectively. The blue vertical line indicates the
threshold that maximizes the F1 score.

Refinement network Similarly with previous studies that
adopted cross-entropy loss ℓCE [17] or focal loss ℓfocal [34]
for network training, we experimented with alternative set-
tings by replacing the loss function of the refinement net-
work. As shown in Table 4, the loss function composed
of ℓreg and ℓgrad outperforms the two alternatives. Since
anomaly map Â is obtained based on the metric distance
between representations, adopting regression-based losses
is effective for refining it. On the other hand, ℓCE and ℓfocal
estimate the anomaly map in the form of binary segmenta-
tion, which leads to overconfident estimations.

Qualitative Results Figure 6 shows the results of
anomaly localization performed by the proposed PNI al-
gorithm on the test images of MVTec AD. The first row
shows the ground-truth defect mask overlaid on the input
image, and the second row shows the prediction results of
PNI. We generate the prediction mask using the threshold
that maximizes the F1 score. The last row visualizes the
anomaly map predicted by PNI. The red parts in each im-
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Table 5: Anomaly localization results on BTAD [19] as
measured in P-AUROC [%].

Products VT-ADL [19] P-SVDD [29] FastFlow [30] Tsai et al. [24] PNI

1 76.3 94.9 95 97.3 97.4
2 88.9 92.7 96 96.8 97.0
3 80.3 91.7 99 99.0 99.0

Average 81.8 93.1 97 97.7 97.8
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Figure 8: Visualization of anomaly localization results of
PNI on the VisA. Input images with ground-truth masks
(top), predicted masks (mid), and predicted anomaly maps
(bottom) are provided.

age indicate high anomaly while the blue ones indicate low
anomaly. Qualitative results show that the predicted mask
generally follows the ground truth, leading to performance
improvement.

Analysis Figure 7 compares the histograms of PatchCore
and the proposed PNI algorithm for pixelwise anomaly
scores in the metal nut subcategory. The green and red ar-
eas represent the distributions of anomaly scores for normal
and abnormal pixels, respectively. Additionally, the blue
vertical line indicates the threshold that optimizes the F1
score. The red area on the left of the threshold represents
misclassified anomaly pixels or false negative pixels, while
the green area on the right of the threshold represents false
positive pixels. The FPR and FNR of PatchCore are 3.4%
and 10.7%, respectively, which decrease to 2.0% and 9.5%
in the PNI algorithm. These results correspond to the higher
P-AUROC score of the proposed method.

Additionally, we computed image misclassification,
false-positive and false-negative samples with the thresh-
old optimizing F1 scores of anomaly detection. Out of the
467 normal test images and 1258 defective test images, a to-
tal of 7 false-positive and 12 false-negative detection errors
were found, which is a significant improvement compared
to 19 false-positive and 23 false-negative errors of Patch-
Core. We have provided detailed information on this in the
supplementary document.

Table 6: Anomaly detection and localization AUROC
scores on VisA [35] are presented. Sub-total averages are
provided for single instance, multiple instances, and com-
plex structure categories.

I-AUROC P-AUROC

Single Multiple Complex
Avg

Single Multiple Complex
Avg

instance instances structure instance instances structure

SPD [35] 93.8 78.4 91.3 87.8 91.6 94.6 95.2 93.8
PNI 99.2 87.9 98.5 95.2 98.1 99.2 99.0 98.8

4.3. BTAD

The anomaly localization performance of the proposed
PNI on the BTAD dataset is shown in Table 5. We compare
the anomaly localization performance of PNI with conven-
tional algorithms [19, 29, 30, 24]. As shown in Table 5,
the proposed model outperforms other state-of-the-art algo-
rithms in anomaly localization on all product categories in
BTAD as well as the average score.

4.4. VisA

The anomaly detection and localization performance of
the proposed PNI on the VisA dataset is shown in Table 6.
The performance is compared with the conventional algo-
rithm, SPD [35]. As shown in Table 6, the proposed model
outperforms SPD in both anomaly detection and localiza-
tion In all three types of categories of VisA as well as the
average score. Figure 8 shows the results of anomaly lo-
calization performed by the proposed PNI algorithm on the
test images of VisA. As Figure 6, each row represents the
ground-truth defect mask, prediction results of PNI, and
visualized anomaly map, respectively. Qualitative results
show that the predicted mask generally follows the ground
truth, leading to performance improvement.

5. Conclusion
We propose a new algorithm, PNI, for industrial anomaly

detection and localization that accurately estimates the dis-
tribution of normal features by incorporating position and
neighborhood information. PNI models position informa-
tion using accumulated histograms from normal training
images and uses a multi-layer perceptron network to model
the normal feature distribution given neighborhood infor-
mation. Additionally, PNI introduces a pixelwise refine-
ment network using synthesized anomaly images to im-
prove the anomaly map according to the input image, which
is the first refinement approach in the field of industrial
anomaly detection and localization as far as the authors
know. Various experiments demonstrate the overall perfor-
mance and effectiveness of the proposed PNI algorithm.
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