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Abstract

Automatic 3D content creation has achieved rapid
progress recently due to the availability of pre-trained,
large language models and image diffusion models, forming
the emerging topic of text-to-3D content creation. Existing
text-to-3D methods commonly use implicit scene represen-
tations, which couple the geometry and appearance via vol-
ume rendering and are suboptimal in terms of recovering
finer geometries and achieving photorealistic rendering;
consequently, they are less effective for generating high-
quality 3D assets. In this work, we propose a new method
of Fantasia3D for high-quality text-to-3D content creation.
Key to Fantasia3D is the disentangled modeling and learn-
ing of geometry and appearance. For geometry learning,
we rely on a hybrid scene representation, and propose to
encode surface normal extracted from the representation as
the input of the image diffusion model. For appearance
modeling, we introduce the spatially varying bidirectional
reflectance distribution function (BRDF) into the text-to-3D
task, and learn the surface material for photorealistic ren-
dering of the generated surface. Our disentangled frame-
work is more compatible with popular graphics engines,
supporting relighting, editing, and physical simulation of
the generated 3D assets. We conduct thorough experiments
that show the advantages of our method over existing ones
under different text-to-3D task settings. Project page and
source codes: https://fantasia3d.github.io/.

1. Introduction

Automatic 3D content creation [43, 18, 33, 44] powered
by large language models has drawn significant attention
recently, due to its convenience to entertaining and gaming
industries, virtual/augmented reality, and robotic applica-
tions. The traditional process of creating 3D assets typically
involves multiple, labor-intensive stages, including geome-
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Figure 1. Provided with a textual description of “a highly de-
tailed stone bust of Theodoros Kolokotronis”, our method pro-
duces high-quality geometry as well as disentangled materials, and
enables photorealistic rendering.

try modeling, shape baking, UV mapping, material creation,
and texturing, as described in [15], where different software
tools and the expertise of skilled artists are often required.
Imperfections would also accumulate across these stages,
resulting in low-quality 3D assets. It is thus desirable to au-
tomate such a process, and ideally to generate high-quality
3D assets that have geometrically fair surfaces, rich materi-
als and textures, and support photorealistic rendering under
arbitrary views.

In this work, we focus on automatic 3D content cre-
ation given text prompts encoded by large language mod-
els, i.e., the text-to-3D tasks [18, 33]. Text-to-3D is in-
spired by the tremendous success of text-to-image research
[34, 36, 30, 35]. To enable 3D generation, most existing
methods [33, 23] rely on the implicit scene modeling of
Neural Radiance Field (NeRF) [25, 4, 27], and learn the
NeRFs by back-propagating the supervision signals from
image diffusion models. However, NeRF modeling is less
effective for surface recovery [43, 46], since it couples the
learning of surface geometry with that of pixel colors via
volume rendering. Consequently, 3D creation based on
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NeRF modeling is less effective for recovery of both the
fine surface and its material and texture. In the meanwhile,
explicit and hybrid scene representations [43, 46, 38] are
proposed to improve over NeRF by modeling the surface
explicitly and performing view synthesis via surface ren-
dering.

In this work, we are motivated to use 3D scene represen-
tations that are more amenable to the generation of high-
quality 3D assets given text prompts. We present an auto-
matic text-to-3D method called Fantasia3D. Key to Fanta-
sia3D is a disentangled learning of geometry and appear-
ance models, such that both a fine surface and a rich mate-
rial/texture can be generated. To enable such a disentangled
learning, we use the hybrid scene representation of DMTET
[38], which maintains a deformable tetrahedral grid and a
differentiable mesh extraction layer; deformation can thus
be learned through the layer to explicitly control the shape
generation. For geometry learning, we technically propose
to encode a rendered normal map, and use shape encoding
of the normal as the input of a pre-trained, image diffusion
model; this is in contrast different from existing methods
that commonly encode rendered color images. For appear-
ance modeling, we introduce, for the first time, the spa-
tially varying Bidirectional Reflectance Distribution Func-
tion (BRDF) into the text-to-3D task, thus enabling mate-
rial learning that supports photorealistic rendering of the
learned surface. We implement the geometry model and
the BRDF appearance model as simple MLPs. Both models
are learned through the pre-trained image diffusion model,
using a loss of Score Distillation Sampling (SDS) [33]. We
use the pre-trained stable diffusion [35, 40] as the image
generation model in this work.

