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Abstract

The goal of building a benchmark (suite of datasets)
is to provide a unified protocol for fair evaluation and
thus facilitate the evolution of a specific area. Nonethe-
less, we point out that existing protocols of action recog-
nition could yield partial evaluations due to several limita-
tions. To comprehensively probe the effectiveness of spa-
tiotemporal representation learning, we introduce BEAR,
a new BEnchmark on video Action Recognition. BEAR
is a collection of 18 video datasets grouped into 5 cate-
gories (anomaly, gesture, daily, sports, and instructional),
which covers a diverse set of real-world applications. With
BEAR, we thoroughly evaluate 6 common spatiotemporal
models pre-trained by both supervised and self-supervised
learning. We also report transfer performance via stan-
dard finetuning, few-shot finetuning, and unsupervised do-
main adaptation. Our observation suggests that the cur-
rent state-of-the-art cannot solidly guarantee high perfor-
mance on datasets close to real-world applications, and we
hope BEAR can serve as a fair and challenging evalua-
tion benchmark to gain insights on building next-generation
spatiotemporal learners. Our dataset, code, and models are
released at: https://github.com/AndongDeng/BEAR

1. Introduction
Learning good spatiotemporal representations [45, 70,

24, 60, 16, 76] is fundamental for video understanding
tasks. In action recognition, a common evaluation pro-
tocol is to first evaluate the model performance on large-
scale video datasets such as Kinetics-400 [30], then show
its effectiveness of transfer learning to different downstream
tasks [5, 17, 38, 2, 41, 72]. Many video datasets [56, 32,
30, 20, 9] have been introduced over the past few years to
advance the field. However, there are several major limi-
tations: (1) These datasets are similar in terms of domains
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Figure 1: BEAR is a collection of 18 video action recogni-
tion datasets grouped into 5 categories (Anomaly, Gesture,
Daily, Sports, and Instructional). It enables various evalua-
tion settings, e.g., standard finetuning, few-shot finetuning,
unsupervised domain adaptation, and zero-shot learning.

and actions. Most of them only contain daily or sports ac-
tions because these categories are easy to collect from the
web. Yet many important real-world applications, such as
anomaly detection and industrial inspection, are rarely in-
cluded. (2) Each of these datasets has its own character-
istics (e.g. appearance-focused [30], motion-focused [20],
fine-grained [52], egocentric [9]). Previous works usually
conduct evaluations on a few datasets. However, without
evaluating a suite of datasets, we cannot fully diagnose a
model and make further improvements. (3) The held-out
test set for these datasets either does not exist or is not com-
monly adopted. This will affect the transfer performance
because models tuned on a test set using hyperparameter op-
timization or neural architecture search might achieve good
performance but cannot transfer well due to overfitting.

In light of this, we propose a unified and challenging
BEnchmark on video Action Recognition, named BEAR, to
better evaluate spatiotemporal representation learning. We
define good representations as those that can achieve strong

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

20519



transfer learning performance on diverse, unseen domains
even with limited data. To this end, we build BEAR by
collecting a suite of 18 video action recognition datasets
grouped into 5 categories (Anomaly [57, 78], Gesture [42],
Daily [53, 10], Sports [28], and Instructional [58]), which
cover a diverse set of real applications. The datasets in
BEAR are also diverse in video sources (e.g. YouTube,
CCTV cameras, self-collected) and viewpoints (e.g. ego-
centric, 3rd person, drone, and surveillance). In addition,
we split each dataset into train and test sets, strictly keeping
the test set held out during training in all of our experi-
ments. We will also provide an online evaluation server to
enable fair comparisons.

With BEAR, one can probe spatiotemporal representa-
tion learning methods from a much more diverse perspec-
tive and answer many important questions. Does the good
performance on commonly-used large-scale datasets trans-
late to real applications? Do recent transformer-based mod-
els consistently outperform simple 2D models in different
domains? How sensitive is the model to domain and view-
point change? Could the model achieve good performance
when downstream data is limited? In this work, we com-
prehensively investigate 6 representative video models pre-
trained by both supervised and self-supervised learning in
various settings (e.g. full-shot, few-shot, domain adapta-
tion). Our study quantifies existing intuition and uncovers
several new insights: (1) Simple 2D video models can out-
perform recent transformer-based models when equipped
with strong backbones. (2) The previous evaluation pro-
tocols are constrained to downstream datasets that resem-
ble Kinetics-400. However, the high performance of these
datasets does not necessarily transfer to other application
domains. (3) Viewpoint shift has a dramatic impact on
downstream task performance. Even the recent domain
adaptation methods cannot address the problem to satis-
factory. This suggests we may need to go beyond domain
adaptation and shift attention to building more comprehen-
sive pre-training datasets. (4) Self-supervised spatiotempo-
ral representation learning still lags remarkably behind su-
pervised learning. Even the SoTA VideoMAE [60] fails to
outperform simple supervised models in diverse domains.
Our goal is to provide a unified and challenging evaluation
benchmark to evaluate spatiotemporal representation learn-
ing from various perspectives, which hopefully could guide
future development in video understanding.

