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Figure 1: We introduce Text2Tex, a text-driven architecture for 3D texture synthesis. Given object geometries and text
prompts as input, Text2Tex generates high quality and consistent textures via depth-aware inpainting and refinement.

Abstract

We present Text2Tex, a novel method for generating high-
quality textures for 3D meshes from the given text prompts.
Our method incorporates inpainting into a pre-trained
depth-aware image diffusion model to progressively syn-
thesize high resolution partial textures from multiple view-
points. To avoid accumulating inconsistent and stretched
artifacts across views, we dynamically segment the rendered
view into a generation mask, which represents the gener-
ation status of each visible texel. This partitioned view
representation guides the depth-aware inpainting model to
generate and update partial textures for the corresponding
regions. Furthermore, we propose an automatic view se-
quence generation scheme to determine the next best view
for updating the partial texture. [Extensive experiments
demonstrate that our method significantly outperforms the
existing text-driven approaches and GAN-based methods.

1. Introduction

Generating high-quality 3D content is an essential com-
ponent of visual applications in films, games, and upcom-
ing AR/VR scenarios. With an increasing number of 3D
content datasets, the computer vision community has wit-

nessed significant progress in the field of 3D geometry gen-
eration [12, 39, 61, 66, 38]. Despite the remarkable success
in modeling 3D geometries in recent years, fully automatic
3D content generation is still hindered by the laborious hu-
man efforts required to design textures. Therefore, automat-
ing the texture design process through alternative guidance,
such as text, has become an intriguing but challenging re-
search problem.

Recently, text-to-image generators have shown remark-
able progress in the 2D domain leveraging diffusion model
architectures, enabling high resolution 2D content genera-
tion based on textual descriptions [!, 48]. However, there
are notable challenges for producing 3D textures via such
2D vision-language prior knowledge. Specifically, the syn-
thesized textures are expected to be not only with high fi-
delity to the language cues, but also of high and consis-
tent quality for target meshes. As such, previous attempts
to paint 3D geometry from text inputs often fail to deliver
well-textured 3D content.

In this paper, we introduce Text2Tex, a novel tex-
ture synthesis method that seamlessly texturizes 3D ob-
jects using a pre-trained depth-aware text-to-image diffu-
sion model. The method renders a target mesh from multi-
ple viewpoints and inpaints the missing appearance with a
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depth-aware text-to-image diffusion model. Text2Tex fol-
lows a generate-then-refine strategy. Our method progres-
sively generates partial textures across viewpoints and back-
projects them to texture space. To address stretched and
inconsistent artifacts observed from rotated viewpoints, we
design a view partitioning technique that computes similar-
ity maps between visible texel’s normal vectors and the cur-
rent view direction. The generation mask created from these
similarity maps guides the diffusion process by indicating
regions to generate, update, keep, or ignore. This allows us
to apply different diffusion strengths to respective regions,
inpainting missing appearance and updating stretched arti-
facts. However, the autoregressive generation process via
the diffusion-based image inpainting model presents a new
challenge. As the inpainting and updating scheme is con-
ditioned on previously synthesized results, a viewpoint se-
quence with an ill-defined order or incomplete coverage
over the mesh surface may result in unsatisfactory textur-
ization. Therefore, we propose an automatic viewpoint se-
lection technique that progressively selects the next best
view. The confidence of each candidate view containing
the biggest relative area for generation and updating is esti-
mated, given the partially textured mesh. This approach en-
sures complete coverage over the mesh surface and a high-
quality texture map by consistently updating stretched re-
gions.

We demonstrate the effectiveness of Text2Tex for syn-
thesizing high-quality 3D textures from language cues.
The proposed method performs favorably against other
language-based texture synthesis methods in terms of
FID [23], KID [4], and user study on a subset of the
Objaverse dataset [17]. Additionally, our method also
outperforms category-specific GAN-based methods on the
ShapeNet car dataset [7].

