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Abstract

In industrial anomaly detection, data efficiency and the
ability for fast migration across products become the main
concerns when developing detection algorithms. Existing
methods tend to be data-hungry and work in the one-model-
one-category way, which hinders their effectiveness in real-
world industrial scenarios. In this paper, we propose a few-
shot anomaly detection strategy that works in a low-data
regime and can generalize across products at no cost. Given
a defective query sample, we propose to utilize a few nor-
mal samples as a reference to reconstruct its normal ver-
sion, where the final anomaly detection can be achieved by
sample alignment. Specifically, we introduce a novel re-
gression with distribution regularization to obtain the op-
timal transformation from support to query features, which
guarantees the reconstruction result shares visual similarity
with the query sample and meanwhile maintains the prop-
erty of normal samples. Experimental results show that our
method significantly outperforms previous state-of-the-art
at both image and pixel-level AUROC performances from
2 to 8-shot scenarios. Besides, with only a limited num-
ber of training samples (less than 8 samples), our method
reaches competitive performance with vanilla AD methods
which are trained with extensive normal samples. The code
is available at https://github.com/FzJun26th/
FastRecon.

1. Introduction
Anomaly detection (AD) in computer vision aims to

identify rare observations that deviate significantly from the
majority of the data and do not conform to a well-defined
notion of normal behavior [4]. In industrial settings, AD
is widely used to detect the anomalies on the surface of
the product, which has been attracting a lot of attention re-
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Figure 1: Comparison of our FastRecon with (a) Vanilla
Reconstruction-based method and (b) Vanilla Feature-
Matching-based method. Compared with (a), our method
needs no training session and requires less normal sam-
ples for feature reconstruction. Compared with (b), our
method applies direct pixel-to-pixel alignment between the
test sample and reconstruction result for anomaly detection
without an exhaustive feature searching process, thus being
more efficient in inference.

cently [31, 16, 9]. The difficulty of industrial AD lies in
the diversity of the defects, which can take different forms,
from subtle flaws like slight bruises, to obvious ones such
as missing components [3]. This makes it difficult to detect
and classify anomalies. Primal researches focus on utilizing
supervised learning to tackle industrial AD [5, 17]. How-
ever, such a learning paradigm often requires an exhaustive
set of anomalous samples for each category, which can be
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naturally rare to collect, making it inefficient for real-world
industrial scenarios.

Recent works pay attention to learning with limited or
even no supervision to overcome the problem caused by
the lack of anomalous samples. As shown in Fig. 1 (a),
reconstruction-based industrial AD [34, 10, 26, 14] utilizes
generative models such as autoencoder to learn the distri-
bution of normal samples through the cumbersome training
process. As in Fig. 1 (b), recent researches favor feature-
matching strategy [28, 7] that conducts feature compari-
son between the test sample and memory bank of normal
features, where the feature searching causes high computa-
tional complexity. Both lines of work require massive nor-
mal samples either for model training or memory construc-
tion, only to achieve detection for a single product category,
and fail to quickly generalize across products.

In this paper, we state that well-generalized industrial
AD can be achieved in an extremely data-efficient way. We
propose a training-free, few-shot AD method named Fas-
tRecon, to meet the demand for industrial scenarios, which
works under the situation that only a limited number of nor-
mal samples are available. Given a query sample to detect,
we propose to construct its normal version at the feature
level through a linear transformation based on features ex-
tracted from limited normal samples. This constructed sam-
ple shares low-frequency features with the original query
image but differs in the defect regions, making the anomaly
apparent when directly compared to the original. The com-
parisons on the methodology of our method and previous
mainstream works are shown in Fig. 1. The key lies in
finding the optimal transformation. On the one hand, the
transformation should bring the constructed sample some-
where close to the query sample so they share visual fea-
tures on the normal parts. On the other hand, the con-
structed sample should maintain the property of a normal
sample so the difference between the two samples can fully
reveal the anomaly regions. With this goal, we proposed
a distributional regularization term upon the classical ridge
regression algorithm. We first utilize normal features to fit
a Gaussian distribution. When finding the transformation
from normal features to the query sample, we simultane-
ously push the reconstructed sample toward the center of
the built distribution to enhance its normality. Note that our
proposed optimization process admits a closed-form solu-
tion just as ridge regression, which allows fast computation
with low cost, ensuring the adaptation and migration of our
method from old products to novel ones.

