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Abstract

Denoising diffusion models have been a mainstream
approach for image generation, however, training these
models often suffers from slow convergence. In this pa-
per, we discovered that the slow convergence is partly due
to conflicting optimization directions between timesteps.
To address this issue, we treat the diffusion training as
a multi-task learning problem, and introduce a simple
yet effective approach referred to as Min-SNR-γ. This
method adapts loss weights of timesteps based on clamped
signal-to-noise ratios, which effectively balances the con-
flicts among timesteps. Our results demonstrate a signif-
icant improvement in converging speed, 3.4× faster than
previous weighting strategies. It is also more effective,
achieving a new record FID score of 2.06 on the Ima-
geNet 256 × 256 benchmark using smaller architectures
than that employed in previous state-of-the-art. The code
is available at https://github.com/TiankaiHang/Min-SNR-
Diffusion-Training.

1. Introduction
In recent years, denoising diffusion models [48, 19, 57,

36] have emerged as a promising new class of deep gener-

ative models due to their remarkable ability to model com-

plicated distributions. Compared to prior Generative Ad-

versarial Networks (GANs), diffusion models have demon-

strated superior performance across a range of generation

tasks in various modalities, including text-to-image gener-

ation [40, 43, 41, 17], image manipulation [26, 34, 4, 56],

video synthesis [18, 47, 22], text generation [28, 16, 59],

3D avatar synthesis [39, 53], etc. A key limitation of

present denoising diffusion models is their slow conver-

gence rate, requiring substantial amounts of GPU hours for
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Figure 1: By leveraging a non-conflicting weighting strat-

egy, our method can converge 3.4 times faster than baseline,

resulting in superior performance.

training [41, 40]. This constitutes a considerable challenge

for researchers seeking to effectively experiment with these

models.

In this paper, we first conducted a thorough examina-

tion of this issue, revealing that the slow convergence rate

likely arises from conflicting optimization directions for dif-

ferent timesteps during training. In fact, we find that by

dedicatedly optimizing the denoising function for a specific

noise level can even harm the reconstruction performance

for other noise levels, as shown in Figure 2. This indi-

cates that the optimal weight gradients for different noise

levels are in conflict with one another. Given that cur-

rent denoising diffusion models [19, 12, 36, 41] employ

shared model weights for various noise levels, the conflict-

ing weight gradients will impede the overall convergence

rate, if without careful consideration on the balance of these

noise timesteps.

To tackle this problem, we propose the Min-SNR-γ loss

weighting strategy. This strategy treats the denoising pro-

cess of each timestep as an individual task, thus diffusion

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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training can be considered as a multi-task learning problem.

To balance various tasks, we assign loss weights for each

task according to their difficulty. Specifically, we adopt a

clamped signal-to-noise ratio (SNR) as loss weight to alle-

viate the conflicting gradients issue. By organizing various

timesteps using this new weighting strategy, the diffusion

training process can converge much faster than previous ap-

proaches, as illustrated in Figure 1.

Generic multi-task learning methods usually seek to mit-

igate conflicts between tasks by adjusting the loss weight

of each task based on their gradients. One classical ap-

proach [11, 46], Pareto optimization, aims to seek a gradient

descent direction to improve all the tasks. However, these

approaches differ from our Min-SNR-γ weighting strategy

in three aspects: 1) Sparsity. Most previous studies in the

generic multi-task learning field have focused on scenarios

with a small number of tasks, which differs from the diffu-

sion training where the number of tasks can be up to thou-

sands. As in our experiments, Pareto optimal solutions in

diffusion training tend to set loss weights of most timesteps

as 0. In this way, many timesteps will be left without any

learning, and thus harm the entire denoising process. 2)

Instability. The gradients computed for each timestep in

each iteration are often noisy, owing to a limited number of

samples for each timestep. This hampers the accurate com-

putation of Pareto optimal solutions. 3) Inefficiency. The

calculation of Pareto optimal solutions is time-consuming,

significantly slowing down the overall training.

Our proposed Min-SNR-γ strategy is a predefined global

step-wise loss weighting setting, instead of run-time adap-

tive loss weights for each iteration as in the original Pareto

optimization, thus avoiding the sparsity issue. Moreover,

the global loss weighting strategy eliminates the need for

noisy computation of gradients and the time-consuming

Pareto optimization process, making it more efficient and

stable. Though suboptimal, the global strategy can be also

almost as effective: Firstly, the optimization dynamics of

each denoising task are largely shaped by the task’s noise

level, without the need to account for individual samples

too much. Secondly, after a moderate number of iterations,

the gradients of the majority subsequent training process

become more stable, thus it can be approximated by a sta-

tionery weighting strategy.