To summarize, our technical contributions are threefold:

* We design a novel method for high-quality texture syn-
thesis by progressively inpainting and updating the 3D
textures via depth-aware diffusion models.

* We propose an automatic view sequence generation
scheme to dynamically determine the order for gen-
erating and updating the texture space.

* We conduct extensive study on a considerable amount
of 3D objects, demonstrating the proposed method is
effective for large-scale 3D content generation.

2. Related work

3D Generation from 3D and 2D data. To achieve 3D gen-
eration, it is natural to train models directly on 3D data.
In contrast to 2D images, there are several 3D representa-
tions available, each with its unique characteristics, leading
to the development of various generative models such as

those based on voxels [30, 55, 59, 62], point clouds [3, 32],
meshes [68], signed distance function [12, 13, 14, 16, 36],
etc. However, unlike images or videos that are ubiquitous,
3D data is inherently scarce and challenging to collect and
annotate. Consequently, the synthesized samples from 3D
generative models, trained on 3D data, are of limited qual-
ity and diversity, in terms of both structure and texture. Re-
cent works have leveraged differentiable rendering to learn
texture generation using only 2D images [20, 56, 65]. How-
ever, they are typically trained for specific shape categories
and struggle in the quality of textures.

Text-Guided Generation. Recently, there has been
tremendous progress in the vision-language domain [26,

, 60, 47, 10, 8, 11, 9]. Specifically, the emergence of
Contrastive Language-Image Pre-Training (CLIP) [47] has
enabled the development of text-guided image generation
through its semantically rich representation trained on text-
image pairs. Initial efforts [15, 45] incorporated CLIP
with different backbones, such as StyleGAN [27] and VQ-
GAN [19]. However, diffusion models [18, 24, 25, 40, 53],
which have gained attention due to their superior visual
quality and training stability compared to Generative Ad-
versarial Networks (GANs) [21], have recently been trained
on large-scale text-image datasets with CLIP encodings [28,

, 52]. Among these models, Stable Diffusion [I, 52]
has garnered significant interest as an open-sourced model
with numerous extensions [ |, 67] that support different con-
ditional modalities in addition to text prompts, including
depth images, poses, sketches, etc. Additionally, CLIP has
also been adopted in 3D to perform text-guided shape and
texture generation [34, 37]. In this work, we take advan-
tage of the depth-conditioning feature of Stable Diffusion
to provide more consistent texturing.

Text-to-3D from 2D data. Inspired by the success of
Neural Radiance Fields (NeRF) [35], NeRF-based gener-
ators [2, 5, 6, 22, 41, 43, 54, 58, 63] have been proposed
to learn 3D structures from 2D images using GAN-based
frameworks. A new research direction emerged by combin-
ing NeRF techniques with flourishing diffusion-based text-
to-image models, enabling text-to-3D learning with only 2D
supervision. To address the challenge of optimizing a NeRF
field, a score-distillation loss is proposed [46] that leverages
a pretrained 2D diffusion model as a critic to provide essen-
tial gradients. Subsequent efforts have focused on adopt-
ing this loss in latent space [13, 33] and in a coarse-to-fine
refinement approach [29]. However, optimization-based
methods are plagued by long convergence times. A recent
concurrent work [5 1] proposes a non-optimization approach
with progressive updates from multiple pre-set viewpoints.
In contrast, our method iteratively updates and refines the
synthesized textures from automatically selected viewpoint
sequences, which minimizes human efforts with designing
different viewpoint orders for various geometries.
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Figure 2: Overview of Text2Tex. We illustrate the pipeline using a 3D car mesh with a prompt “golden Porsche”. We
progressively generate the texture via a generate-then-refine scheme. In progressive texture generation (Sec. 3.3), we start
by rendering the object from an initial preset viewpoint. We generate a new appearance according to the input prompt via
a depth-to-image diffusion model, and project the generated image back to the partial texture. Then, we repeat this process
until the last preset viewpoint to output the initial textured mesh. In the subsequent texture refinement (Sec. 3.4), we update
the initial texture from a sequence of automatically selected viewpoints to refine the stretched and blurry artifacts.