2. Related Work
Human action recognition is to distinguish the ongoing
actions (or sometimes events) in a video. Different from
image classification, video action recognition requires ef-
fective temporal modeling [64], awareness of the action hi-
erarchies [52], and the interaction between the subjects and
objects [20]. In early years, video models simply inherit

the 2D convolution structures [55, 25] and process tempo-
ral information either by extending 2D convolutions into
3D [61, 5, 75] or including optical flow [54]. However,
optical flow-based approaches suffer from costly flow pre-
computation, thus 2D CNNs with more sophisticated tem-
poral modeling are designed [64, 82, 38, 73, 71]. For 3D
CNNs, factorized architectures [46, 62, 74, 83] are intro-
duced to improve the model efficiency and reduce over-
fitting. Recently, Transformer [63] continues to show-
case its capability from language to image and also to
video [2, 1, 80, 41, 77, 68]. Top performers on most video
action recognition datasets are transformer-based. In this
work, we fairly evaluate 6 popular video models belong-
ing to 2D CNN, 3D CNN, and Transformer, respectively.
With comparable backbones, we surprisingly reveal that 2D
CNNs can sometimes outperform transformer models.

Spatiotemporal representation learning is advancing
rapidly in the last few years, especially in a self-supervised
manner. Self-supervised pre-training is appealing because it
could learn visual knowledge from massive unlabeled data,
which alleviates the annotation burden compared with its
supervised counterpart. Most approaches design a pretext
task to learn the intrinsic spatiotemporal feature within the
video data, such as sorting the shuffled video sequence [33],
next frame prediction [23], predicting the frame rate [14],
contrastive learning [12, 18, 43, 31, 45], mask model-
ing [60, 16], etc. Despite their promising performance, a
recent work [59] points out that video self-supervised pre-
training is less robust than its supervised counterpart when
the downstream setting varies. In this work, we also com-
pare supervised pre-training with self-supervised ones in
terms of both standard finetuning and few-shot finetuning
on our benchmark.

Vision benchmark is often designed as a testbed, which
consists of multiple datasets from different domains. Each
benchmark might have its own motivation, but they share
the same goal of providing a unified protocol for evaluation
and thus facilitating the evolution of a specific area. Many
well-established benchmarks have been proposed in differ-
ent research areas [66, 79, 34, 36, 22]. However, there is
no such comprehensive benchmark for video action recog-
nition. Two works that are the closest to ours are VTAB [79]
and SEVERE-benchmark [59]. VTAB contains 19 datasets
that cover a broad spectrum of domains and semantics. All
tasks are formulated as the image classification problem
for the sake of a homogeneous task interface. Inspired by
VTAB, we build the first comprehensive evaluation bench-
mark for video action recognition. BEAR includes 18
datasets across 5 domains towards real applications. It en-
ables fair comparison and thorough investigation of exist-
ing video models, which allows us to address interesting
open questions. SEVERE-benchmark [59] investigates how
sensitive video self-supervised learning is to the current
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Table 1: Statistics of the selected datasets used in our video benchmark. We collect 18 datasets covering 5 common data
domains for comprehensive benchmarking. In the column of video viewpoint, “sur.” means surveillance videos, and “dro.”
means drone videos.

Dataset Domain Label
classes

Clip
num.

Avg Length
(sec.)

Training data
per class (min, max)

Split
ratio

Video
source

Video
viewpoint

XD-Violence [69] Anomaly 5 4135 14.94 (36, 2046) 3.64:1 Movies, sports, CCTV, etc. 3rd, sur.
UCF Crime [57] Anomaly 12 600 132.51 38 3.17:1 CCTV Camera 3rd, sur.

MUVIM [11] Anomaly 2 1127 68.1 (296, 604) 3.96:1 Self-collected 3rd, sur.
WLASL100 [35] Gesture 100 1375 1.23 (7, 20) 5.37:1 Sign language website 3rd

Jester [42] Gesture 27 133349 3 (3216, 9592) 8.02:1 Self-collected 3rd
UAV Human [37] Gesture 155 22476 5 (20, 114) 2:1 Self-collected 3rd, dro.
CharadesEgo [53] Daily 157 42107 10.93 (26, 1120) 3.61:1 YouTube 1st

Toyota Smarthome [10] Daily 31 14262 1.78 (23, 2312) 1.63:1 Self-collected 3rd, sur.
Mini-HACS [81] Daily 200 10000 2 50 4:1 YouTube 1st, 3rd

MPII Cooking [50] Daily 67 3748 153.04 (5, 217) 4.69:1 Self-collected 3rd
Mini-Sports1M [29] Sports 487 24350 10 50 4:1 YouTube 3rd

FineGym99 [52] Sports 99 20389 1.65 (33, 951) 2.24:1 Competition videos 3rd
MOD20 [44] Sports 20 2324 7.4 (73, 107) 2.29:1 YouTube and self-collected 3rd, dro.
COIN [58] Instructional 180 10426 37.01 (10, 63) 3.22:1 YouTube 1st, 3rd

MECCANO [48] Instructional 61 7880 2.82 (2, 1157) 1.79:1 Self-collected 1st
INHARD [8] Instructional 14 5303 1.36 (27, 955) 2.16:1 Self-collected 3rd

PETRAW [26] Instructional 7 9727 2.16 (122, 1262) 1.5:1 Self-collected 1st
MISAW [27] Instructional 20 1551 3.8 (1, 316) 2.38:1 Self-collected 1st

conventional benchmark in terms of domain, samples, ac-
tions, and tasks. Compared to SEVERE-benchmark [59],
we study both supervised and self-supervised learning in
more domains (anomaly, instructional), with more datasets
(18 vs 8) and more settings (few-shot, zero-shot, and unsu-
pervised domain adaptation).