We note that except for text prompts, our method can
also be triggered with additional inputs of users’ prefer-
ences, such as a customized 3D shape or a generic 3D shape
of a certain object category; this is flexible for users to better
control what content is to be generated. In addition, given
the disentangled generation of geometry and appearance, it
is convenient for our method to support relighting, editing,
and physical simulation of the generated 3D assets. We con-
duct thorough experiments to verify the efficacy of our pro-
posed methods. Results show that our proposed Fantasia3D
outperforms existing methods for high-quality and diverse
3D content creation. We summarize our technical contribu-
tions as follows.

• We propose a novel method, termed Fantasia3D, for
high-quality text-to-3D content creation. Our method
disentangles the modeling and learning of geometry
and appearance, and thus enables both a fine recovery
of geometry and photorealistc rendering of per-view
images.

• For geometry learning, we use a hybrid representation

of DMTET, which supports learning surface deforma-
tion via a differentiable mesh extraction; we propose
to render and encode the surface normal extracted from
DMTET as the input of the pre-trained image diffusion
model, which enables more subtle control of shape
generation.

• For appearance modeling, to the best of our knowl-
edge, we are the first to introduce the full BRDF
learning into text-to-3D content creation, facilitated
by our proposed geometry-appearance disentangled
framework. BRDF modeling promises high-quality
3D generation via photorealistic rendering.

2. Related work
Text-to-3D content creation. Motivated by the desire to
generate high-quality 3D content from simple semantics
such as text prompts, text-to-3D has drawn considerable at-
tention in recent years [33, 13, 18]. Existing methods ei-
ther use pre-trained 2D text-to-image models [35, 3, 36],
together with score distillation sampling [33], to gener-
ate 3D geometries [18] or synthesize novel views [33], or
train a text-conditioned 3D generative model from scratch
[39, 49, 17, 29]. These methods generate 3D geometries
with little exploration of generating high-quality lighting
and surface materials. On the other hand, TANGO [8] is
able to generate high-quality surface materials given text
prompts; unfortunately, the method requires as input a 3D
surface mesh. Our proposed method addresses the short-
comings of the above methods, and is able to generate
both high-quality surface geometries and their correspond-
ing materials, both of which are crucial for photorealistic
rendering of the generated 3D content. Our method thus,
for the first time, closes the loop of object-level text-to-3D
content creation.
Surface material estimation. The estimation of surface
materials is a long-standing challenge in computer vision
and graphics research. Earlier methods [2, 45] focus on
recovering physically based materials under known light-
ing conditions, whose usefulness is, however, limited in
real-world scenarios. Subsequent methods [12, 11, 5, 1]
try to estimate materials under natural lighting conditions,
assuming the availability of complete geometry informa-
tion. More recently, the joint reconstruction of geometry
and materials is proposed given calibrated multi-view im-
ages [6, 7, 19, 48]. Alternative to these methods, we explore
the novel creation of surface materials and geometries from
trained language models.

3. Preliminary
In this section, we present a few preliminaries that are

necessary for presenting our proposed method in Section 4.
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An ice cream sundaeA vintage record player A red rotary telephone

A highly detailed sandcastle

A golden gobletA delicious croissant

A car made out of cheese

A fresh cinnamon roll covered 
in glaze, high resolution

The leaning tower of Pisa

“A German 
Sheperd”

“A tarantula, 
highly detailed”

“A photo of the 
ironman”

Figure 2. Results of our method. The upper portion of this figure showcases the generation results obtained from solely text prompts. The
lower portion showcases user-guided generation results given guiding meshes with the corresponding textual descriptions.

3.1. Score distillation sampling

DreamFusion [33] presents a method that optimizes 3D
scene parameters and synthesizes novel views from tex-

tual descriptions, by employing a pre-trained 2D diffusion
model. The scene is represented as a differentiable image
parameterization [26], where a differentiable generator g
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“a highly detailed stone bust of Theodoros Kolokotronis”

���

��geometry appearance

(a) Disentangled representation

“a highly detailed stone bust 
of Theodoros Kolokotronis”

