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Abstract

Anomaly detection (AD) is a crucial machine learn-
ing task that aims to learn patterns from a set of normal
training samples to identify abnormal samples in test data.
Most existing AD studiesassume that the training and test
data are drawn from the same data distribution, but the
test data can have large distribution shifts arising in many
real-world applications due to different natural variations
such as new lighting conditions, object poses, or back-
ground appearances, rendering existing AD methods inef-
fective in such cases. In this paper, we consider the prob-
lem of anomaly detection under distribution shift and es-
tablish performance benchmarks on four widely-used AD
and out-of-distribution (OOD) generalization datasets. We
demonstrate that simple adaptation of state-of-the-art OOD
generalization methods to AD settings fails to work effec-
tively due to the lack of labeled anomaly data. We further
introduce a novel robust AD approach to diverse distribu-
tion shifts by minimizing the distribution gap between in-
distribution and OOD normal samples in both the training
and inference stages in an unsupervised way. Our exten-
sive empirical results on the four datasets show that our ap-
proach substantially outperforms state-of-the-art AD meth-
ods and OOD generalization methods on data with vari-
ous distribution shifts, while maintaining the detection ac-
curacy on in-distribution data. Code and data are available
at https://github.com/mala-lab/ADShift.

1. Introduction

Anomaly Detection (AD) is a crucial task in machine
learning that aims to identify rare and unusual patterns in
data. It is an important problem in various domains, such
as financial domain [1, 4], cybersecurity [69, 72], industrial
inspection [5], and medical diagnosis [66, 68]. Due to the
difficulty and/or high cost of collecting labeled anomaly
data, current AD studies are focused on unsupervised ap-
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Figure 1: Illustrative samples for anomaly detection un-
der distribution shift. First row: the ‘Wood’ dataset from
MVTec [5]. Second row: the ‘Elephant’ class as normal
and the remaining classes as anomaly in PACS [40]. Third
row: the ‘0’ class as normal and the remaining classes as
anomaly in MNIST [36]/MNIST-M [18]. We aim at distin-
guishing anomalies from normal data in both in-distribution
test data and out-distribution test data

proaches, which aim to learn patterns from a set of normal
training samples to identify abnormal samples in test data.

Although existing AD studies have demonstrated
promising performance [13, 38, 56, 65], they generally as-
sume that the training and test data are drawn from the same
data distribution. However, this assumption is often unreal-
istic in real-world scenarios as the test data can have large
distribution shifts arising in many applications due to dif-
ferent natural variations such as new lighting conditions,
object poses, or background appearances, rendering the AD
methods ineffective in such cases.

Distribution shift is a ubiquitous problem in different
real-world applications, which can significantly degrade
the performance of models in various tasks such as im-
age classification, object detection, and segmentation [18,
34, 40, 85]. Many out-of-distribution (OOD) generaliza-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6511



tion methods have been introduced to address this prob-
lem [8,19,24,29,37,43,48,55,86]. These OOD generaliza-
tion methods rely on large labeled training data from one or
multiple relevant domains to learn domain-invariant feature
representations. They often require class labels [29,61,80],
domain labels [9,74,82,88], or the existence of diverse data
[24, 86, 89] in the source domain to learn such robust fea-
ture representations. However, the training data in the AD
task consists of only one class, and the data is monotonous.
Consequently, it is difficult to adapt existing OOD general-
ization techniques to address the AD under distribution shift
problem. Trivial adaption of the OOD generalization can
fail to learn generalized normality representations, leading
to many detection errors, e.g., normal samples with distri-
bution shifts cannot be distinguished from anomalous sam-
ples and consequently they are detected as anomaly. As
shown by the exemplar data in Fig. 1, normal samples in
the in-distribution (ID) test data are very similar to the nor-
mal training data, and ID anomalies deviate largely from the
normal data; however, due to the distribution shift, the nor-
mal samples in the OOD test data are substantially different
from the ID normal data in terms of foreground and/or back-
ground features, and as a result, these normal samples can
be falsely detected as anomaly.

In this paper, we tackle the problem of anomaly detec-
tion under distribution shift. It is an OOD generalization
problem, aiming at learning generalized detection models
to accurately detect normal and anomalous samples in test
data with distribution shifts, while maintaining the effec-
tiveness on in-distribution test data. This is different from
the problem of OOD detection [23, 26, 44, 62, 76] that aims
to equip supervised learning models with a capability of re-
jecting OOD/outlier samples as unknown samples for the
sake of model deployment safety. This work makes three
main contributions in addressing the OOD generalization
problem in the AD task:

• We present an extensive study of the distribution shift
problem in AD and establish large performance bench-
marks under various distribution shifts using four
widely-used datasets adapted from AD and OOD gen-
eralization tasks. Our empirical results further reveal
that existing state-of-the-art (SOTA) AD and OOD
generalization methods fail to work effectively in iden-
tifying anomalies under distribution shift.