3. BEAR

Despite new datasets being introduced every year, the
most widely adopted benchmarks in the video action
recognition community are Kinetics-400/600/700 [3, 4,
30], Something-something-v1/v2 [20], UCF-101 [56] and
HMDB-51 [32]. However, these datasets share a high sim-
ilarity in that they are mostly composed of daily and sports
actions. Models that achieve good performance on these
datasets may not generalize well to the challenging real-
world scenarios due to dramatic domain shifts. For exam-
ple, anomaly videos are often captured from surveillance
cameras, which look quite different from daily videos due
to viewpoint change. Ideally, a video model is expected to
cope with diverse real-world applications.

To comprehensively evaluate the generalization capabil-
ity of video models, we present BEAR, a new benchmark
for human action recognition. As shown in Table 1, BEAR
is a collection of 18 action recognition datasets, carefully
designed towards practical use, data diversity, and task
diversity. Compared to existing video action recognition
datasets, BEAR has the following desirable properties.
Real Applications. Besides the common daily and sports
categories, BEAR contains another three categories includ-
ing anomaly activity, gesture, and instructional actions.
These action categories have important real-world appli-

cations such as people fall detection (e.g. MUVIM [11]),
sign language recognition (e.g. WLASL100 [35]), indus-
trial inspection (e.g. MECCANO [48]), and surgical work-
flow recognition (e.g. PETRAW [26]).
Data Diversity. BEAR is not only diverse in applica-
tion domains but also in the data source, video viewpoint,
and video length. As shown in Table 1, BEAR contains
videos from various sources such as movies, CCTV cam-
eras, YouTube, and drone cameras. It also includes videos
in the 1st and 3rd person views. In terms of video length,
the average clip duration varies from the shortest (e.g. 1.23s
in WLASL100 [35]) to the longest (e.g. 153.04s in MPII
Cooking [50]). In addition, the training sample size per
class varies across datasets, from the lowest (e.g. 1 for MI-
SAW [27]) to the highest (e.g. 9592 for Jester [42]).
Few-shot Transfer. The standard finetuning protocol for
transfer is to train a model on the whole training data, which
is often more than thousands of videos. However, in many
real applications, the annotated video data is scarce, e.g.
anomaly recognition (rarely happens and is costly to la-
bel), medical operation (privacy concern), and industrial op-
eration (need the expertise to label). To better evaluate a
model’s potential in real applications, we need to evaluate
its effectiveness under few-shot learning. Hence in BEAR,
besides the full datasets, we also split each dataset into 16-
shot, 8-shot, 4-shot, and 2-shot versions. This allows re-
searchers and practitioners to thoroughly evaluate a model’s
sensitivity to data scarcity.
Flexible Evaluation. Thanks to the data diversity in BEAR,
researchers can easily evaluate video models under various
settings. For example, full-shot and few-shot learning, do-
main adaptation from one dataset (or category) to another.
Moreover, we also believe that new settings can be easily
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derived based on our benchmark.
Fair Comparison. The held-out test set for most video
action recognition datasets either does not exist or is not
commonly adopted. This allows previous methods to con-
duct hyperparameter optimization or even neural architec-
ture search directly on the test set. Test set tuning usually
leads to good testing performance, but it may not translate
to other datasets. To promote fair comparison and general-
ization capability, we will hold the test sets and provide an
evaluation server for future researchers and practitioners.
Dataset Accessibility. We provide scripts to download and
format all 18 datasets automatically. Our codebase is built
upon MMAction2 [7], so researchers can easily integrate
their new models by providing a model definition file with-
out additional efforts to perform evaluations. Furthermore,
the total number of video clips in BEAR is about 310K,
which is comparable to Kinetics-400. Therefore, the over-
all time cost is similar to training a model on Kinetics-400.

4. Models

There has been a considerable amount of video mod-
els proposed to solve the human action recognition task.
From the perspective of the basic building block, these
models can be roughly classified into three categories: 2D
CNNs, 3D CNNs, and transformer-based models. To in-
vestigate the efficacy of each model type, in this work,
we select two representative works from each category:
TSN [64] and TSM [38] for 2D CNNs, I3D [5] and 3D
Non-local network [67] for 3D CNNs, TimeSformer [2]
and VideoSwin [41] for transformer-based models. We
would like to point out that for CNN-based models (TSN,
TSM, I3D, and NL), we choose ConvNext-base [40] as the
backbone because it has a similar model size and perfor-
mance, as shown in Table 2, on ImageNet-1K compared
to ViT-B and Swin-B, which is the backbone of TimeS-
former and VideoSwin, respectively. This alleviates the im-
pact from the backbone, thus presenting a more fair com-
parison among different video architectures. In this work,
we finetune all the models based on both supervised and
self-supervised pre-training on Kinetics-400, and the pre-
training performance is shown in Table 3. The pre-training
details can be found in Supplementary Sec.2. In the follow-
ing sections, we will provide a comprehensive study w.r.t.
transferring performance from multiple perspectives: stan-
dard finetuning, few-shot finetuning, unsupervised domain
adaptation, and zero-shot evaluation.