��

(b) Geometry modeling

DMTET

render �SDS

normal

mask

update

stable diffusion

(c) Appearance modeling

update

�� shaded

�SDS

stable diffusion
render

��� ��

PBR material

Figure 3. Overview of our method. Our method can generate disentangled geometry and appearance given a text prompt (cf. figure (a)),
which are produced by (b) geometry modeling and (c) appearance modeling, respectively. (b) We employ DMTET as our 3D geometry
representation, which is initialized as a 3D ellipsoid here. To optimize the parameters of DMTET, we render the normal map (and the
object mask in the early training phase) of the extracted mesh from DMTet as the shape encoding of stable diffusion [35, 40]. (c) For
appearance modeling, we introduce the spatially-varying Bidirectional Reflectance Distribution Function (BRDF) modeling into text-to-
3D generation, and learn to predict three components (namely, kd, krm, and kn) of the appearance. Both geometry and appearance
modeling are supervised by Score Distillation Sampling (SDS) loss [33].

renders 2D images x = g(θ) from a modified Mip-NeRF
[4] parameterized as θ. DreamFusion leverages a diffusion
model ϕ (Imagen [36] in this instance) to provide a score
function ϵ̂ϕ(xt; y, t), which predicts the sampled noise ϵ
given the noisy image xt, text-embedding y, and noise level
t. This score function guides the direction of the gradient
for updating the scene parameters θ, and the gradient is cal-
culated by Score Distillation Sampling (SDS):

▽θLSDS(ϕ, x) = Et,ϵ
[
w(t)(ϵ̂ϕ(xt; y, t)− ϵ)

∂x

∂θ

]
, (1)

while w(t) is a weighting function. Since Imagen is not
publicly accessible, in this work, we use the released latent
space diffusion model of Stable Diffusion [35, 40] as our
guidance model, and revise the SDS loss (1) accordingly.
Details are given in Section 4.2.

3.2. DMTET

Implicit surface representations [25, 31, 22] are popu-
larly used in novel view synthesis and 3D reconstruction,
due to their capabilities to represent complex scenes. How-
ever, surfaces of lower quality may be obtained [28] by ex-
tracting explicit meshes from these implicit representations
using marching cubes [20]. Instead, Shen et al. [38] pro-
pose a hybrid representation, termed DMTET, that has two
key features, i.e., a deformable tetrahedral grid and a differ-
entiable Marching Tetrahedral (MT) layer. The deformable
tetrahedral grid (VT , T ) has vertices VT in the tetrahedral
grid T . For each vertex vi ∈ VT , the proposed method pre-
dicts the Signed Distance Function (SDF) value s(vi) and a
position offset △vi by:

(s(vi),△vi) = Ψ(vi;ψ), (2)

where ψ is the parameters of a network Ψ, enabling the ex-
traction of explicit meshes through MT layer during each

iteration of training. In this work, We use DMTET as our
geometry representation and render the mesh extracted from
MT layer iteratively by a differentiable renderer[16, 28].

4. The Proposed Method

In this section, we present our proposed method of Fan-
tasia3D for high-quality text-to-3D object generation, by
disentangling the modeling and learning of geometry and
appearance. For geometry modeling, we rely on the hybrid
surface representation of DMTET, and parameterize the 3D
geometry as an MLP Ψ that learns to predict the SDF value
and position offset for each vertex in the deformable tetra-
hedral grid of DMTET; in contrast to previous methods,
we propose to use the rendered normal map (and the ob-
ject mask in the early training phase) of the extracted mesh
from DMTET as the input of shape encoding. For appear-
ance modeling, we introduce, for the first time, the full Bidi-
rectional Reflectance Distribution Function (BRDF) mod-
eling into text-to-3D generation, and learn an MLP Γ that
predicts parameters of surface material and supports high-
quality 3D generation via photorealistic rendering. Given
the disentangled modeling of Ψ and Γ, the whole pipeline
is learned with SDS supervision, and the gradients are back-
propagated through the pre-trained stable diffusion model.
Our pipeline is initialized either as a 3D ellipsoid or as
a customized 3D model provided by users. Fig. 3 gives
an illustration of our proposed method. In contrast, previ-
ous methods couple the geometry and appearance learning,
and are suboptimal in terms of leveraging the powerful pre-
trained 2D image diffusion models via SDS loss. Details of
the proposed Fantasia3D are presented as follows.
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4.1. DMTET initialization