• We then propose a novel robust AD approach to di-
verse distribution shifts, namely generalized normal-
ity learning (GNL). GNL minimizes the distribution
gap between ID and OOD normal samples in both the
training and inference stages in an unsupervised way.
To this end, we introduce a normality-preserved loss
function to learn distribution-invariant normality rep-
resentations, which enables GNL to learn generalized

semantics of the normal training data at different fea-
ture levels. GNL also utilizes a test time augmentation
method to further reduce the the distribution gap dur-
ing the inference stage.

• Extensive experiments show that our approach GNL
substantially outperforms state-of-the-art AD methods
and OOD generalization methods by over 10% in AU-
CROC on data with various distribution shifts, while
maintaining the detection accuracy on the ID test data.

2. Related Work
2.1. Anomaly Detection

One-class Classification. Some early methods for
anomaly detection include one-class support vector ma-
chine (OC-SVM) [67] and support vector data description
(SVDD) [71]. More recently, Deep SVDD [63] uses a deep
neural network to identify anomalies with a SVDD objec-
tive. A number of methods [12, 21, 64, 78, 81] is then intro-
duced to learn more effective deep one-class description.

Reconstruction-based Methods. One popular AD ap-
proach is to use autoencoder (AE) [33]. AE-based anomaly
detection learns normal patterns from a dataset to recon-
struct new samples, assuming that anomalous samples have
higher reconstruction errors due to distribution differences.
There are many works following this direction and gaining
good performance [20, 25, 57, 60, 79, 83, 84].

Self-supervised Learning Methods. The use of data
augmentation techniques is becoming increasingly preva-
lent in AD. One such strategy involves incorporating syn-
thetic anomalies into datasets that are otherwise free of
anomalies [38, 79, 84].

Knowledge Distillation. Another popular line of re-
search is knowledge distillation-based methods. A student-
teacher framework with discriminative latent embeddings
is introduced in [6]. Many improved versions for AD are
then introduced [13, 65, 75]. Anomaly Detection via Re-
verse Distillation (RD4AD) [13] is the latest one and gains
SOTA performances on many datasets.

All these methods are focused on AD with the same dis-
tribution in training and test data, which fail to work well
on data with distribution shift.

2.2. OOD Generalization

Data Augmentation. One popular approach for OOD
generalization is based on data augmentation. Methods in
this line involve generating new data samples from existing
ones to increase the size and diversity of the training data.
The model can then learn more about the underlying data
distribution and become more robust to changes in the test
data [11, 24, 54, 70, 85, 86].

Unsupervised Learning. By solving pretext tasks, a
model can develop general features that are not specific to
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the target task. As a result, the model is less likely to be
influenced by biases that are unique to a particular domain,
which helps to avoid overfitting and increase generalization
ability to different unseen data [3, 7, 8, 19, 50, 77].

Although these two types of methods are not designed
for AD, they can be easily adapted for AD as they do not
require class or domain labels during training. On the other
hand, many existing OOD generalization methods, such as
domain alignment [27, 31, 41, 42, 49, 53, 87], meta-learning
[15–17, 39, 73], and disentangled representation learning
[10, 30, 32, 40, 59, 74], require class/domain-related super-
vision, which are inapplicable for the AD task. A similar
issue exists for OOD generalization methods designed for
multi-class problems [16,29]. There are some cross-domain
AD methods [14, 46, 47], but they require class labels in
the ID data or few training samples from the target domain.
By contrast, we focus on unsupervised AD and do not re-
quire any OOD data available during training. They focus
on video data, while we focus on image data. Additionally,
another related research line is on AD in situations involv-
ing a ‘near distribution’ scenario [51], where anomalies are
semantically similar to the normal distribution. Methods in
this line can be more robust to distribution shift than general
AD methods, but they do not tackle variations between the
distributions of training and testing normal data.

3. Problem Formulation and Challenges
3.1. Problem Formulation

Let Xs and Xt denote the source (ID) and target (OOD)
distributions, respectively, where Xs is used for both train-
ing and testing phase, while Xt is only used for inference
period. We assume that during training, only normal data
from Xs is available, i.e., Ds = {x ∈ Xs | y = 0}, where
y ∈ {0, 1} is the binary label indicating whether x is a nor-
mal (y = 0) or abnormal (y = 1) sample. During testing,
data can be normal or abnormal, and can be from either the
source or target distribution, i.e., Dt = {x ∈ Xs ∪ Xt |
y = {0, 1}}. The goal is then to develop an unsupervised
anomaly detection model that can effectively handle distri-
bution shift and accurately detect anomalies in Dt. Specif-
ically, we aim to learn a function f : X → R that as-
signs an anomaly score to each sample x in a way such that
∀xi, xj ∈ Dt, f(xi) < f(xj) when yi = 0 and yj = 1.