3. Method

The objective of our work is to texture a 3D mesh using
a pretrained text-to-image diffusion model. In this section,
we begin by laying the foundation of the diffusion model
in Sec. 3.1 and depth-aware inpainting model in Sec. 3.2.
We then propose a generate-then-refine scheme for pro-
gressively synthesizing and updating the 3D textures in a
coarse-to-fine fashion. In the progressive texture generation
(Sec. 3.3), we paint the visible regions of the input geome-
try in an incremental fashion, following a sequence of pre-
defined viewpoints. To ensure local and global consistency,
we incorporate a view partition to guide the depth-aware
inpainting objectives. Subsequently, we introduce an auto-
matic viewpoint selection mechanism (Sec. 3.4) to perform
texture refinement and address any issues of texture stretch-
ing and inconsistency.

3.1. Preliminary

We use a Denoising Diffusion Probabilistic Model
(DDPM) [24] as the generative model. Specifically, to avoid
high computational overhead, we adopt the latent diffusion
model [52], where an input image x is first encoded into la-
tent code z( before the diffusion process. The forward pass
follows a Markov Chain to gradually add noise to the input
latent code zp towards the white Gaussian noise A(0, 1).
At each step in the forward pass, the noised latent code z; is
obtained by adding a noise variance 3; to the previous latent

code z;_1 scaled with /1 — (3;:

zZt ~ N(\/ 1- 5t2t717ﬁt1)- ()

The independence property enables direct transformation of
the noised latent code z; at an arbitrary time step ¢ from the
input latent z via:
zZt ~ N(\/CthZO, (1 — @t)I), (2)

where a; is the total noise variance, which can be calculated
by ZZ;Z (1 — B;) from the noise [3; added to the input latent
code z( at each time step.

During inference, the latent estimation 2;_; for the next
time step ¢ — 1 is obtained by predicting pg(z¢,t) and
o¢(zt,t) of a Gaussian distribution:

’ét—l NN(“@(Ztat)an(ztvt)) (3)

Denoising strength. To prevent complete randomness
during the diffusion process, we introduce a scaling factor
v,0 <« < 1, which controls the number of diffusion steps.
We assume that a white Gaussian noise A/ (0, 1) can be ob-
tained by adding noise to the input latent code z( through
T steps, and the final denoised latent estimation 2 is fully
governed by the pure noise. By applying the scaling fac-
tor, we can start denoising the latent code at time step v71'
to guide the final latent code with the original image infor-
mation. This technique is applied to refine the previously
generated image contents.

3.2. Depth-Aware Image Inpainting

The core of the texture synthesis lies in painting the miss-
ing regions on the mesh surface. The generated texture is
expected to be highly faithful to the mesh geometry and the
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Figure 3: We dynamically partition the current view into a
generation mask to guide the depth-aware inpainting model.
For the “new” region, we denoise the new object appearance
from white Gaussian noise. For the “update” region, we
refine the previous texture by denoising the partially noised
image segments. We freeze the texture in the “keep” region
for this view.

input text. To achieve this, we build our method on a pre-
trained depth-to-image model [ |, 67] that can produce high-
quality images from text while being consistent with depth
cues. However, since the Depth2Image model is designed to
generate entire images, we need to use an inpainting mask
to guide the sampling process. This mask provides explicit
hints of which regions to generate or keep fixed, similar to
the denoising guidance strategy in RePaint [31].

To condition the denoising on the known regions of the
input, we inject a generation mask M into the sampling
steps. This mask explicitly blends the noised latent code z;
and the denoised latent estimation Z; as follows:

étié’t@MJth@(lfM). 4)

We then decode the final denoised latent estimation Zg to
the final output image O.