We adopt DMTET as our 3D scene representation, which
is parameterized as the MLP network Ψ. For each vertex
vi ∈ VT of the tetrahedral grid (VT , T ), Ψ is trained to pre-
dict the SDF value s(vi) and the deformation offset △vi.
A triangular mesh can be extracted from (VT , T ) using the
MT layer, whose procedure is also differentiable w.r.t. the
parameters of Ψ. We initialize DMTET either as a 3D el-
lipsoid or as a customized 3D model provided by users; the
latter choice is useful when the text-to-3D task is to be con-
ditioned on users’ preferences. In either case, we initialize
Ψ by the following fitting procedure. We sample a point set
{pi ∈ R3} whose points are in close proximity to the initial-
ized 3D ellipsoid or customized model, and compute their
SDF values, resulting in {SDF (pi)}; we use the following
loss to optimize the parameters ψ of Ψ:

LSDF =
∑
pi∈P

∥s(pi;ψ)− SDF (pi)∥22 . (3)

4.2. Geometry modeling

Previous text-to-3D methods [33, 13] commonly use
NeRF [25, 4] as the implicit scene representation, which
couples the geometry with color/appearance and use vol-
ume rendering for view synthesis. Since NeRF modeling
is less effective for surface reconstruction [43, 46], these
methods are consequently less effective to generate high-
quality 3D surfaces by back-propagating the supervision of
SDS loss through pre-trained text-to-image models. As a
remedy, the method [18] uses a second stage of the refined
generation that is based on scene modeling of explicit sur-
faces.

In this work, we propose to decouple the generation
of geometry from that of appearance, based on the hybrid
scene representation of DMTET, which enables photoreal-
istic surface rendering to make better use of the powerful
pre-trained text-to-image models. More specifically, given
the current DMTET with MLP parameters ψ, we generate a
normal map n, together with an object mask o, as:

(n, o) = gn(ψ, c), (4)

where gn is a differentiable render (e.g., nvidiffrast [16]),
and c is a sampled camera pose. We randomly sample
the camera poses in the spherical coordinate system to en-
sure that the camera poses are distributed uniformly on the
sphere. We propose to use the generated n (and o) as the
input of shape encoding to connect with stable diffusion.
To update ψ, we again employ SDS loss that computes the
gradient w.r.t. ψ as:

▽ψLSDS(ϕ, ñ) = E
[
w(t)(ϵ̂ϕ(z

ñ
t ; y, t)− ϵ)

∂ñ

∂ψ

∂zñ

∂ñ

]
,

(5)

shaded �� ���

“A golden goblet” 

��

Figure 4. Three components of the material model, namely the
diffuse term kd, the roughness and metallic term krm, and the
normal variation term kn.

“a highly detailed stone bust of the tiger”

Figure 5. A comparison of UV edge padding (cf. the left column)
and original texturing (cf. the right column). UV edge padding
removes the white seams that appear in the right rendering.

where ϕ parameterizes the pre-trained stable diffusion
model, ñ denotes concatenation of the normal n with the
mask o, zñ is the latent code of ñ via shape encoding,
ϵ̂ϕ(z

ñ
t ; y, t) is the predicted noise given text embedding y

and noise level t, and ϵ is the noise added in zñt . In practice,
we utilize a coarse-to-fine strategy to model the geometry.
During the early phase of training, we use the downsampled
ñ as the latent code, which is inspired by [23], to rapidly
update Ψ and attain a coarse shape. However, a domain
gap exists between ñ and the latent space data distribution
learned by the VAE encoder in the stable diffusion, which
may lead to a mismatch of the generated geometry from the
textual description. To mitigate this discrepancy, we imple-
ment a data augmentation technique by introducing random
rotations to ñ. Our experimental observations reveal that
this technique enhances the alignment between the gener-
ated geometry and the provided textual description. In the
later phase of training, aiming to capture finer geometric de-
tails with greater precision, we encode the high-resolution
normal n (without the mask o) to derive zn, using the pre-
trained image encoder in stable diffusion.
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4.3. Appearance modeling

Given a learned DMTET with geometry parameters ψ,
we aim for photorealistic surface rendering to better lever-
age the powerful image diffusion model. This is achieved
by introducing into text-to-3D generation the Physically-
Based Rendering (PBR) material model. As illustrated in
Fig. 4, the material model we use [21] comprises three
components, namely the diffuse term kd ∈ R3, the rough-
ness and metallic term krm ∈ R2, and the normal vari-
ation term kn ∈ R3. The kd term denotes the diffuse
value, while the krm term encompasses the roughness r
and metalness m; the roughness r serves as a metric for
measuring the extent of specular reflection and a parameter
of the GGX [42] normal distribution function in the ren-
dering equation. The metalness parameter m and diffuse
value kd can be used to compute the specular term ks using
ks = (1−m) ·0.04+m ·kd. Furthermore, we use a normal
variation kn in tangent space to enhance the surface lighting
effect and introduce additional geometric variations.