5. Standard Finetuning

Finetuning models that are pre-trained on large-scale
datasets have been a mainstream learning paradigm in deep
learning, and performance on various downstream datasets
can provide a more comprehensive evaluation with less

Table 2: Comparison among ConvNeXt-base, ViT-base,
and Swin-base. Params denote the parameters volume, and
Top-1 acc means the top-1 accuracy in the ImageNet classi-
fication task.

Backbone Params(M) Top-1 acc(%)
ConvNeXt-base [40] 88.59 85.8

ViT-base [13] 86.57 81.8
Swin-base [39] 87.77 85.2

Table 3: The pre-training results of 6 models on Kinetics-
400 in both supervised and self-supervised settings. The
supervised results are based on the single-view test, and the
self-supervised ones are based on KNN evaluation.

model Supervised SSL
TSN 77.6 43.1
TSM 76.4 43.2
I3D 74.2 51.3
NL 73.9 50.7

TimeSformer 75.8 50.3
VideoSwin 77.6 51.1

bias. Thus, in BEAR, we regard standard finetuning as a
basic evaluation method. Specifically, we finetune the pre-
trained models on the 18 datasets to investigate: 1) the per-
formance of different types of video models on different
data domains; 2) the difference between supervised pre-
training and self-supervised pre-training; 3) potential fac-
tors (e.g. domain shift, viewpoint shift, etc.) that have sig-
nificant impacts on the performance of downstream tasks.
We want to emphasize that during finetuning, we do not
tune hyperparameters on the test set to avoid potential over-
fitting. All reported results are based on the evaluation of
the last checkpoint. The Top-1 accuracy of each model
is presented in Table 4. Besides the performance on each
dataset, we also propose two composite metrics over the 18
datasets for evaluation. The first one is the macro-average
accuracy which is the average of the accuracy on each
dataset. The second one is micro-average accuracy, which
calculates the average accuracy on the video level. Micro-
average considers the size difference of the 18 datasets.
We include the details of the complete finetuning results,
and the previous best-reported performance, if any, for each
dataset in Supplementary Sec.3.

Model comparison. In previous studies, transformer-
based video models [2, 41] have been demonstrated to
be more effective than CNNs on several representative
datasets. This conclusion leads the trend of model de-
sign toward more sophisticated transformers, which makes
CNNs less appealing compared with the pre-transformer
era. However, we argue that the current conclusion could
be biased since the comparison between transformers and
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Table 4: Finetuning results based on the supervised pre-trained and self-supervised pre-trained models as well as the X3D
pre-trained models. Generally, from the two composite metrics (macro-average accuracy and micro-average accuracy), we
can tell that TSM surprisingly outperforms other counterparts in both pre-training settings.

Dataset Supervised pre-training X3D Self-supervised pre-training
TSN TSM I3D NL TimeSformer VideoSwin TSN TSM I3D NL TimeSformer VideoSwin

XD-Violence 85.54 82.96 79.93 79.91 82.51 82.40 75.11 80.49 81.73 80.38 80.94 77.47 77.91
UCF-Crime 35.42 42.36 31.94 34.03 36.11 34.72 25.69 37.50 35.42 34.03 34.72 36.11 34.03

MUVIM 79.30 100 97.80 98.68 94.71 100 99.56 99.12 100 66.96 66.96 99.12 100
WLASL 29.63 43.98 49.07 52.31 37.96 45.37 44.91 27.01 27.78 29.17 30.56 25.56 28.24

Jester 86.31 95.21 92.99 93.49 93.42 94.27 92.24 83.22 95.32 87.23 93.89 90.33 90.18
UAV-Human 27.89 38.84 33.49 33.03 28.93 38.66 36.07 15.70 30.75 31.95 26.28 21.02 35.12

CharadesEGO 8.26 8.11 6.13 6.42 8.58 8.55 5.69 6.29 6.59 6.24 6.31 7.59 7.65
Toyota Smarthome 74.73 82.22 79.51 76.86 69.21 79.88 79.09 68.71 81.34 77.82 76.16 61.64 80.18

Mini-HACS 84.69 80.87 77.74 79.51 79.81 84.94 60.57 64.60 63.24 70.24 60.57 73.92 75.58
MPII Cooking 38.39 46.74 48.71 42.19 40.97 46.59 42.19 34.45 50.08 42.79 40.36 35.81 47.19
Mini-Sports1M 54.11 50.06 46.90 46.16 51.79 55.34 41.91 43.02 43.59 46.28 45.56 44.60 47.60

FineGym 63.73 80.95 72.00 71.21 63.92 65.02 68.49 54.62 75.87 69.62 68.79 47.60 58.94
MOD20 98.30 96.75 96.61 96.18 94.06 92.64 92.08 91.23 92.08 91.94 92.08 90.81 92.36
COIN 81.15 78.49 73.79 74.30 82.99 76.27 61.29 61.48 64.53 71.57 72.78 67.64 68.78