3.2. The Challenges

The current approaches in AD involve explicit fitting of
the normal training data [2, 13, 65, 66]. It can cause the
model to learn irrelevant features that are not associated
with the appearance of normal data, e.g., the model may
mistake domain-specific background information as normal
features, resulting in inaccurate anomaly detection when
there are distribution shits presented. OOD generalization
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Figure 2: Anomaly scores of RD4AD [13], Mixstyle [89]
and our model GNL on PACS [40] when selecting ‘house’
as the normal class and the remaining classes as anomaly
classes.

models are also significantly challenged by the studied set-
ting. This is mainly because the training data in the AD
task consists of only one class and the data is monotonous,
making it difficult to learn and identify patterns that dis-
tinguish normal and anomalous instances. Current OOD
generalization approaches used in classification, detection,
and segmentation need to take into account class labels,
domain labels, or the diversity of samples in the training
data [16, 29, 73, 74], which often are not applicable to AD
tasks. As a result, new methods are required that can effec-
tively address the problem of AD under distribution shift.

Fig. 2 illustrates this issue, where models such as
RD4AD [13] (a recent SOTA AD model) and Mixstyle [89]
(an OOD generalization method that we use to combine
with RD4AD) are seen to struggle with identifying normal
samples in the presence of distribution shift, often misclas-
sifying them as anomalous. The overlapping of histograms
of the anomaly scores for the normal and abnormal samples
indicates that these models have learned features that are not
representative of normal data, which can be a major obsta-
cle in detecting anomalies. One of the main reasons is that
the background or style features w.r.t. a specific dataset can
change due to different natural conditions. As a result, the
model may mistake these changed features as anomalies,
leading to normal samples in the shifted distribution being
classified as anomalous with high anomaly scores. Further-
more, some abnormal samples in the OOD data may pos-
sess similar features to background or style features in the
training data, leading to them being misclassified with low
anomaly scores.

4. Our Approach
To address these challenges, we introduce a novel ap-

proach, namely generalized normality learning (GNL).
GNL minimizes the distribution gap between ID and OOD
normal samples in both the training and inference stages in
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Figure 3: Overview of our approach. (a) Distribution-invariant normality learning in the training phase. (b) Test time
augmentation with feature distribution matching in the inference phase.

an unsupervised way. To this end, we introduce a normality-
preserved loss function to learn distribution-invariant nor-
mality representations, which enables GNL to learn gener-
alized semantics of the normal training data at different fea-
ture levels. GNL further utilizes an AD-oriented test time
data augmentation method based on feature distribution
matching to improve the generalization performance. Fig.
3 describes the two main components of our approach: (a)
distribution-invariant normality learning for training, and
(b) test time augmentation methods. The two components
complement to each other, meaning that the distribution-
invariant normality learning process used during training
can support the test time augmentation methods used dur-
ing testing, and vice versa.

4.1. Distribution-invariant Normality Learning

In order to improve the performance of model on
OOD datasets while maintaining good performance on ID
datasets, we aim to train a student model to be more robust
to changes in the distribution of data, while still ensuring
that the student overfits on the normal features. Fig. 3 (a)
illustrates the training framework.

Our method is built on top of the RD4AD model in-
troduced by Deng et al. [13] that achieves state-of-the-art
results on various datasets. The RD4AD framework in-
cludes three components: a fixed teacher encoder, a train-
able one-class bottleneck embedding module, and a stu-
dent decoder. When given an input sample, the teacher en-
coder extracts multi-scale representations, and the student
decoder is trained to reconstruct the features from the bot-
tleneck embedding. During testing, the teacher encoder can
identify abnormal and OOD features in anomalous samples,
but the student decoder fails to reconstruct these features.
The model then considers anomalous representations that

have low similarity as highly abnormal.
We propose to incorporate a similarity loss that quan-

tifies the difference between the embedding features of the
original samples and those of each transformed normal sam-
ple that represents a distinct style from the original data.
Specifically, we enforce this loss at both the bottleneck layer
and the final block of the decoder. To provide further clarity,
we propose the inclusion of a loss term, denoted as Labs,
which is integrated at the bottleneck layer of the encoder.
Moreover, we also introduce another loss term, termed as
Llowf , that is added at the final block of the student de-
coder architecture. Particularly, given a sample x ∈ Ds,
we first apply an augmentation function T (.) on it, and let
x′
k = T (x) where k ∈ [1, N ] with N is the number of

augmented normal samples generated by data augmenta-
tion, and ϕ be the mapping that projects the raw image I
into the embedding space at the bottleneck layer, then we
define Labs as:

Labs =

N∑
k=1

1

N

{
Lsim(ϕ(x), ϕ(x′

k))

}
, (1)

where Lsim(., .) is a cosine similarity-based loss function.
Let ω be a reconstruction function from the abstract fea-

tures to the low-level features at the final block of the de-
coder, then we further define Llowf as:

Llowf =

N∑
k=1

1

N

{
Lsim(ω(ϕ(x)), ω(ϕ(x′

k)))

}
. (2)

We combine these loss functions to introduce the
distribution-invariant, normality-preserved loss function:

L = λori ∗ Lori + λabs ∗ Labs + λlowf ∗ Llowf , (3)
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where Lori is the original loss of RD4AD, and λori, λabs,
and λlowf are hyperparameters that determine how much
weight should be given to each type of loss function.