We use an MLP Γ as our parameterized material model.
Γ is learned to predict spatially varying material parameters,
which are subsequently used to render the surface extracted
from DMTET. More specifically, for any point p ∈ R3 on
the surface, we use hash-grid positional encoding [27], and
generate the diffuse term kd, the specular term krm, and the
tangent space normal kn as:

(kd, krm, kn) = Γ(β(p); γ), (6)

where β is the positional encoding of p, and γ parameterizes
the MLP Γ. The basic rendering equation suggests that each
image pixel at a specific viewing direction can be rendered
as

L(p, ω) =

∫
Ω

Li(p, ωi)f(p, ωi, ω)(ωi · np)dωi, (7)

where L is the rendered pixel color along the direction ω
from the surface point p, Ω = {ωi : ωi · np ≥ 0} denotes a
hemisphere with the incident direction ωi and surface nor-
mal np at p, Li is the incident light that is represented by
an off-the-shelf environment map [32], and f is the BRDF
determined by the material parameters (kd, krm, kn) pre-
dicted by (6). We note that L is the summation of diffuse
intensity Ld and specular intensity Ls, and the two terms
can be computed as follows:

L(p, ω) = Ld(p) + Ls(p, ω),

Ld(p) = kd(1−m)

∫
Ω

Li(p, ωi)(ωi · np)dωi,

Ls(p, ω) =

∫
Ω

DFG

4(ω · np)(ωi · np)
Li(p, ωi)(ωi · np)dωi,

(8)

where F , G, and D represent the Fresnel term, the
shadowing-mask term, and the GGX distribution of nor-
mal, respectively. Following [28], the hemisphere integra-
tion can be calculated using the split-sum method.

By aggregating the rendered pixel colors along the di-
rection ω (i.e., camera pose), we have the rendered image
x = {L(p, ω)} that connects with the image encoder of the
pre-trained stable diffusion model. We update the parame-
ters γ by computing the gradient of the SDS loss w.r.t. γ:

▽γLSDS(ϕ, x) = E
[
w(t)(ϵ̂ϕ(z

x
t ; y, t)− ϵ)

∂x

∂γ

∂zx

∂x

]
. (9)

Notations in (9) are similarly defined as those in (5).
Texturing. Given the trained Γ, we proceed by sampling
the generated appearance as 2D texture maps, in accordance
with the UV map generated by the xatlas [47]. Note that
texture seams would emerge by direct incorporation of the
sampled 2D textures into graphics engines (e.g., Blender
[10]). We instead employ the UV edge padding technique
[9], which involves expanding the boundaries of UV islands
and filling empty regions. As illustrated in Fig. 5, this
padding technique removes background pixels in the texture
map and also removes the seams in the resulting renderings.
Implementation Details. We implement the network Ψ as
a three-layer MLP with 32 hidden units, and implement Γ
as a two-layer MLP with 32 hidden units. Our method is
optimized on 8 Nvidia RTX 3090 GPUs for about 15 min-
utes for learning Ψ and about 16 minutes for learning Γ,
respectively, where we use AdamW optimizer with the re-
spective learning rates of 1× 10−3 and 1× 10−2. For each
iteration, we uniformly sample 24 camera poses for the ren-
dering of normal maps and colored images. More details of
our implementation are available in the supplemental mate-
rial. In geometry modeling, we set ω(t) = σ2 during the
early phase and then transition to w(t) = σ2

√
1− σ2 as we

progress to the later phase. In appearance modeling, we ap-
ply w(t) = σ2

√
1− σ2 during the early phase, followed by

a shift to 1/σ2 as we enter the later phase. This approach
mitigates the issue related to over-saturated color within the
appearance modeling.