MECCANO 41.06 39.28 36.88 36.13 40.95 38.89 30.78 32.34 35.10 34.86 33.62 33.30 37.80
InHARD 84.39 88.08 82.06 86.31 85.16 87.60 84.86 75.63 87.66 82.54 80.81 71.28 80.10
PETRAW 94.30 95.72 94.84 94.54 94.30 96.43 95.46 93.18 95.51 95.02 94.38 85.56 91.46
MISAW 61.44 75.16 68.19 64.27 71.46 69.06 69.06 59.04 73.64 70.37 64.27 60.78 68.85

Macro Avg. 62.70 68.10 64.92 64.75 64.27 66.48 61.39 57.09 63.35 60.50 59.39 57.23 62.33
Micro Avg. 64.92 70.82 67.81 67.83 67.66 69.73 65.87 59.13 68.11 64.35 66.21 62.19 65.71

CNNs is obviously unfair. Basically, it is a widely ac-
cepted notion that the selection of different backbones can
inherently yield significant differences, let alone the over-
all model design. To this end, as aforementioned, we care-
fully select ConvNeXt [40] as the CNN backbone, which is
comparable with ViT [13] and Swin Transformer [39] w.r.t.
both model size and ImageNet classification performance.
We believe such a fair comparison could lead to more con-
vincing and compelling conclusions. As shown in Table 4,
we notice that there is no absolute winner among all the
models, but surprisingly, 2D CNNs perform better on most
datasets, especially TSM, which outperforms other models
in 8 out of 18 datasets. This indicates that 2D video models
are still competitive with transformers when equipped with
strong backbones. Likewise, the two composite metrics also
provide evidence that TSM outperforms other models, and
transformer-based models do not exhibit clear advantages
over CNN-based models.

Inspecting further, we can see that VideoSwin excels
in mini-HACS and mini-Sports1M. However, as aforemen-
tioned, these datasets, along with other popular datasets
such as UCF-101 and HMDB-51, share high similarities
with Kinetics-400 in terms of actions and viewpoints. Thus
the performance on these datasets may not fully reflect the
effectiveness of the evaluated model. Indeed, as shown in
Table 4, VideoSwin is only comparable or inferior to TSM
in the other three categories (i.e., anomaly, gesture, and in-
structional). This demonstrates that the impressive perfor-
mance on Kinetics-400 and other similar datasets may not
be consistent with downstream tasks with vastly different
actions. To fully probe the effectiveness of a video model,
we need to evaluate it on datasets with different distribu-

tions. Besides, we also consider the NAS-based X3D [15],
which achieves good performance on Kinetics-400, to re-
veal the overfitting problem of tuning on the test set.
• Despite the emergence of recent transformers, 2D video

models can still be promising alternatives for action
recognition if equipped with powerful backbones.

• Previous evaluation protocols have been limited to target
datasets similar to Kinetics-400, which could potentially
result in biased evaluations. However, BEAR could ad-
dress this issue by including target data from five distinct
domains, ensuring a more comprehensive and unbiased
assessment of model performance.

Impact of viewpoint change We also observe something
interesting in terms of the data distribution. Several datasets
such as UCF-Crime, UAV-Human, CharadesEGO, MPII-
Cooking, and MECCANO exhibit notably low perfor-
mance. Upon closer inspection of Table 1, it is evident that
these datasets involve significant viewpoint changes from
Kinetics-400. For instance, UCF-Crime is collected from
CCTV footage, UAV-Human contains drone-view videos,
CharadesEGO only contains 1st person-view videos, and
MECCANO is also egocentric. This indicates that the view-
point change in downstream tasks could dramatically dam-
age the model performance. Therefore, leveraging pre-
training datasets with rich egocentric visual knowledge,
such as EGO4D [21], may offer a suitable alternative to
Kinetics-400 for finetuning on egocentric data. Besides,
in Sec. 6 and Sec. 7, we will further discuss the challenge
caused by the viewpoint change in the target domain.
• Prior evaluation protocols, limited in the scope of tar-

20523



get data, fail to capture the impact of domain gap, par-
ticularly in regard to the viewpoint, on transfer perfor-
mance. However, we have identified that such a distri-
bution shift can significantly degrade the quality of spa-
tiotemporal representation, which further undermines the
transfer performance. Hence, we recommend that fu-
ture studies should include pre-training datasets beyond
Kinetics-400 to provide more robust representations to im-
prove transferability.

Self-supervised vs. supervised pre-training As can be
seen from Table 4, it is notable that the overall finetuning
performance of the self-supervised pre-training is less com-
petitive than its supervised counterpart even for TSM. The
most pronounced accuracy drop can be found in WLASL
and FineGym. The performance of 3D Nonlocal network
on WLASL drops from 52.31% to 30.56% and the perfor-
mance of TimeSformer also decreases more than 15%. To
reveal the potential reason behind this, we further scruti-
nize the data distribution gap between the selected 18 target
datasets and Kinetics-400. We observe different types of
domain shifts, such as UAV-Human containing only drone-
view data and the egocentric MECCANO which differs
significantly from Kinetics-400. We conclude that self-
supervised pre-training is more susceptible to domain shifts
between Kinetics-400 and the target datasets than super-
vised pre-training. In Sec. 6, we take a step forward on
this topic by investigating few-shot settings, which are more
likely to occur in real-world scenarios.
• Self-supervised finetuning generally cannot outperform its

supervised counterpart and TSM consistently performs
well under the self-supervised setting.