We adopt AugMix [24] as the data augmentation
method. Still, we remove the augmentation types that
have the potential to generate anomalies, e.g., ‘shear x’,
‘shear y’, ‘translate x’, and ‘translate y’, to ensure that all
generated data are normal samples.

Intuitively, the last block of decoder is responsible for
reconstructing simple and low-level features, such as edges,
corners, and blobs, while the bottleneck layer is responsible
for extracting more complex and high-level features. At the
bottleneck layer, the abstracted information of the same im-
ages from different synthesized methods must be the same,
while retaining enough information for reconstruction in the
decoder. Therefore, by minimizing the loss function in Eq.
5, GNL learns features from both low-layer CNNs and high-
level CNNs respectively to be the same from different dis-
tributions generated from a single sample.

4.2. Test Time Augmentation for Anomaly Detec-
tion under Distribution Shift

The goal of this component is to address the problem of
a mismatch between the distribution of data during testing.
To accomplish this, we propose injecting training distribu-
tion into the inference samples by using Feature Distribu-
tion Matching (FDM) at multi-level layers of the teacher
encoder in the inference phase. The proposed testing frame-
work is demonstrated in Fig. 3 (b). Our test time augmenta-
tion is applied at the first two residual blocks of the teacher
encoder. The inference process from the third residual block
onwards, as well as the calculation of the anomaly score,
follow the original RD4AD framework without any modifi-
cations.

FDM is a group of techniques that aims to reduce the
distribution mismatch or discrepancy of data from two dif-
ferent domains. Some previous studies focused on FDM
assume that the input features follow a Gaussian distribu-
tion [28,45,52]. More recently, Zhang et al. [86] introduced
a more accurate approach, known as Exact Feature Distri-
bution Matching (EFDM). EFDM precisely matches empir-
ical Cumulative Distribution Functions of image features,
resulting in exact feature distribution alignment (as the sam-
ple size tends to infinity) and accurate matching of statisti-
cal properties like mean, standard deviation, and high-order
statistics. Basically, all these FDM techniques are appli-
cable to our proposed framework. Noted that FDM have
been used for OOD Generalization, e.g., in Mixstyle [89]
and EDFMix [86], but they are used during training with
the goal of creating new distribution samples by mixing the
subdomain of the samples available in the training set, while
we adopt FDM as a component in the inference stage with
a different objective.

Specifically, given a test sample p ∈ Dt, we randomly
select a training normal sample q ∈ Ds. These two samples
are then fed into the teacher encoder. Let Pm and Qm be the
embedded features of p and q at the residual encoding block
Em, respectively, then the testing process is performed as
follows:

Pm+1 = FDM(Em+1(Pm),Qm+1, α)

Qm+1 = Em+1(Qm)

P0 = p,Q0 = q,

(4)

where m ∈ {0, 1} and α is a hyperparameter balancing the
severity for mixing the style between the inference sample
and the selected normal sample. The processed embedded
features P1 and P2 are then input into the bottleneck layer
and participate in the calculation of anomaly scores follow-
ing the inference process of the original RD4AD.

For the FDM() function above, EFDM [86], which is the
SOTA of FDM, is adopted to our method as follow:

FDM(C,V, α) : Cτi = (1− α)Cτi + αVκi , (5)

where {Cτi}
n
i=1 and {Vκi}

n
i=1 are sorted values of embed-

ded feature C and V in ascending order. Here, n represents
the number of elements in vector C and V . Note that C is the
embedded feature of the test sample p, which plays the role
of carrying the appearance information. V is the embedded
feature of a normal sample q randomly sampled from the
training data, carrying the style information.

In essence, the sample q plays a role in conveying dis-
tribution information pertaining to the training data. The
selection of a random sample is due to the monotonous na-
ture of the data during training, as any sample in the training
set is capable of carrying distribution information that rep-
resents the training data. Thus, It helps avoid a process for
careful sample selection that is often computationally ex-
pensive.

By utilizing FDM, our proposed testing process mini-
mizes the disparity between the feature distribution of the
inference sample and the feature distribution of normal
samples in the training data, in cases where inference sam-
ples come from OOD sets. Furthermore, FDM ensures
that the feature distribution remains nearly unchanged if
inference samples come from ID sets, since the distribu-
tion of the test sample is aligned with its own distribution.
Therefore, our testing approach can improve performance
on OOD data without sacrificing performance on ID data.