5. Experiments
In this section, we present comprehensive experiments

to evaluate the efficacy of our proposed method for text-to-
3D content creation. We first conduct ablation studies in
Section 5.1 that verify the importance of our key design of
disentangling geometry and appearance for text-to-3D gen-
eration. In Section 5.2, we show the efficacy of our method
for the generation of 3D models with PBR materials from
arbitrary text prompts, where we also compare with two re-
cent state-of-the-art methods (namely, Magic3D [18] and
DreamFusion [33]). In Section 5.3, we present our results
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under the setting of user-guided generation and compare
them with Latent-NeRF [23]. We finally demonstrate in
Section 5.4 that the 3D assets generated by our method are
readily compatible with popular graphics engines such as
Blender [10], thus facilitating relighting, editing, and phys-
ical simulation of the resulting 3D models.

5.1. Ablation studies

We use an example text prompt of “a highly detailed
stone bust of Theodoros Kolokotronis” for the ablation stud-
ies. Results of alternative settings are given in Fig. 6. As the
reference, the first two columns show the geometry and ap-
pearance results of our Fantasia3D rendered from the front
and back views. To verify the effectiveness of the disen-
tangled design in Fantasia3D, we also conduct experiments
as follows: in each iteration, we render shaded images of
the mesh extracted from DMTET, and learn to update the
parameters of a network responsible for both the geome-
try and material, using the gradient computed by SDS loss.
Results in the second two columns show that such an en-
tangled learning fails to generate plausible results. Previous
methods (e.g., DreamFusion [33] and Magic3D [18]) cou-
ple the geometry and appearance generation together, fol-
lowing NeRF [25]. Our adoption of the disentangled repre-
sentation is mainly motivated by the difference of problem
nature for generating surface geometry and appearance. In
fact, when dealing with finer recovery of surface geome-
try from multi-view images, methods (e.g., VolSDF [46],
nvdiffrec [28], etc) that explicitly take the surface modeling
into account triumph; our disentangled representation en-
joys the benefit similar to these methods. The disentangled
representation also enables us to include the BRDF material
representation in the appearance modeling, achieving better
photo-realistic rendering by the BRDF physical prior.

To investigate how shape encoding of the normal map
plays role in Fantasia3D, we replace the normal map with
an image that is shaded on the mesh extracted from DMTET
using fixed material parameters; results in the third two
columns become weird with twisted geometries. This is
indeed one of the key factors that makes the success of
Fantasia3D. Our initial hypothesis is that shape informa-
tion contained in normal and mask images could be ben-
eficial to geometry learning, and as such, we further ob-
serve that the value range of normal maps is normalized in
(-1, 1), which aligns with the data range required for latent
space diffusion; our empirical studies verify our hypothesis.
Our hypothesis is further corroborated by observing that the
LAION-5B [37] dataset used for training Stable Diffusion
contains normals (referring to website for retrieval of nor-
mal data in LAION-5B [37]), which allows Stable Diffusion
to handle the optimization of normal maps effectively. To
deal with rough and coarse geometry in the early stage of
learning, we use the concatenated 64 × 64 × 4 (normal,

mask) images for better convergence. As the learning pro-
gresses, it becomes essential to render the 512 × 512 × 3
high-resolution normal images for capturing finer geometry
details, and we choose to use normal images only in the later
stage. This strategy strikes an accuracy-efficiency balance
throughout the geometry optimization process.

Finally, we replace the full BRDF in Fantasia3D with a
simple diffuse color rendering; the results in the last two
columns become less realistic and are short of reflection ef-
fects when rendered from different views.

5.2. Zero-shot generation

In this section, we evaluate our method for generat-
ing 3D assets from solely natural language descriptions
(i.e., the setting of zero-shot generation), by comparing
with two state-of-the-art methods, namely DreamFusion
[33] and Magic3D [18]. Fig. 7 gives the comparative re-
sults given the same text prompts. Since DreamFusion and
Magic3D do not have released codes, their results are ob-
tained by downloading from their project pages. Compar-
ing our method with Magic3D, we observe that our results
are more photorealistic with competitive geometries. We
consistently outperform DreamFusion in both appearance
and geometry generation. Notably, our method also offers
the convenience of easy geometry extraction and editing, as
demonstrated in 5.4, which are less obvious from Dream-
Fusion or Magic3D. More of our results are given in the
top half of Fig. 2 and Fig. 8. Furthermore, we compare
our appearance modeling stage with several mesh styliza-
tion methods, namely Text2mesh [24], CLIP-Mesh [14] and
Latent-NeRF [23]. Fig. 9 shows that our method excels
in generating more realistic appearances, outperforming the
other competitors. We present additional results and com-
parisons in the supplemental materials.