Experiments on the benchmark datasets for industrial de-
fection, MVTec [3] and MDPP [15], as well as comparisons
with various existing state-of-the-art FSAD methods [19,
13], indicate the effectiveness of our model. Compared
with previous state-of-the-art [13], our method achieves
improvements of 5.27%, 6.04%, 3.99% on MVTec, and

10.25%, 11.55%, 10.60% on MPDD, at image-level AU-
ROC under 2-shot, 4-shot and 8-shot scenarios, respec-
tively. The contributions of this work are summarized be-
low:

1. We propose a few-shot and category-agnostic indus-
trial AD strategy which adopts sample alignment be-
tween the original test sample and its reconstructed
normal version.

2. We propose a regression algorithm with distribution
regularization which has a closed-form solution for the
transformation estimation, keeping the reconstructed
result close to the query image while maintaining the
property of normal samples.

3. Our proposed method achieves state-of-the-art few-
shot AD performance under various datasets and set-
tings.

2. Related Work
2.1. Anomaly Detection

Industrial visual anomaly detection (AD) is a rising
topic in computer vision. The mainstream AD meth-
ods can be categorized as reconstruction-based model and
feature-matching-based models. Previous reconstruction-
based models classified anomalous samples either though
reconstruction loss [2, 33, 30] or via comparison between
reconstructed normal samples and test sample [21, 22, 29]
with generative models. Another line of works, feature-
matching-based models, take full advantage of pre-trained
features. For example, SPADE [6] firstly put forward mem-
ory banks comprising various feature hierarchies for fine-
grained, KNN-based [8] anomaly segmentation and image-
level anomaly detection. Similarly, PaDiM [7] and Patch-
Core [28] investigated AD performance on MVTec in un-
supervised learning settings. However, both two lines of
methods show greatly high data dependence which would
hinder their industrial application.

2.2. Few-shot Anomaly Detection

Few-shot anomaly detection (FSAD) has developed
to meet the demands of fast manufacturing changeover.
TDG [23] proposes a hierarchical generative model that
captures the multi-scale patch distribution of each support
image. DiffNet [19] leverages the descriptiveness of fea-
tures extracted by convolutional neural networks to estimate
their density using a normalizing flow, which is a tool well-
suited to estimate distributions from a few support samples.
RegAD [13] explored a new paradigm for FSAD, by learn-
ing a common model shared among multiple categories in
a meta-learning style. Despite of their decent inference per-
formances under few-shot settings, the training process be-

17482



Probability D
ensity

WS

Q

 Support Samples Feature Extraction 

 Query Sample Feature Extraction

K Support Samples

Query Sample

Support Feature Maps

Query Feature Map Q

Query Feature 
Map Reconstuction 

Reconstructed Query Feature Maps

Featur-Level Sample Comparison

Query Sample Reconstructed Sample Anomaly Score

Coreset Selection

cSWQ •=

Finding Optimation Transformation W 
For Normal Query Construction

Comparison

Q

Support Features Coreset Features S

S
Distribution 
Estimation

Random Transformation

Optimal Transformation

W

SW

Q

Figure 2: Overview of our method. Feature maps of each query sample and support samples are exacted by a pre-trained
encoder. Features from support images are aggregated into a support feature pool. This pool is down-sampled through greedy
coreset selection as S to reduce data redundancy and improve inference speed. The coreset S and the original query feature
map Q are then input to our proposed regression with distribution regularization as shown in the grey region. An optimal
transformation W̄ between S and Q is obtained by the regression to make sure the reconstructed sample W̄S, denoted as Q̄,
to share similarity with Q but keeps all the property of normal samples. Finally, we align Q̄ and Q for direct comparison to
obtaining the anomaly estimation.

comes the main obstacle for fast model migration in real
industrial scenarios.