5. Experiments

5.1. Datasets

We adapt four datasets from both AD and OOD general-
ization as the dataset benchmarks for the studied task.
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Anomaly Detection. MVTec [5] is a widely-used AD
benchmark, which comprises 15 data subsets for industrial
defect inspection, including 5 subsets on texture anomalies
and 10 subsets on object anomalies. The training dataset
consists of 3,629 images in total, all of which are normal
images. In contrast, the test dataset contains a total of
1,725 images, comprising both defective and non-defective
instances. CIFAR-10 [35] serves as a one-class classifica-
tion benchmark, featuring 50,000 training and 10,000 test
images across 10 equally-sized categories representing di-
verse natural entities. In order to generate OOD datasets for
MVTec and CIFAR-10, we apply 4 types of visual corrup-
tions [22] to MVTec and CIFAR-10: Brightness, Contrast,
Defocus Blur, and Gaussian noise. The severity for each
type of corruption is set to 3 on MVTec and 5 on CIFAR-10
for obtaining the out-of-distribution data.

OOD Generalization. Two popular OOD benchmarks,
MNIST-M [18] and PACS [40], are taken in our experi-
ments. In particular, the primary MNIST [36] is used as the
ID data on which the models are trained on, while MNIST-
M is used as the OOD set. MNIST and MNIST-M datasets
share 10 classes, which correspond to the digits 0 through
9. While MNIST encompasses 70,000 grayscale images
of handwritten digits, MNIST-M contains 68,000 OOD im-
ages that are synthesized by superimposing random colored
patches on the original images from MNIST. PACS is an-
other widely used OOD dataset consisting of 9,991 images,
which are shared by seven classes and four domains, namely
Art, Cartoon, Photo, and Sketch. We select the images in
Photo as the ID data, with the images in Art, Cartoon, and
Sketch as the OOD data. The commonly used one-versus-
all protocol [58] is used to convert the these two datasets
into AD datasets with distribution shift, in which samples
of one class are used as normal, with the rest of classes as
anomaly classes. Furthermore, we perform a multi-class
setting on the MNIST/MNIST-M dataset, labeling samples
from even-numbered classes as normal, while those from
odd-numbered classes are identified as anomalies.

During training, we only use images in the ID dataset,
i.e., assuming the OOD data is not available during training.
During inference, test sets of both ID and OOD are used.

5.2. Baselines

We conduct a series of experimental evaluations on
4 prominent anomaly detection methods, namely Deep
SVDD [63], f-AnoGAN [66], KDAD [65], and RD4AD
[13]. These methods stand for popular AD methods
and recent state-of-the-art (SOTA) AD models. To eval-
uate the efficacy of OOD generalization techniques in
anomaly detection, we adapt a suite of cutting-edge OOD
methods by combining them with the recently proposed
RD4AD model, which boosts SOTA performance on mul-
tiple datasets. Four different methods are used, includ-

ing three data augmentation-based methods Augmix [24],
Mixstyle [89], and EFDM [86], and one self-supervised
method Jigsaw [8].

5.3. Implementation Details

Our proposed method GNL is implemented on top of the
RD4AD framework. Therefore, we maintain the settings
recommended by RD4AD, such as the image size, the op-
timization method, the way of calculating anomaly score,
and other relevant parameters. The details can be found
in Appendix. Regarding the specific parameters for our
model GNL, we choose N = 2 for the number of aug-
mented normal samples generated by data augmentation.
We set λori = 0.9, λabs = 0.05 and λlowf = 0.05 by
default for the distribution-invariant, normality-preserved
loss function. During the inference phase, we opt for
α = 0.5 to control the degree of style blending for MVTec,
PACS, and CIFAR-10 datasets, while setting α = 0.9 for
MNIST/MNIST-M, effectively managing the mixing dy-
namics. We choose EFDM [86] as the FDM technique since
it is the latest and shows SOTA performance.

For the AD baselines, we use the official implementa-
tion published by the authors of those baselines. However,
since the original baselines did not include experiments on
the PACS dataset, we use the hyperparameters from MVTec
experiments to conduct experiments on the PACS dataset
corresponding to each baseline.

For the OOD generalization baselines, we use Augmix
with an online augmentation severity of 3. We use all the
data augmentation types included in Augmix for MNIST
and PACS. However, for the MVTec and CIFAR-10 dataset,
we exclude two types of augmentation that overlap with two
types of corruptions during testing: Brightness and Con-
trast. With Mixstyle and EFDM, which are two data aug-
mentation methods at the feature level (rather than at the
image level like Augmix), we apply Mixstyle and EFDM
to the encoders in the first two network layer according to
the settings in RD4AD. As for Jigsaw, we fit the Jigsaw
task into the Bottleneck component in RD4AD. All hyper-
parameters of training are preserved when applying OOD
generalization baselines into RD4AD.