5.3. User-guided generation

In addition to zero-shot generation, our method is flex-
ible to accept a customized 3D model as the initialization,
alternative to a 3D ellipsoid, thereby facilitating user-guided
asset generation. As shown in the lower half of Fig. 2, our
method is able to generate rich details in both the geometry
and appearance when provided with low-quality 3D models
for initialization. The three meshes used in the experiments
are from Text2Mesh [24], Latent-NeRF [23], and the cre-
ation of Stable DreamFusion [41], respectively. We also
compare with the state-of-the-art approach of Latent-NeRF
[23] under this user-guided generation setting; results are
given in Fig. 10. Our method outperforms Latent-NeRF
[23] in both the geometry and texture generation when given
the same input meshes and text prompts.
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Full Entangled
geometry 

front
view

back
view

appearance geometry appearance 
w/o BRDF

geometry appearance 
w/o normal map

geometry appearance 

Figure 6. Ablation studies of our method. The text prompt is ”a highly detailed stone bust of Theodoros Kolokotronis”. Please refer to
Section 5.1 for specific settings of individual columns. Please refer to the video results in the supplemental materials for better comparisons.

DreamFusion Magic3D Ours

A 3D model of an adorable cottage with a thatched roof

an imperial state crown of england

A stack of pancakes covered in maple syrup

Figure 7. Comparison of zero-shot generation. Since DreamFusion and Magic3D do not have released codes, their results are obtained
by downloading from their project pages. More results and comparisons are available in the supplemental materials.

“A mug of hot 
chocolate with 

whipped 
cream and 

marshmallows”

“A fruit 
basket 
with 

handles”

Figure 8. Geometries beyond genus-zero ones. DMTET can
deform to any topologies, which enables Fantasia3D to generate
complex geometries, including those beyond genus-zero ones.

5.4. Scene editing and simulation

Given the disentangled design, our method produces
high-quality generation of both the surface and appearance,
and is compatible with popular graphics engines for scene
editing and physical simulation. In Figure 1, we import into

“A highly 
detailed 

stone bust 
of the 
tiger” 

Ours         CLIP-MeshText2Mesh Latent-NeRF

Figure 9. Comparison of Texturing. We compare the appearance
stage of Fantasia3D with three text-driven texturing methods, us-
ing the geometry generated by the geometry stage of Fantasia3D.

Blender a stone statue generated by our method from the
text prompt of ”a highly detailed stone bust of Theodoros
Kolokotronis”, where soft body and cloth simulations are
performed along with material editing. Given the high qual-
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Latent 
-NeRF

Ours

A teddy bear in a tuxedoA robot hand, realistic A German Shepherd

Figure 10. Comparison of user-guided generation. The top row
shows the input meshes provided by users, the bottom row gives
the input text prompts, and the middle two rows show the results
from the comparative methods.

Figure 11. Scene Editing. Three generated objects, namely crown,
tiger, and ice cream, are imported into the Cornell Box scene. The
scene is then rendered using the Cycles path tracer in Blender,
producing natural shadows and reflectance effects.

Original Factory Night Studio Sunset

Figure 12. Relighting. Our generated Iron Man model is relit
using different lighting setups in Blender, producing diverse re-
flectance effects on the armor.

ity of the generated surface geometry (e.g., no holes on the
surface), the simulations are of high-level physical accu-
racy, as shown in the accompanying supplemental video.

Moreover, we showcase the ability to modify the material of
the statue by replacing it with another wood material down-
loaded from the Internet [32], which poses a challenge for
comparative methods such as DreamFusion [33]. Addition-
ally, in Fig. 11, by importing generated ice cream, tiger,
and crown into the Cornell Box, we demonstrate the plau-
sible physical interaction between our generated results and
the scene, with natural shadows being cast. Finally, Fig. 12
illustrates the replacement of the HDR environment map to
produce diverse lighting and corresponding reflectance ef-
fects on the generated iron man.