3.3. Progressive Texture Generation

With the customized Depth2Image model, we are able
to paint the object with a high quality image from a single
view. To synthesize the appearance of the input geometry,
we project the generated 2D views onto the texture space of
a normalized 3D object with proper UV parameterization.

Assuming Y-axis as the up-axis in the world coordinate sys-
tem, we define the viewpoint as v = (6, ¢, r), where @ is the
azimuth angle with respect to the Z-axis, ¢ is the viewpoint
elevation angle with respect to the XZ-plane, and r is the
distance between the viewpoint and the origin.

As shown in Fig. 2, we start by generating the visible but
missing texture in an initial viewpoint v°. We render the ob-
ject to a depth map DY and a generation mask MY, and then
use a customized Depth2Image diffusion model with D as
input and M as extra guidance to generate a colored image
0°. We then back-project the image OV to the visible part
of the texture 7. In the subsequent steps, we progressively
diffuse the colored images O and back-project them to the
texture 7" through a sequence of viewpoints.

We notice that directly inpainting the missing regions on
mesh surface often results in inconsistency issues. The issue
is mainly caused by the stretched artifacts that occur when
the 2D views are projected back onto the curved surface of
the mesh. Therefore, we design a dynamic view partition-
ing strategy to guide the inpainting process with respective
generation objectives M and denoising strengths .

Dynamic view partitioning For all viewpoints V =
v;,i = 1,..., N, we render the similarity mask S’ for each
viewpoint v¥ and map those values to the texture space.
Each pixel in a similarity mask represents the reversed nor-
malized value of the cosine similarity between the normal
vectors of the visible faces and the view direction (ranging
from O to 1). A pixel with a value of 1 indicates that the cor-
responding face is perpendicular to the view direction. For
simplicity, we set the background to 0 . In summary, these
masks indicate the extent to which a face is rotated away
from the viewpoint.

Based on the similarity mask S* at step k, we segment
the rendered view into a generation mask MFE, including
the following 4 regions, as shown in Fig. 3: 1) New: This
region contains pixels that have not yet been textured. We
inpaint this region from pure white Gaussian noise, i.e. with
denoising strength 1. 2) Update: This region contains pix-
els that have been textured, but the corresponding similar-
ity score in S* is greater than all other views. This indi-
cates that those pixels are being observed in a better angle.
Therefore, we update this region with a moderate denoising
strength ~y, to avoid stretched appearance. 3) Keep: Pix-
els in this region have been textured, but the corresponding
similarity score in S* is not the highest among all other
views.These pixels have already been observed from a bet-
ter angle, so we keep them fixed. 4) Ignore: This region
contains pixels that belong to the background and are ir-
relevant to the process, so we ignore them throughout the
entire process.

While the generation mask helps guide the texture in-
painting process with accurate generation objectives and ap-

18561



viewpoint with max heat

candidate

8
o ¢
I %y
/@ “‘

Julodmain 1xeu ® e
Jo9jes

Figure 4: In the refinement stage, the sequence of view-
points are automatically determined by selecting the view-
point with the maximum normalized area of the “update”
region at each step. We update 2D views in the “update”
regions with a moderate diffusion denoising strength. The
updated object appearance is then back-projected to the tex-
ture space at the end of each refinement step.

propriate denoising strengths, blurriness and stretches can
still exist on the mesh surface. This is because the genera-
tion mask is limited to a predefined set of viewpoints, and
the seams and stretches on the texture are still visible from a
novel viewpoint. To address this issue, we propose a texture
refinement technique with an automatic viewpoint selection
strategy, which is described in the next section.

3.4. Texture Refinement with Automatic Viewpoint
Selection

To remove the synthesis artifacts, a straightforward so-
lution is to increase the number of viewpoints. However,
the optimal viewpoint sequence can vary for different object
geometries, making it difficult to manually pre-set the view-
point sequence for massive synthesis targets. To address
these challenges, we propose an automatic viewpoint selec-
tion strategy that effectively prevents stretches and seams,
as illustrated in Fig. 4. We densely define a set of refine-
ment viewpoints V = v;,1 = 1, ..., K, where K is larger
than N. To distribute the refinement viewpoints evenly, we
scatter them on a hemisphere, taking into account that ob-
jects are rarely observed from the bottom-up view.