6. Few-shot Learning
Compared with standard finetuning where abundant an-

notations can be utilized, few-shot learning is of more
practical significance since annotating massive amounts of
videos is notoriously expensive. To extend the investiga-
tion mentioned in Section 5, we thoroughly investigate the
capability of the selected 6 models on BEAR under a few-
shot setting given both supervised and self-supervised pre-
trained weights. Specifically, we consider (2,4,8,16)-shot
settings, and for each setting, we randomly generate 3 splits
and report the mean and standard deviation. Due to space
constraints, we only select TSM, 3D NonLocal, and Video
Swin to represent each model type for illustration as they
perform generally better. Complete few-shot results and the
training details are in Supplementary Sec.4.

Model comparison. The rankings of the six models in
few-shot finetuning exhibit distinct variations compared to
the standard finetuning. In contrast to the dominance of
TSM in standard finetuning across both pre-training set-

tings, the most effective models differ significantly across
datasets in few-shot finetuning. Figure 2 demonstrates
that TSM no longer clearly outperforms other models
in most datasets, and the two composite metrics (which
are presented in the Supplementary due to space limi-
tations) support this conclusion. Specifically, TSM and
TimeSformer exhibit similar performance in supervised
pre-training, whereas I3D and VideoSwin perform better in
self-supervised learning. These findings further reveal the
limitations of previous simple evaluation protocols, which
may not provide a fair assessment of video models. These
results also confirm the necessity of BEAR, which empha-
sizes the importance of diverse downstream datasets and
various settings for unbiased evaluation.
• The ranking relations between models could exhibit dif-

ferently between standard and few-shot finetuning even
within the same datasets. This finding further emphasizes
the importance of our proposed BEAR benchmark, which
advocates for a comprehensive evaluation approach that
considers both dataset diversity and finetuning settings.

Impact of viewpoint change As in standard finetuning,
viewpoint change also has a severe impact when it comes
to few-shot learning. Comparing the results in Figure 2
with those in Table 4, we can see that the few-shot learn-
ing performance decreases drastically in general, especially
in datasets that have less in common with Kinetics-400,
such as UAV-Human, which is constructed by videos cap-
tured from unmanned aerial vehicles, FineGym, which con-
tains fine-grained gym-related videos, and PETRAW and
MISAW, which are simulated medical operations in the 1st
person view. Conversely, in datasets that are more simi-
lar to Kinetics-400, these performance gaps are notably re-
duced. For example, even the 2-shot performance on Mini-
HACS and MOD20 can reach approximately 60% and 85%,
and the models achieve satisfying performance on the 16-
shot setting on COIN. In previous works, the homogene-
ity of the pre-training and downstream data hindered the
timely identification of such phenomena in few-shot learn-
ing. Our investigation highlights the challenge of few-shot
learning and underscores the importance of bridging the gap
(as aforementioned, introducing extra data, such as Ego4D)
between pre-training and the target data.

Moreover, in the few-shot setting, self-supervised pre-
training is more susceptible to viewpoint change. In chal-
lenging datasets such as UAV-Human and WLASL, few-
shot learning can hardly obtain satisfying results based on
self-supervised pre-trained weights, while in the 16-shot
setting, supervised pre-training could provide comparable
performance compared with standard finetuning. Similarly,
in MOD20, the performance experiences a sharp decline
in few-shot settings with self-supervised pre-training, while
supervised pre-trained TSN and TSM can achieve accuracy
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TSM 3D NonLocal VideoSwin VideoMAE

Figure 2: Results of few-shot learning based on supervised and self-supervised pre-training. The green curves represent
supervised pre-training and the blue curves represent ρMoCo self-supervised pre-training. We illustrate the results of TSM,
3D NonLocal, and VideoSwin for both pre-training methods. Additionally, we add the SOTA self-supervised pre-training
method VideoMAE, represented by the red curves, for comparison. It could be obvious that even the VideoMAE could lag a
lot behind in the few-shot setting.

exceeding 90% in the 16-shot.
• Few-shot finetuning remains a significant challenge in

real-world scenarios. The performance drops dramat-
ically compared to standard finetuning especially when
there is a large domain gap between pre-training and tar-
get data. However, when downstream datasets are similar
to source data, the performance drop could be mitigated.

• In few-shot learning, self-supervised pre-training is more
vulnerable to viewpoint shift, while supervised pre-trained
models can achieve favorable performance compared
with standard finetuning on the 16-shot setting.

Self-supervised vs. supervised pre-training. Compar-
ing the blue curves to the green curves in Figure 2, we
can see that self-supervised pre-training is generally less
effective than supervised pre-training, which is consistent
with the conclusion in Sec. 5. The performance gaps are
pronounced in gesture datasets and are less significant in
Mini-Sports1M, ToyotaSmarthome, etc. The performance
gap is also different across different models. The largest
gap appears in TSN and TimeSformer (the complete re-
sults are provided in Supplementary Table 6-11). One rea-
son for the poor performance of self-supervised learning

may be the limitation of ρMoCo. Therefore, to consolidate
our conclusion, we further consider VideoMAE [60], which
is the SoTA self-supervised method and has demonstrated
even better performance than supervised models on mul-
tiple datasets. Here, we use the officially released Video-
MAE ViT-B model, which achieves 81.5% Top-1 accuracy
on Kinetics-400. However, comparing the results with our
6 supervised pre-trained models in Figure 2 (red vs. green
curves), we show that VideoMAE could only be compara-
ble with the best supervised pre-trained models in less than
half of the datasets.
• Supervised pre-training shows consistent advantages over

self-supervised ones in few-shot finetuning. Even the SoTA
VideoMAE can hardly outperform simple supervised pre-
trained models in diverse domains.