6. Limitations
While Fantasia3D demonstrates promising advance-

ments in the realm of generating photorealistic 3D assets
from text prompts, several limitations remain. For instance,
while our method successfully produces loose visual ef-
fects, it remains a significant challenge to generate cor-
responding loose geometries, such as hair, fur, and grass,
solely based on text prompts. Additionally, our method pri-
marily emphasizes object generation, thereby lacking the
capacity to generate complete scenes with background from
text prompts. Consequently, our future research endeavors
will be dedicated to addressing these limitations by focus-
ing on the generation of complete scenes and intricate loose
geometries.

7. Conclusion
In this paper, we present Fantasia3D, a new method for

automatic text-to-3D generation. Fantasia3D uses disentan-
gled modeling and learning of geometry and appearance,
and is able to generate both the fine surface and rich mate-
rial/texture. Fantasia3D is based on the hybrid scene repre-
sentation of DMTET. For geometry learning, we propose to
encode a rendered normal map, and use shape encoding of
the normal as the input of the pre-trained, stable diffusion
model. For appearance modeling, we introduce the spatially
varying BRDF into the text-to-3D task, thus enabling ma-
terial learning that supports photorealistic rendering of the
learned surface. Expect for text prompts, our method can
be triggered with a customized 3D shape as well; this is
flexible for users to better control what content is to be gen-
erated. Our method is also convenient to support relighting,
editing, and physical simulation of the generated 3D assets.
Our method is based on pre-trained image diffusion mod-
els (i.e., the stable diffusion). In future research, we are
interested in learning 3D diffusion directly from the large
language models.

Acknowledgements. This work is supported in part by
Program for Guangdong Introducing Innovative and En-
trepreneurial Teams (No.: 2017ZT07X183) and Guang-
dong R&D key project of China (No.: 2019B010155001).

22254



References
[1] Miika Aittala, Timo Aila, and Jaakko Lehtinen. Reflectance

modeling by neural texture synthesis. ACM Transactions on
Graphics (TOG), 35(4):1–13, 2016.

[2] Miika Aittala, Tim Weyrich, and Jaakko Lehtinen. Practical
svbrdf capture in the frequency domain. ACM SIGGRAPH,
32(4):110–1, 2013.

[3] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,
Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila,
Samuli Laine, Bryan Catanzaro, Tero Karras, and Ming-Yu
Liu. ediff-i: Text-to-image diffusion models with ensemble
of expert denoisers. arXiv preprint arXiv:2211.01324, 2022.

[4] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 5855–
5864, October 2021.

[5] Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall,
Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy,
David Kriegman, and Ravi Ramamoorthi. Neural re-
flectance fields for appearance acquisition. arXiv preprint
arXiv:2008.03824, 2020.

[6] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-
ing to predict 3d objects with an interpolation-based differ-
entiable renderer. Advances in Neural Information Process-
ing Systems (NeurIPS), 32, 2019.

[7] Wenzheng Chen, Joey Litalien, Jun Gao, Zian Wang,
Clement Fuji Tsang, Sameh Khamis, Or Litany, and Sanja
Fidler. Dib-r++: learning to predict lighting and material
with a hybrid differentiable renderer. Advances in Neural In-
formation Processing Systems (NeurIPS), 34:22834–22848,
2021.

[8] Yongwei Chen, Rui Chen, Jiabao Lei, Yabin Zhang, and Kui
Jia. Tango: Text-driven photorealistic and robust 3d styliza-
tion via lighting decomposition. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2022.

[9] Clarisse. UV edge padding. https://clarissewiki.
com/4.0/uv_edge_padding.html.

[10] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018.

[11] Valentin Deschaintre, Miika Aittala, Fredo Durand, George
Drettakis, and Adrien Bousseau. Single-image svbrdf cap-
ture with a rendering-aware deep network. ACM Transac-
tions on Graphics (TOG), 37(4):1–15, 2018.

[12] Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and
Xin Tong. Deep inverse rendering for high-resolution svbrdf
estimation from an arbitrary number of images. ACM Trans-
actions on Graphics (TOG), 38(4):134–1, 2019.

[13] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter
Abbeel, and Ben Poole. Zero-shot text-guided object gen-
eration with dream fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 867–876, 2022.

[14] Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky,
and Popa Tiberiu. Clip-mesh: Generating textured meshes
from text using pretrained image-text models. ACM SIG-
GRAPH, 2022.

[15] Matthias Labschütz, Katharina Krösl, Mariebeth Aquino,
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