Assuming that an initial texture has been applied to the
object, the refinement process begins by segmenting the
generation masks M using the similarity masks S from all

available viewpoints. For each of the K refinement view-
points in V, we calculate a view heat h’ from the corre-
sponding generation mask M, which represents the nor-
malized area of the “update” region with respect to the cur-
rent visible area of the object. The viewpoint v; that max-
imizes the view heat is then selected by argmax; h; =
Nip ch\’il wy where N, is the total number of the non-
background pixels, and wy, is the scaling factor for the seg-
ments in the generation mask. In order to let views with
relatively more areas for updating, wy, for the “update” re-
gion is set to be bigger than that for the “keep” region. We
dynamically select the next view with the highest view heat
for updating. To avoid conflicts with the previously gener-
ated textures, we update the “update” regions with a mild
denoising strength .., which preserves the original appear-
ance cues.

4. Results
4.1. Implementation Details

We apply the Depth2Image model from Stable Diffusion
v2 [1] as our generation backbone. The denoising strength
g and -y, are set as 0.5 and 0.3 for the generation and re-
finement stages, respectively. We define 6 axis-aligned prin-
ciples viewpoints for generation, and in total 36 viewpoints
for refinement, among which we dynamically select only
20 views to reduce time cost. Each synthesis process takes
around 15 minutes to complete on an NVIDIA RTX A6000.
Our implementation uses the PyTorch [44] framework with
PyTorch3D [50] used for rendering and texture projection.

4.2. Experiment Setup

Data. We evaluate our method on a subset of textured
meshes from the Objaverse [17] dataset. We first sample
3 random meshes from each category. To ensure the quality
of the input meshes, we manually filter out thin or unrecog-
nizable meshes, such as “strainer”, “sweatpants”, and "leg-
ging”, meshes with too simplistic textures, and meshes that
do not correspond with their assigned categories. For the
purpose of reducing processing time, we also remove over-
triangulated and scanned objects. After this curation, there
are in total 410 high quality textured meshes across 225 cat-
egories for the experiments. Note that the original textures
are only used for the evaluation. To compare with GAN-
based category-specific approaches, we also report results
on the “car” objects from the ShapeNet dataset [7]. In par-
ticular, we use the 300 meshes from the test set used in [56].

Baselines. We compare our method against the follow-
ing state-of-the-art text-driven texture synthesis method: 1)
Text2Mesh [34], a neural pipeline that directly optimizes
the textures and geometries via a CLIP-based optimization
objective. We remove the displacement prediction so that
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Figure 5: Qualitative comparisons on Objaverse. We compare our textured mesh against CLIPMesh [37], Text2Mesh [34],
Latent-Paint [33], and the original textures from Objaverse. In comparison with the baselines, our method produces more
consistent and detailed 3D textures with respect to the input geometries. Image best viewed in color.

only the surface RGBs are optimized. 2) CLIPMesh [37],
a CLIP-based pipeline that deforms a sphere and opti-
mizes the surface RGBs. Similar to Text2Mesh, we re-
move the shape deformation branch, and the texture col-
ors are directly optimized on the surface of a given ge-
ometry. 3) Latent-Paint [33], a texture generation variant
of the NeRF-based 3D object generation pipeline Latent-
NeRF [33]. It explicitly operates on a given texture map
using Stable Diffusion as a prior. In addition to text-
guided methods, we also compare with category-specific
GAN-based approaches, including Texture Fields [42],
SPSG [16], LTG [65], and Texturify [56].