Following previous studies [13,14,63,65,66], we evalu-
ate the performance of our anomaly detection methods us-
ing a metric called the Area Under the ROC Curve (AU-
ROC). This metric is commonly used to assess how well
a given method is able to distinguish between normal and
anomalous data points. The results are averaged over three
independent runs.

5.4. Comparison Results

The performance of our model GNL and the baselines
on MVTec, CIFAR-10, MNIST, and PACS are shown in
Tables 1, 2, 3 and 4, respectively. Note that due to space
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limitations, the performances in all four tables are the av-
erage results of the classes per dataset. Detailed results are
presented in Appendix. Overall, GNL can significantly out-
performs SOTA AD models and OOD generalization meth-
ods in detecting anomalies on the OOD test data, while at
the same time maintaining the detection accuracy on the ID
data. Below we discuss the results in detail.

5.4.1 Performance of AD Methods

In general, we observe a significant drop in the AUC scores
of all AD methods, Deep SVDD, f-AnoGAN, KDAD and
RD4AD, on the OOD data across all four datasets used.
This indicates that their performance is severely affected by
the distribution shift. In particular, the performance of all
AD models is promising on the MNIST set. However, this
performance is reduced by about 30-40% when the mod-
els are tested on the MNIST-M set, which contains varia-
tions that are not present in the original MNIST set. Similar
trends are observed in the PACS dataset, where the models’
performance is also significantly affected by the distribu-
tion shifts in the OOD data. The models perform well on
the Photo data, which is the ID data, but their performance
drops significantly on the three OOD datasets, Art, Cartoon
and Sketch. On MVTec and CIFAR-10, the performance
still drops but is less severe than on the other two sets.

ID OOD
Method MVTec Brightness Contrast Blur Noise
Deep SVDD 69.98 55.18 50.07 68.82 59.11
f-AnoGAN 75.65 48.36 49.29 37.98 39.10
KDAD 85.50 83.81 64.03 84.17 82.04
RD4AD 98.64 96.50 94.12 98.9 90.14
Augmix 96.29 95.10 94.51 95.39 90.99
Mixstyle 98.58 96.60 94.45 98.27 88.92
EFDM 98.64 96.78 94.77 98.25 89.29
Augmix+Mixstyle 96.78 96.86 94.57 98.73 90.12
Augmix+EFDM 97.04 96.83 95.21 98.11 90.18
Jigsaw 73.97 73.36 67.88 73.88 72.60
GNL (Ours) 97.99 97.43 97.46 97.77 94.10

Table 1: AUROC (%) results on MVTec and its four cor-
ruptions. The best performance is boldfaced.

5.4.2 Performance of Combined OOD Generalization
and AD Methods

Our results in Tables 1, 2, 3 and 4 indicate that the de-
tection performance cannot be significantly improved by
combining different OOD generalization techniques with
the recent SOTA AD model RD4AD on the four datasets.
This lack of improvement can be attributed to the fact that
these OOD methods attempt to increase the diversity of data
by enriching the available data based on its own distribu-
tion. However, because the training data in AD is typically

ID OOD
Method CIFAR Brightness Contrast Blur Noise

Deep SVDD 64.62 59.13 55.94 62.13 54.46
f-AnoGAN 70.25 54.62 57.23 60.74 51.76

KDAD 84.21 75.91 64.37 63.49 56.87
RD4AD 84.62 75.89 65.34 66.67 58.82
Augmix 82.83 74.15 62.48 66.92 57.36
Mixstyle 83.68 76.07 63.87 65.74 57.74
EFDM 83.92 76.19 63.92 64.81 57.63

Augmix+Mixstyle 83.87 76.02 65.55 63.89 58.04
Augmix+EFDM 82.96 75.73 64.39 63.83 57.14

Jigsaw 71.29 66.86 61.45 60.12 55.29
Ours 82.29 77.94 66.13 64.04 61.51

Table 2: AUROC (%) results on CIFAR-10 and its four cor-
ruptions.

One-vs-All Multi-class
Method ID OOD ID OOD

Deep SVDD 97.73 49.92 86.94 51.19
f-AnoGAN 97.52 52.72 88.45 51.85

KDAD 98.87 54.87 90.43 52.84
RD4AD 98.89 58.09 88.70 51.74
Augmix 98.26 59.61 88.76 52.19
Mixstyle 98.84 57.22 87.36 52.13
EFDM 98.62 57.23 87.78 52.36

Augmix+Mixstyle 98.12 58.89 89.23 52.45
Augmix+EFDM 98.24 58.91 90.04 52.64

Jigsaw 98.90 58.51 87.29 52.87
GNL (Ours) 96.91 70.87 88.59 58.50

Table 3: AUROC results (%) on in-distribution (MNIST)
and out-of-distribution (MNIST-M) datasets for one-vs-all
and multi-class settings.