3. Methodology
In this section, we introduce the details of FastRecon.

Firstly, we define the one-class classification problem in
industrial anomaly detection. FastRecon contains 3 parts:
feature extraction and coreset selection, regression with dis-
tribution regularization, and anomaly detection with recon-
struction. The overview of our method is shown in Fig. 2.

3.1. Problem Definition

We formally define the problem for one-class classifi-
cation of industrial anomaly detection. Following the few-
shot learning setting, in an n-way and k-shot episode, a sup-
port set consisting of normal samples from n categories is
given, i.e., S =

⋃n
i=1 Ti, where the subset Ti consists of k

normal samples from category ci. During test time, a query
sample, whether normal or anomalous, is presented. The
model predicts whether or not the sample is anomalous at
the pixel and image level.

3.2. Feature Extraction and Coreset Selection

Existing studies [7, 28] have shown that extracted fea-
tures from pre-trained CNNs perform well in the anomaly

detection task. We also utilize a pre-trained ResNet-50 to
output a patch-level feature map of an image. ϕi,j is used
to denote hierarchy-level j of the pre-trained network ϕ for
the image xi ∈ X (dataset X), where j ∈ {1, 2, 3, 4}. We
adopt the intermediate features of the hierarchy-level, i.e.,
j ∈ {2, 3}. The resulting feature map has a dimension of
H ×W ×D, where H , W are the height and width of the
largest activation map used to generate the embedding, and
D is the total number of channels of both activation maps
used to generate embedding.

To facilitate calculations, the feature map is reshaped
from 3-dimension H×W×D to 2-dimension R×D, where
R = H ×W . Features in the reshaped map represent em-
bedding vectors, i.e., the local aware patch features. In a
k-shot setting, our ultimate support feature pool is obtained
by concatenating features of k support images, with a size
of k × R × D. Besides, following [18], we take a coreset
sampling operation to get a coreset S ∈ Rc×d, where c is
the number of clustering centers computed with K-greedy
algorithm. The coverage of S is comparable to the origi-
nal support feature pools but with a smaller scale so that the
computational complexity and the performance of detection
could be balanced. For a query image, with the same pre-
trained network, it is also extracted to patch-level feature
map Q. The process of feature extraction and coreset is
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Figure 3: Visual comparison of decoding results on recon-
structed features. We train a decoder on features of the
whole dataset for image recovery, which is used to probe
the transformed features from the encoder. (a) The original
query image with defects region in red boxes. (b) Decod-
ing results on original query features. (c) Decoding results
on transformed features by ridge regression. The defects
regions are reconstructed as on original query features. (d)
Decoding results on transformed features by the proposed
regression, which shares visual similarity with the original
query image but with the property of normal samples.

shown in the brown region in Fig. 2.

3.3. Regression with Distribution Regularization

Why Ridge Regression fails. The goal is to reconstruct
query feature map Q as a linear transformation of S-coreset
S by finding an optimal transformation weight W such that
WS ≈ Q and meanwhile WS has most properties of nor-
mal samples. Searching for optimal weight W amounts to
solving the linear least-squares problem [25]. With original
ridge regression, the optimization takes the following form:

W̄ = argmin
W

∥Q−WS∥2 + λ∥W ∥2, (1)

where λ is the weight of the penalty term and ∥·∥ represent-
ing the Frobenius norm. The penalty term in ridge regres-
sion, i.e., ∥W ∥2, ensures tractability when the linear system
is over- or under-constrained. However, the transformation
obtained from ridge regression can cause the reconstructed
sample to deviate significantly from the distribution of nor-
mal samples, i.e., after the transformation, the result WS
can be too close to Q so that features of defect regions are
reconstructed as in Q. As shown in Fig. 3 column (c), the
decoding results on reconstructed features share excessively
high similarity with the original query image with defects
regions being reconstructed.
The distribution regularization. In our work, we pro-
pose a distributional regularization term to replace the orig-
inal penalty term in ridge regression, which effectively en-
hances the normality of the reconstruction result WS. We
first model the distribution of normal feature maps by an
isotropic Gaussian density function denoted as f(X|µ,Σ)

where µ,Σ is the mean and co-variance estimated by the
support set feature maps. We design the regularization term
as |f (WS) − f(µ)| and the proposed regression has the
form as:

W̄ = argmin
W

∥Q − WS∥2 + λ|f (WS)− f(µ)|, (2)

where λ denotes the coefficient that controls the contri-
bution of the regularization. When searching the opti-
mal transformation W , the optimization of the first term
∥Q − WS∥2 naturally pushes WS towards original query
feature maps Q, while with the proposed regularization
|f (WS) − f(µ)|, we force the constructed WS to lie in
the high probability density region in the distribution, that
is, somewhere close to the distribution center. The visual-
ization of distribution regularization is shown in the grey
region of Fig. 2.
The approximation for closed-form solution. The den-
sity function inside the regularization term in Eq. (2) pre-
vents us from having a closed-form solution for the regres-
sion, which hinders fast calculation of the transformation.
Thus, we propose an approximated version of Eq. (2) with
the help of Taylor’s theorem for multivariable functions on
the distribution density function f . Taylor’s expansion for
f(x) at a is shown as follows:

f(x) ≈ f(a)+∇f(a)(x−a)+
1

2
(x−a)THf(a)(x−a),

(3)
where Hf(a) denotes Hessian matrix of f(x) at a. And we
approximate the density function with the first and second-
order term of Taylor’s expansion, where the first-order term
is 0 at µ. Following Eq. (3), we expand the probability
density function f (WS) at µ as:

f (WS) ≈ f(µ) +∇f(µ) (WS − µ)

+
1

2
(WS − µ)

T
Hf(µ) (WS − µ) .

(4)
Since our assumed data distribution is isotropic Gaussian,
its covariance matrix can be represented as Σ = σ2I , where
σ2 is the variance for all dimensions. Then, we have the
term ∇f(µ) (WS − µ) as 0, and Hf(µ) equals the Σ−1

which is the inverse of the covariance matrix. Then, by plac-
ing f(µ) to the left, we have

f (WS)− f(µ) ≈ 1

2
(WS − µ)

T
Σ−1 (WS − µ)

=
1

2σ2
(WS − µ)

T
I (WS − µ)

=
1

2σ2
∥WS − µ∥2 ,

(5)

where I is an identity matrix. Then we merge the coefficient
1

2σ2 into λ and the approximated version of the optimization
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target in Eq. (2) is:

W̄ = argmin
W

∥Q − WS∥2 + λ ∥WS − µ∥2 . (6)

Finding the optimal transformation. Knowing that the
following optimization target of least square error (LSE) of

W ′ = argmin
W

∥Q − WS∥2 , (7)

has the closed-form solution as

W ′ = QS⊤
(
S⊤S

)−1

, (8)

to utilize the conclusion from Eq. (8), we transform Eq. (6)
by variable substitution to fit the form of Eq. (8). Let Q∗
and S∗ be the column-wise augmented version of Q and S
respectively:

S∗ =
[
S

√
λS

]
, Q∗ =

[
Q

√
λµ

]
, (9)

where λ is the coefficient of the regularization term which
is always set as a positive number. Hence, equality holds
for

∥Q∗ − WS∗∥2 = ∥Q − WS∥2 + λ ∥µ − WS∥2 ,
(10)

and the form in Eq. (6) can be written as

W̄ = argmin
W

∥Q∗ − WS∗∥2 . (11)

Based on the conclusion in Eq. (8), the solution for our op-
timization process is

W̄ = Q∗S∗
⊤
(
S∗

⊤S∗

)−1

=
(
QS⊤ + λ · µS⊤

)(
S⊤S + λ · SS⊤

)−1

.

(12)

3.4. Anomaly Detection with Reconstruction

After getting the reconstruction query feature maps Q̄,
we align it with those from the original query sample Q
to estimate the pixel-level anomaly segmentation map and
image-level anomaly score. For pixel i in the query image,
the anomaly score mi is calculated as:

mi =
∥∥Qi − Q̄i

∥∥2 , i ∈ N , (13)

where N denotes the collection of all pixel indices in Q.
Qi denotes the relevant feature vector of pixel i. For image-
level classification, we use the maximum distance score s∗

among all the pixels to represent the image-level score as

s∗ = max{
∥∥Qi − Q̄i

∥∥2 | i ∈ N}. (14)

Besides, similar to [28, 7], to match the original input res-
olution, the segmentation map should be up-scaled with bi-
linear interpolation. Finally, we smoothed the segmentation
map with a Gaussian of kernel width of 4.