Evaluation metrics. We evaluate the generated textures
via commonly used image quality and diversity metrics for
generative models. Specifically, we report the Frechet In-
ception Distance (FID) [23] and Kernel Inception Distance
(KID x1072 ) [4]. The generated image distribution for
these metrics consists of renders of each mesh with the syn-
thesized textures from 20 fixed viewpoints at a resolution
of 512 x 512. For experiments on Objaverse dataset, the
real distribution comprises renders of the meshes with the
same settings using their artist designed textures. For ex-

periments on ShapeNet cars, we use the 18991 background
segmented images from CompCars dataset [64].

4.3. Quantitative results

In Tab. 1, we compare our method against the previ-
ous SOTA text-driven texture synthesis methods on Obja-
verse objects. As input, we uniformly feed template texts
“a (category)” to the models. Quantitatively, our method
outperforms all baselines by a significant margin (19% im-
provement in FID and 26% improvement in KID). Such
improvements demonstrate that our method is more capa-
ble of generating more realistic textures on various object
geometries from numerous categories. To demonstrate the
effectiveness of our method against the GAN-based ap-
proaches on category-specific data, we report experiment
results on ShapeNet “car” category in Tab. 2. Notably, our
method achieves superior performance over the previous
GAN-based SOTA texture synthesis method Texturify, im-
proving by 21% in FID and 12% in KID. This indicates our
method is more effective with synthesizing realistic textures
than GAN based approaches that were trained on specific
categories.
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Figure 6: Qualitative comparisons on ShapeNet car. Our
method generates sharper and more coherent textures with
respect to the geometries compared to the state-of-the-art
GAN-based method.

Method | FID | KID (x1073) |
Text2Mesh [ ] 45.38 (+9.7) 10.40 +2.7)
CLIPMesh [37] | 43.25 (.76 12.52 (a5
Latent-Paint [33] | 43.87 s, 11.43 .5
Text2Tex (Ours) | 35.68 7.74

Table 1: Quantitative comparisons on Objaverse subset.
Our method performs favaorably against state-of-the-art
text-driven texture synthesis methods.

User study. We conduct user study to analyze the qual-
ity of the synthesized textures and their fidelity to the in-
put text prompts. For each baseline method, we randomly
show the users 5 pair of renders from the baseline and our
method. The users are requested to choose the one that is
more realistic and closer to the text prompts. More details
of the questionnaire can be found in the supplemental. In
the end, we receive 604 responses across 41 users. The col-
lected preferences are reported in Tab. 3. In comparison to
CLIPMesh and Text2Mesh, our method is clearly preferred
by the users with preference rate 83.92% and 76.47%, re-
spectively. Besides that, more users (64.18%) lean towards
our method over the competitive baseline Latent-Paint. As
can be seen, our method demonstrates the effectiveness in
generating high quality textures that are favored by human
users.

Method | FID | KID (x10-3) |
Texture Fields [ ] 177.15 (+130.2) 17.14 (+12.8)
SPSG [16] 110.65 637y 959 (459
LTG [65] 7076 (1238 572 (14
Texturify [56] 59.55 (126 497 (00
Text2Tex (Ours) | 46.91 4.35

Table 2: Quantitative comparison on the ShapeNet cars.
Our method outperform state-of-the-art category-specific
GAN-based methods by a significant margin.

| CLIPMesh ©  Text2Mesh 1 Latent-Paint 1

Ours ‘ 83.92% 76.47% 64.18%

Table 3: Percentage of users who prefer our method over
the baselines in a user study with 604 responses across 41
participants. Our method is shown to be more favored by
human users.

w/ Depth2lmg ~ w/ inpainting ~ w/ update | FID | KID (x107%) |

v X X 39.88 9.78
v v X 38.19 9.11
v v v 37.09 8.78

Table 4: Effect of components in the generation stage. We
quantitatively ablate the efficacy of each component. Ap-
plying the inpainting and update scheme effectively im-
proves the quality of the synthesized textures.

our method can synthesize more consistent textures with
cleaner and richer local details. We also compare our tex-
tures with GAN-based generation approach on category-
specific objectives. In Fig. 6, we show the textures for
ShapeNet cars of our methods and Texturify. Notably, our
textures have a much cleaner appearance and provide more
details with respect to the input geometries.