ID OOD
Method Photo Art Cartoon Sketch
Deep SVDD 40.87 53.42 41.23 39.48
f-AnoGAN 61.34 50.15 52.42 63.77
KDAD 88.17 62.86 62.64 51.40
RD4AD 81.49 61.07 60.34 55.06
Augmix 76.35 60.50 58.96 57.86
Mixstyle 78.23 60.93 60.93 54.89
EFDM 78.47 60.55 62.15 55.63
Augmix+Mixstyle 76.12 60.16 61.29 55.76
Augmix+EFDM 77.28 60.93 63.18 56.67
Jigsaw 62.19 52.55 53.83 62.15
GNL (Ours) 87.67 65.62 67.96 62.39

Table 4: AUROC results (%) on in-distribution (Photo) and
out-of-distribution (Art, Cartoon, Sketch) datasets.

monotonous and unimodal, these OOD methods often fail
to generate data samples that significantly deviate from the
original data distribution. As a result, the added diversity of
generated data is not sufficient to significantly improve the
performance of AD models.

Moreover, these OOD techniques also have a tendency
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to generate undesired anomaly data, which is akin to inject-
ing noise into the training data, thereby reducing the perfor-
mance of AD models on the in-distribution dataset.

5.4.3 Performance of Our Method GNL

On the MVTec AD dataset in Table 1, our method shows re-
markable improvement in performance on the OOD dataset,
while maintaining the performance on the ID data. In fact,
our method achieves a highly comparable AUROC score of
0.9799 on the original MVTec ID data, while also obtaining
an impressive AUROC score of 0.9743 on the Brightness,
0.9746 on Contrast, 0.9777 on the Defocus blur dataset, and
0.9410 on Gaussian Noise, which are significant improve-
ments over the other methods. These results demonstrate
the robustness and effectiveness of our GNL model to di-
verse distribution shifts.

Our experimental findings on the CIFAR-10 dataset ex-
hibit a close resemblance to the outcomes observed on the
MVTec dataset, as depicted in Table 2. Our approach at-
tains a competitive AUROC score of 0.8229 on the native
MVTec ID data. Notably, our method yields enhanced AU-
ROC scores of 0.7794 for Brightness, 0.6613 for Contrast,
0.6404 for Defocus blur, and 0.6151 for Gaussian Noise
datasets, showcasing often large enhancements compared to
other method, especially on the Contrast and Noise cases.

On the MNIST/MNIST-M dataset in Table 3, GNL con-
sistently and significantly outperforms all other methods on
the OOD data MNIST-M, increasing by at least 10 AU-
ROC scores. Compared to the best performer – RD4AD
– on the ID dataset that obtains an AUROC score of 0.9889,
GNL exhibits a small decline and obtains an AUROC score
of 0.9691. However, a significant improvement in perfor-
mance is observed on the MNIST-M dataset, with an AU-
ROC score of 0.7087 compared to 0.5809 for RD4AD.
Regarding the multi-class setting, the results indicate its
increased challenge compared to one-vs-all setting. Our
model still maintains superior performance on OOD data
while also excelling on ID data.

Similarly, GNL achieves consistently more superior AU-
ROC performance on all four OOD datasets of PACS in
Table 4. In particular, GNL obtains AUROC scores of
0.6562, 0.6796, and 0.6239 for the Art, Cartoon, and Sketch
datasets, respectively, increasing by at least 5% on the Art
and Cartoon datasets over the competing models. Com-
pared to RD4AD, our method not only largely improves
the OOD performance, but also enhances its performance
on the ID data, the Photo data. This is because the Photo
data contains multiple sub-domains, and RD4AD can be
susceptible to overfitting on a specific sub-domain in the
training data. By contrast, our method helps to mitigate this
issue by learning more generalized normality representa-
tions, which improves performance across all sub-domains

within the Photo data. The performance of GNL on the ID
data is also highly comparable to the best performer KDAD,
0.8767 vs. 0.8817, whereas GNL outperforms KDAD on
the three OOD datasets by about 3%-10% in AUROC.

5.5. Robustness to Various Distribution Shift Levels

Fig. 4 presents the results of the robustness of GNL
to varying levels of distribution shift, using the best com-
peting methods RD4AD, Augmix and EFDM as baselines.
The experiments are done on MVTec with increasing lev-
els of ‘Contrast’ corruption. Notably, the performance of
the baselines exhibits a significant decline as the severity of
corruption amplifies. The reason behind this phenomenon
is intuitive as increased corruption severity introduces more
substantial distribution variance, making it arduous for the
models to discern between anomalous and normal samples.
Our proposed method, on the other hand, demonstrates re-
markable stability in performance across multiple levels of
distribution shift. Our method maintains stable performance
when the severity is between 1 and 3, and reduces to an AU-
ROC of about 0.90 when the severity is 4 and 5, decreasing
about 5% AUROC vs. about 30%-35% decrease in the com-
peting methods. These results indicate strong robustness of
GNL to heavy distribution shifts.
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Figure 4: AUROC results on MVTec with varying severity
of the ‘Contrast’ corruption.