4. Experiment

4.1. Experimental Setups

Dataset. We evaluated the performance of our model by
using the MVTec AD dataset [3] and MPDD [15], which
are the real-world benchmarks for AD. MVTec dataset in-
cludes 5354 images in 15 categories. 3629 of these images
are defect-free and the remaining 1725 have defects. Each
category has an average of five different types of defects.
The image resolution ranges from 700×700 to 1024×1024.
MPDD dataset contains 6 classes of metal productions. Im-
ages taken from different distances and spatial directions,
as well as the non-uniform backgrounds, make the AD task
on this dataset extremely difficult. The MPDD dataset in-
cludes 888 normal images in the training set and 176 normal
images and 282 abnormal images in the test set with the res-
olution of 1024× 1024. Additionally, both datasets provide
ground truth of defective regions on pixel level.

Competing Methods. We compare our method with pre-
vious state-of-the-art FSAD and also full-data AD methods.
The methods for comparison include GANomaly [1], AR-
Net [27], MKD [20], CutPaste [24], FYD [32], PaDiM [7],
PatchCore [18], CflowAD [11], TDG [23], DiffNet [19]
and RegAD [13].

Evaluation Protocols. We measure the model perfor-
mance with the area under the Receiver Operating Char-
acteristic curve (AUROC) on classification results. We use
image-level AUROC to evaluate the sample detection re-
sults and pixel-level AUROC to measure the defects local-
ization performance.

Implementation Details. In our experiment, we used a
ResNet-50 [12] model pre-trained on ImageNet for feature
extraction. We extract features from the 2 middle-level lay-
ers of the model. For both MVTec and MPDD datasets, all
the support and query images are reshaped to 368 × 368
for training and inference. For all the experiments, the co-
efficient λ for our regularization term is set as 0.3, and the
corset selection sampling rate s is set as 0.15. All the exper-
iments are conducted on one NVIDIA GTX 3090 GPU.

4.2. Experiment Results

4.2.1 Comparison with State-of-the-art Methods

Few-shot AD averaged performance. Tab. 1 shows
FSAD averaged performance on both MVTec and MPDD
datasets. Our method (FastRecon) obtains the best perfor-
mances under all experimental settings. Specifically, Fas-
tRecon improves image-level AUROC by 5.27%, 6.04%,
3.99% on MVTec and 10.25%, 11.55% 10.60% on MPDD
over the current state-of-the-art FSAD method RegAD for
2-shot, 4-shot, and 8-shot scenarios respectively. For
pixel-level AUROC, FastRecon also outperforms RegAD
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AUROC at Image-level AUROC at Pixel-level

TDG DiffNet RegAD PaDiM PatchCore FastRcon RegAD PaDiM PatchCore FastRconDataset k [23] [19] [13] [7] [18] (ours) [13] [7] [18] (ours)

2 71.20 80.60 85.70 78.90 87.81 90.97 94.60 90.50 94.75 95.86
4 72.70 81.30 88.20 71.60 89.49 94.24 95.80 80.20 94.99 96.98MVTec
8 75.20 83.20 91.20 75.30 94.31 95.19 96.70 80.50 95.60 97.27

2 60.30 60.20 63.40 - 59.55 73.65 93.20 - 79.15 97.03
4 63.50 63.30 68.30 - 59.78 79.85 93.90 - 79.82 97.60MPDD
8 68.20 68.50 71.90 - 59.95 82.50 95.10 - 80.30 97.92

Table 1: FSAD performance comparisons on MVTec and MPDD dataset. The results are averaged over all categories. Both
image-level and pixel-level performances are reported in AUROC (%) ↑. k denotes the number of shots in our few-shot
settings. The best results for different settings are in bold.