4.5. Ablation studies

Does depth-aware inpainting and updating help? We

4.4. Qualitative analysis

We compare our qualitative results on Objaverse ob-
jects against text-driven baselines in Fig. 5. In compari-
son with CLIP-based methods CLIPMesh and Text2Mesh,
our method generates more realistic and consistent textures.
In particular, CLIPMesh generates sketchy textures while
Text2Mesh produces repetitive patterns. Latent-Paint out-
puts a consistent texture capturing the semantics of the ob-
ject well, but the results are often quite blurry. Clearly,

show in Fig. 7 that the depth-aware inpainting is essential
for producing high quality textures. In particular, the plain
Depth2Img model often struggles to produce consistent ap-
pearances due to the governance of random noise. When
the inpainting scheme is applied, the produced textures are
more consistent. However, the textures still appear to be
stretched and blurry over the curved mesh surface. These
artifacts are amended by the texture updating scheme from
the better viewing angles. The effectiveness of the depth-
aware inpainting and the updating scheme is reflected in the
improved FID and KID scores in Tab. 4.
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Figure 7: The proposed inpainting and update technique can
effectively generate more consistent textures and eliminate
stretched and blurry artifacts. Note that there is no refine-
ment in this ablation.

# views |0 5 10 15 20

J FID 37.09 36.67 3639 3598 35.68
LKID(x107%) | 878 831 812 798 17.74

Table 5: We quantitatively study the effect of selecting dif-
ferent number of viewpoints in the refinement stage. Refin-
ing the synthesis results with more viewpoints improves the
texture quality.

Does viewpoint selection in refinement stage help? We
compare our results with different refinement settings in
Tab. 5. When the input geometries are painted with initial
textures from the generation stage, the blurry artifacts and
projection seams are usually not eliminated due to a limited
number of viewpoints. As can be seen in Fig. 8, such flaws
can be minimized by refining with more viewpoints. We
also showcase the effectiveness of the automatic viewpoint
selection technique, as the refinement process does not re-
quire any manual efforts with defining and fine-tuning the
viewpoint sequence for different shapes.

4.6. Limitations.

While our method has shown the capability to produce
high-quality 3D textures, we have observed that it tends
to produce textures with shading effects from the diffusion
backbone. Although this issue can be addressed by care-

Depth2Img
Depth2Iimg Depth?'f_"g + Inpainting
+ Inpainting + update

“sci-fi
helmet”

“orange
backpack”

Figure 8: The proposed automatic viewpoint selection
method further improves the texture quality by gradually
removing the remaining artifacts from the generation stage.

fully fine-tuning the input prompts, doing so requires ad-
ditional human engineering effort and may not scale well
to massive generation targets. One potential solution is to
fine-tune the diffusion model to remove the shading from
textures. We acknowledge this challenge and leave it to fu-
ture work to explore this possibility.

5. Conclusion

In this paper, we present a novel method, Text2Tex, for
synthesizing high quality textures for 3D meshes from the
given text prompts. Our approach leverages a depth-aware
image inpainting diffusion model to progressively generate
high-resolution partial textures from multiple viewpoints.
To avoid accumulating inconsistent and stretching artifacts
across viewpoints, we dynamically segment the rendered
view into a generation mask, which effectively guides the
diffusion model to generate and update the corresponding
partial textures. Furthermore, we propose an automatic
viewpoint sequence generation scheme that utilizes the gen-
eration mask to automatically determine the next best view
for refining the generated textures. Extensive experiments
demonstrate that our method can effectively synthesize con-
sistent and highly detailed 3D textures for various object ge-
ometries without extra manual effort. Overall, we hope our
work can inspire more future research in the area of text-to-
3D synthesis.
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