5.6. Ablation Study

We examine the importance of two main components:
Distribution-invariant Normality Learning (DINL) using
Labs and Labs individually or simultaneously (in addition
to Lori), and AD-oriented Test Time Augmentation (ATTA)
on the PACS dataset, with RD4AD as the baseline. The
results are reported in Table 5. The experiment results
show that Labs and Llowf positively contribute to the su-
perior performance of DINL from low-level and high-level
features respectively; and they can complement each other
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when combining them in DINL. Looking more broadly, two
main components, DINL and ATTA ,also positively con-
tribute to the superior performance of GNL. In particular,
the experimental results show that if only the test time aug-
mentation is applied, we gain about 2% AUROC improve-
ment over the baseline on the OOD datasets, but it leads to a
slight performance decrease on the ID data. When DINL is
applied, it results in substantial improvement across both ID
and OOD datasets, having 4%-7% AUROC improvement.
When both are applied, we obtain the best performance, re-
sulting in further substantial AUROC improvement. This
indicates that both components, one reducing the distribu-
tion gap during training and another reducing the gap during
inference, can well complement each other.

ID OOD
Method Photo Art Cartoon Sketch
Baseline 81.49 61.07 60.34 55.06
Labs only 82.02 60.59 63.93 56.81
Llowf only 82.90 61.27 62.25 55.52

DINL 85.71 62.34 65.63 57.12
ATTA 81.05 64.36 62.04 57.04

DINL+ATTA 87.67 65.62 67.96 62.39

Table 5: AUROC results (%) of ablation study.
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Figure 5: AUROC results using varying α. The smaller the
α value, the lower the severity of style transfer.

5.7. Hyperparameter Analysis

Fig. 5 depicts how the performance of our model GNL
changes with varying α, which is a hyperparameter in
ATTA. The results suggest that the effectiveness of our
model remains consistent across different α values on the
Photo and Cartoon datasets. In contrast, the model’s abil-
ity to detect anomalies on the Art data appears to improve
as α increases. However, for the Sketch data, the model’s
performance reaches its maximum at α = 0.4 and slightly

decreases as α increases further. Overall, a medium value,
e.g., α = 0.5, is generally recommended in practice.

We evaluate the hyperparameter sensitivity of our key
component DINL using four settings of the three λ hyper-
parameters: λori, λabs, and λlowf , with their sum set to one
to ease the analysis. λabs = λlowf is used as the features
learned by them are considered equally important for the
task. The results on PACS are shown in Table 6. DINL
shows good robustness across different hyperparameter ra-
tios in the three losses.

λori;λabs;λlowf Photo (ID) Art Cartoon Sketch
0.95, 0.025, 0.025 85.90 62.71 64.28 59.97
0.90, 0.050, 0.050 85.71 62.34 65.63 57.12
0.85, 0.075, 0.075 85.60 63.23 65.03 58.57
0.80, 0.100, 0.100 84.89 61.45 65.12 56.84

Table 6: AUROC using various λ settings.

5.8. Time and Space Efficiency

For space complexity, our method improves the training
objective and the inference of RD4AD without altering its
architecture, thereby avoiding any increase in the number of
parameters.

As shown in Table 7, in terms of time efficiency, our
method’s training duration is slightly longer than RD4AD,
but this additional time yields substantial performance im-
provements. As for the inference, our approach remains
reasonably responsive.

Model Training (per epoch) Inference (per image)
RD4AD 2.5726 0.0282

Ours 7.2557 0.0356

Table 7: Runtime (s) on the ‘Dog’ dataset of PACS using
one RTX 3090 24GB GPU.

6. Conclusion
In this work we propose a novel approach, namely GNL,

to addressing the problem of anomaly detection in the pres-
ence of distribution shifts. GNL improves the generaliza-
tion of the detection model by reducing the distribution gap
between ID and OOD normal data in both training and infer-
ence stages. We also present comprehensive performance
benchmarks and reveal that combined AD and OOD gener-
alization methods do not work well for this task. Our ap-
proach is specifically designed for the OOD generalization
in the AD task and shows significant improvement over the
competing baselines. As shown in our results, our approach
GNL is also robust to heavy distribution shifts. Overall,
our approach represents an important contribution to unsu-
pervised anomaly detection, as it addresses a more realistic
problem that has not been adequately studied before.
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