RegAD [13] PatchCore [18] FastRecon

Category Image Pixel Image Pixel Image Pixel

Bottle 99.40 98.40 99.60 98.60 99.44 98.50
Cable 76.10 92.70 97.40 97.90 93.79 96.12

Capsule 72.40 97.60 66.30 97.70 90.07 98.96
Carpet 97.90 98.90 99.00 99.00 99.90 99.15
Grid 91.20 85.70 63.00 70.60 88.81 86.32

Hazelnut 95.80 98.00 92.80 97.00 99.32 98.59
Leather 100.00 99.10 100.00 96.90 100.00 99.20

Metal Nut 94.60 97.80 94.70 97.00 99.12 98.72
Pill 80.80 97.40 89.00 96.90 93.48 98.32

Screw 56.60 95.00 54.10 92.10 62.46 97.10
Tile 95.50 94.90 100.00 96.00 100.00 96.73

Toothbrush 90.90 98.50 95.20 98.80 93.61 99.04
Transistor 85.20 93.80 98.40 95.00 97.29 94.18

Wood 98.60 94.70 97.40 93.10 99.29 94.94
Zipper 88.50 94.00 95.50 98.30 96.95 98.89

Average 88.20 95.80 89.49 94.99 94.24 96.98

Table 2: FSAD categorical performance comparisons in
AUROC (%) ↑ on MVTec dataset. Results are from the
setting of shot k = 4. The best results are in bold. Our
method achieves the best performance in most categories.

by 1.26%, 1.18%, 0.57% on MVTev and 3.83%, 3.70%,
2.82% on MPDD respectively.

Few-shot AD categorical performances. Tab. 2 and
Tab. 3 show the FSAD categorical performance. As shown
in Tab. 2, FastRecon outperforms all the baselines in 10 out
of 15 categories at the image level and in 12 out of 15 cate-
gories at the pixel level. And as shown in Tab. 3, FastRecon
outperforms all the baselines in 4 out of 6 categories at the
image level and in all categories at the pixel level.

Comparison with full-data AD. Tab. 4 shows the com-
parison of our method with AD methods which utilize the
whole normal samples. Results show that our FastRecon
has competitive performance compared with full-data meth-
ods, indicating the high data efficiency of our model.

RegAD [13] PatchCore [18] FastRecon

Category Image Pixel Image Pixel Image Pixel

Bracket black 63.80 - 58.90 79.10 71.81 95.54
Bracket brown 66.10 - 70.80 77.30 63.34 95.93
Bracket white 59.30 - 70.70 69.30 69.44 98.89

Connector 77.20 - 59.40 86.40 97.62 98.04
Metal plate 78.60 - 64.40 86.70 100.00 99.29

Tubes 67.50 - 34.50 80.10 76.90 97.89

Average 68.30 93.90 59.78 79.82 79.85 97.60

Table 3: FSAD categorical performance comparisons in
AUROC (%) ↑ on MPDD dataset. Results are from the set-
ting of shot k = 4. The best results are in bold. Our method
achieves the best performance in most categories.

MVTec AD MPDD

Method Data Backbone Image Pixel Image Pixel

FastRecon 2 WRN50 90.97 95.86 73.65 97.03
FastRecon 4 WRN50 94.24 96.98 79.85 97.60
FastRecon 8 WRN50 95.19 97.27 82.50 97.92

GANomaly [1] Full Unet 80.50 - 64.80 -
ARNet [27] Full Unet 83.90 - 69.70 -
MKD [20] Full Res18 87.70 90.70 - -
FYD [32] Full Res18 97.30 97.40 - -
PaDiM [7] Full WRN50 97.90 97.50 74.80 96.70

PatchCore [18] Full WRN50 99.10 98.10 82.10 95.70
CflowAD [11] Full WRN50 98.60 98.60 86.10 97.70

Table 4: AD performance comparisons in AUROC (%) ↑ on
MVTec and MPDD dataset with full-data methods which
utilize the whole dataset in training. Both image-level and
pixel-level performances are averaged over all categories.
The Data column denotes different usage of the dataset.

Speed performance of FastRecon. Speed comparisons
on both training and inference are shown in the following
Tab. 5. For FastRecon, training stage consists of feature
extraction, feature subsampling and calculation on transfor-
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ConnectorWood Metal plateLeatherGridCarpetCapsule TileHazelnutBottle

MVTec AD MPDD

Figure 4: Qualitative results of anomaly localization for both MVTec and MPDD datasets. The first row in the red box
presents the support sample for each category while the second row indicates the query samples. The results show that our
method can provide accurate localization of defect regions even for more complicated patterns in MPDD.