7. Unsupervised Domain Adaptation
In real-world scenarios, it is possible to transfer knowl-

edge from similar datasets which are well-annotated to oth-
ers with only limited labels. For instance, there are a lot of
existing datasets that include samples of the same categories
in the corresponding real-world tasks and thus can be used
to facilitate model training. Nonetheless, due to the domain
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Table 5: The unsupervised domain adaptation accuracy on our UDA datasets: Toyota Smarthome-MPII-Cooking (T: Toyota
Smarthome, M: MPII-Cooking), Mini-Sports1M-MOD20 (MS: Mini-Sports1M, MOD: MOD20), UCF-Crime-XD-Violence
(U: UCF-Crime, X: XD-Violence), PHAV-Mini-Sports1M (P: PHAV, MS: Mini-Sports1M), Jester, InHARD (I: InHARD, T:
Top, L: Left, R: Right).

Settings Inter-dataset Intra-dataset
Dataset T→M M→T MS→MOD MOD→MS U→X X→U P→MS Jester IT→IL IT→IR IL→IR IL→IT IR→IT IR→IL

Source only 5.32 7.36 18.25 12.76 54.20 33.33 61.45 68.73 4.18 30.39 19.01 22.65 24.14 12.42
TA3N [6] 11.17 15.38 23.77 19.15 59.91 44.44 65.79 71.44 5.78 41.83 27.91 28.08 35.66 14.68

CoMix [51] 12.63 15.32 24.48 21.56 60.17 47.22 64.83 75.86 6.32 39.79 30.45 31.74 32.94 14.83
Supervised target 70.21 65.13 34.08 35.52 75.06 63.89 94.40 97.61 26.00 83.55 83.55 85.52 85.52 26.00

Figure 3: Results of zero-shot evaluation. For most datasets in our benchmark, CLIP-based models still cannot provide
reasonable results, especially for those challenging datasets with severe viewpoint shifts and fine-grained datasets.

gap, models directly trained on one dataset cannot be well
generalized on the target data. In such case, unsupervised
domain adaptation (UDA) [19] can largely alleviate this dis-
tribution shift issue by learning the domain-invariant feature
when labeled source data is available, learning representa-
tions that would promote the performance on the target do-
main. In BEAR, we construct several dataset pairs for UDA
based on two different paradigms: inter-dataset adaptation
and intra-dataset adaptation. Given that one of the features
of our benchmark is that we collect several datasets with
obvious viewpoint shifts, we also focus on this point when
we build our UDA datasets. The details of the dataset statis-
tics can be found in Supplementary Sec.5. We provide two
common baseline results: ‘Source only’ and ‘Supervised
target’. The former directly evaluates the model trained on
the source training set with the target test set, and the lat-
ter is the supervised learning performance on the target do-
main. Besides, we also evaluate two recent UDA algorithms
on our benchmark: TA3N [6] and CoMix [51].

Inter-dataset adaptation. Inter-dataset is constructed
based on two different datasets that have different distri-
butions, especially viewpoint change, but share common
categories. Toyota Smarthome contains videos captured
from 7 different cameras deployed in an apartment, while
MPII-Cooking consists of videos from a down-view cam-
era. Specifically, we select 6 new categories, which contains
original action classes in Toyota Smarthome and MPII-
Cooking, for the new Toyota Smarthome-MPII-Cooking
dataset. The number of videos is 5,233 and 943 for Toy-

ota Smarthome and MPII-Cooking, respectively. Similarly,
for Mini-Sports1M and MOD20, we select 15 categories to
build the new dataset. In contrast to Toyota Smarthome-
MPII-Cooking, the data distribution in Mini-Sports1M-
MOD20 is much more balanced. There are 1,650 videos for
Mini-Sports1M and 1,767 for MOD20. We also consider
the anomaly detection dataset. Basically, there are three
shared action categories in UCF-Crime and XD-Violence:
abuse, fighting, and shooting. The domain shift in this
dataset is also conspicuous: all the videos in UCF-Crime are
from surveillance footage, where the target objects in video
frames can only be in a small region, while most videos
in XD-Violence are collected from action movies, which
could record an action with abundant details. To provide a
dataset for synthetic-to-real transfer, which is of great sig-
nificance in real-world scenarios, we also include the simu-
lated dataset PHAV [49] to construct PHAV-Mini-Sports1M
dataset. We combine 15 classes from Mini-Sports1M into
6 categories (playing soccer, playing golf, playing base-
ball, shooting gun, shooting archery and running) existing
in PHAV to build the paired dataset.