Bottle Hazelnut TileCapsule Carpet Grid Leather PillWood Zipper

Figure 5: Visualization of decoding results on reconstructed query features. With a pretrained image decoder, we investigate
the transformed query features in the MVTec dataset. The first row shows the original query image, and the middle row shows
the images decoded from the original query features. The last row represents the image decoded from the reconstructed query
feature map. Our method can reveal the normal side of the defective query samples.

Aggregated Training Training Time Inference Time

PatchCore No 80.37 0.60
RegAD (k=2) Yes 660.80 0.05
FastRecon (k=8) No 1.95 0.04
FastRecon (k=2) No 0.52 0.04

Table 5: Training and inference speed comparisons in sec-
onds. RegAD requires additional training on aggregated
features. The inference speed is evaluated as averaged in-
ference time per query sample. FastRecon achieves overall
best speed performance with 2 and 8 shots.

mation matrix. FastRecon achieves the best performance.

4.3. Visualization

Localization of anomaly detection Fig. 4 demonstrates
visual examples of anomaly detection on MVTec and
MPDD. Most defects can be accurately identified.

Decoding results on reconstructed query feature. In or-
der to better reflect the reconstruction ability of FastRecon,
a feature decoder is build to visualize the query sample from
reconstructed feature maps. The decoder is trained with full
MVTec dataset to learn to decode image sample from fea-
ture maps. Fig. 5 shows that, images decoded from recon-
structed feature maps maintain the normality of the normal
samples, which illustrates the effectiveness of our approach.
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Figure 6: Effect of three hyper-parameters comparisons in AUROC (%) on MVTec dataset. (a) AD performance with different
sampling rate s. (b) AD performance with different coefficient λ. (c) AD performance with different resolution r.
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Figure 7: AD performance comparisons in AUROC (%) on
MVTec dataset between ridge regression and proposed reg-
ularization. Our results, displayed in blue, are better than
ridge regression at both image and pixel levels.

4.4. Ablation Studies

In this section, we ablate the core parts of our proposed
method to investigate its impact on the final performance.
We also discuss the effect of hyper-parameters, which are
the coefficient of regularization term λ, the resolution of
input data, and the coreset selection sampling ratio s.

Effect of sampling Rate s. Fig. 6 (a) illustrates the rela-
tionship between the Sampling Rate s and AUROC perfor-
mance. The sampling rate s decides the number of feature
points in the support feature pool. As shown in Fig. 6 (a),
the optimal sampling rate is around 0.45.

Impact of the distribution regularization term and co-
efficient λ. In Fig. 7, FastRecon obtains better AUROC
performance at both image and pixel levels. It reflects
the significance of our proposed distribution regularization.
Fig. 6 (b) shows the relationship between coefficient λ of
regularization term and AUROC performance for 4-shot
and 8-shot scenarios. When λ equals 0.3, the AUROC per-
formances are best at both image and pixel levels.

Effect of image resolution r. In our experiment, images,
no matter how much the original resolutions are, should be
reshaped to new resolution r × r. Fig. 6 (c) reflects the re-
lationship between resolution r and AUROC performance.
The resolution will affect the feature points. As shown in
Fig. 6 (c), when the resolution equals 368, FastRecon per-
forms well at both image and pixel levels.

5. Conclusion

In this paper, a novel method FastRecon is proposed for
few-shot anomaly detection based on feature reconstruc-
tion. For each query sample, we construct their normal ver-
sion, referenced by a limited number of normal features. To
ensure the reconstructed result shares high visual similar-
ity with the query sample while maintaining the property
of the normal sample, a regression equation with proposed
distribution regularization is proposed, to obtain the opti-
mal transformation from support to query features. With
this fast and accurate reconstruction, the final anomaly de-
tection could be accomplished by a simple alignment. Ex-
perimental results show the state-of-the-art performance of
our method for 2-shot, 4-shot, and 8-shot scenarios.
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