Intra-dataset adaptation. Intra-dataset, on the contrary,
is built within one dataset that records the same actions dif-
ferently. We include Jester(S-T), which is initially intro-
duced by [51], in BEAR since it has been a well-established
dataset for domain adaptation. Each identical action in
Jester with a contrary direction is merged into one cate-
gory. We also construct a three-view dataset based on In-
HARD. Basically, each original frame in InHARD con-
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tains three distinguished views (i.e., top, left, and right).
We simply split the frames according to the view and con-
struct three sub-datasets as InHARD-Top, InHARD-Left,
and InHARD-Right. We keep the category the same as the
original dataset.

Challenging viewpoint adaptation. As shown in Ta-
ble 5, domain adaptation can be obviously challenging,
especially in viewpoint change cases. For instance, Toy-
otaSmarthome and MPII-Cooking share similar attributes
w.r.t. their actions, since they both record kitchen events.
However, videos in ToyotaSmarthome are recorded via dif-
ferent cameras in the living room, while videos in MPII-
Cooking are recorded by a down-view camera. The per-
formance between these two datasets is far lower than the
‘supervised target’. Similar observations can also be ob-
tained in InHARD. Although the adaptation is conducted
within the dataset, recent methods still fail to perform well
when adapting from one viewpoint to another. However, the
gap between supervised target and UDA methods is much
smaller in other UDA datasets where the viewpoint change
is smaller. These results, along with the observations in
Secs. 5 and 6, reveal that viewpoint change has a critical
impact on transfer performance, which is hard to mitigate
even with recent UDA algorithms.

8. Zero-shot Learning
Direct finetuning on annotated datasets is a commonly

adopted paradigm for action recognition, but the recent suc-
cess of vision-language models, which leverage the rich
correspondence between natural language and visual con-
tent, has provided a new learning paradigm for vision tasks
in a zero-shot setting, which is severely required in appli-
cations without labeled data. Therefore, we also provide
the zero-shot evaluation on BEAR using the recent CLIP-
based [47, 65] models.

Basically, we provide two different settings for frame-
level CLIP evaluations, i.e. single-frame, which follows the
settings in [47] and 5-frame, where we sample 5 frames
from the input video and fuse the model output of each
frame. Similarly, we also construct multiple templates
for each dataset to obtain ensemble textual embeddings.
Considering the inconsistent label domains for the selected
datasets, we provide different templates given their dis-
tinct attributes of both data and labels. For instance, UCF-
Crime [57] is mostly constituted of surveillance videos in a
crime scene; thus, a sentence like ‘a photo from a surveil-
lance camera showing a criminal doing {} in a crime
scene.’ is utilized as a part of the prompts. Additionally, we
evaluate all the datasets via ActionCLIP [65], which is pre-
trained on Kinetics-400 based on video and label-text cor-
relation, to unmask the difference of zero-shot performance
between image-based models and video-based models.

As illustrated in Figure 3, different from its versatility
in the image domain, most of the zero-shot results based
on CLIP are still far lower than those of supervised learn-
ing. For example, WLASL shows poor correlations be-
tween frames and the corresponding labels, which can be
partly explained by the large visual gap between the visual
information of sign languages and the label itself. Surpris-
ingly, for most datasets, ActionCLIP, which leverages more
frames, performs even worse than CLIP. Part of the reason
could be that ActionCLIP finetunes CLIP on Kinetics-400,
which leads to catastrophic forgetting and overfitting. How-
ever, for some datasets, zero-shot learning could outper-
form few-shot learning, such as XD-Violence and MOD20,
which even approaches supervised learning. This may be
partly because the high vision-text correlation existed in
these datasets, and this also demonstrates the potential of
language supervision in action recognition.

9. Conclusion and Discussion
In this work, we introduce a new action recognition

benchmark BEAR to address several limitations in exist-
ing video benchmarks. Aiming at benefiting both academic
and industrial applications, we carefully select 18 datasets
covering 5 distinct data domains. Such a wide scope could
provide comprehensive assessment protocols for any video
model, filling the gap in the current video action recogni-
tion benchmark that only a small number of target datasets
are considered. It helps prevent models from overfitting on
a specific dataset which could result in biased model evalu-
ation. Moreover, to achieve a fair comparison, we held out
test data for every dataset and avoid using it for parame-
ter selection during training, and the evaluation is based on
the last checkpoint. Meanwhile, in this work, we also pay
attention to the capabilities of 2D CNNs, 3D CNNs, and
transformers. Importantly, we carefully select comparative
backbones for them to avoid erroneous comparisons.

Based on our extensive experiments, we have several in-
teresting and instructive observations: 1) 2D video mod-
els are competitive with SoTA transformer models when
equipped with strong backbones. 2) Previous evaluation
protocols on a few similar datasets can yield biased eval-
uation. 3) Domain shift (especially the viewpoint shift) has
a large impact on transfer learning, and the performance gap
could be much more remarkable in the few-shot setting. 4)
Self-supervised learning still largely falls behind supervised
learning, and even the SoTA VideoMAE cannot outperform
supervised models on diverse downstream datasets. More-
over, we also point out that in order to learn robust spa-
tiotemporal representations, constructing new pre-training
datasets containing videos from diverse domains could ben-
efit the target performance on a wide range of datasets. Due
to space limits, we only consider evaluation datasets and
leave the art of training data construction to future work.

20527



References
[1] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen
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