To validate the effectiveness of the Min-SNR-γ weight-

ing strategy, we first compute its Pareto objective value and

compare it with the optimal step-wise loss weights obtained

by directly solving the Pareto problem. Together, we also

compare it with several conventional loss weighting strate-

gies, including constant weighting, SNR weighting, and

SNR with an lower bound. Figure 4 shows that our Min-

SNR-γ weighting strategy produces Pareto objective val-

ues almost as low as the optimal one, significantly better

than other existing works, indicating a significant allevia-

tion of the gradient conflicting issue. As a result, the pro-

posed weighting strategy not only converges much faster

than previous approaches, but is also effective and general

for various generation scenarios. It achieves a new record

of FID score 2.06 on the ImageNet 256×256 benchmark,

and proves to also improve models using other prediction

targets and network architectures.

Our contributions are summarized as follows:

• We have uncovered a compelling explanation for the

slow convergence issue in diffusion training: a conflict

in gradients across various timesteps.

• We have proposed a new loss weighting strategy for

diffusion model training, which greatly mitigates the

conflicting gradients across timesteps and results in a

marked acceleration of convergence speed.

• We have established a new FID score record on the

ImageNet 256× 256 image generation benchmark.

2. Related Works
Denoising Diffusion Models. Diffusion models [19, 50,

12] are strong generative models, particularly in the field of

image generation, due to their ability to model complex dis-

tributions. This advantage has led to superiority over previ-

ous GAN models in terms of both high-fidelity and diversity

of generated images [12, 24, 35, 40, 41, 43]. Besides, diffu-

sion models also show great success in text-to-video gener-

ation [18, 47, 52], 3D Avatar generation [39, 53], image to

image translation [37], image manipulation [4, 26], music

generation [23], and even drug discovery [55]. The most

widely used network structure for diffusion models in the

field of image generation is UNet [19, 12, 35, 36]. Recently,

researchers have also explored the use of Vision Transform-

ers [13] as an alternative, with U-ViT [2] borrowing the skip

connection design from UNet [42] and DiT [38] leverag-

ing Adaptive LayerNorm and discovering that the zero ini-

tialization strategy is critical for achieving state-of-the-art

class-conditional ImageNet generation results.

Improved Diffusion Models. Recent studies have tried to

improve the diffusion models from different perspectives.

Some works aim to improve the quality of generated im-

ages by guiding the sampling process [12, 21]. Other stud-

ies propose fast sampling methods that require only a dozen

steps [49, 29, 32, 24] to generating high-quality images.

Some works have further distilled the diffusion models for

even fewer steps in the sampling process [44, 33]. Mean-

while, some researchers [19, 24, 6] have noticed that the

noise schedule is important for diffusion models. Other

works [36, 44] have found that different predicting targets

from denoising networks affect the training stability and

final performance. Finally, some works [14, 1] have pro-

posed using the Mixture of Experts (MoE) approach to han-
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dle noise from different levels, which can boost the perfor-

mance of diffusion models, but require a larger number of

parameters and longer training time.

Multi-task Learning. The goal of Multi-task learning

(MTL) is to learn multiple related tasks jointly so that the

knowledge contained in a task can be leveraged by other

tasks. One of the main challenges in MTL is negative

transfer [9], means the joint training of tasks hurts learn-

ing instead of helping it. From an optimization perspective,

it manifests as the presence of conflicting task gradients.

To address this issue, some previous works [58, 54, 8] try

to modulate the gradient to prevent conflicts. Meanwhile,

other works attempt to balance different tasks through care-

fully design the loss weights [7, 25]. GradNorm [7] consid-

ers loss weight as learnable parameters and updates them

through gradient descent. Another approach MTO [11, 46]

regards the multi-task learning problem as a multi-objective

optimization problem and obtains the loss weights by solv-

ing a quadratic programming problem.

3. Method

3.1. Preliminary

Diffusion models consist of two processes: a forward

noising process and a reverse denoising process. We de-

note the distribution of training data as p(x0). The forward

process is a Gaussian transition, gradually adds noise with

different scales to a real data point x0 ∼ p(x0) to obtain a

series of noisy latent variables {x1,x2, . . . ,xT }:

q(xt|x0) = N (xt;αtx0, σ
2
t I) (1)

xt = αtx0 + σtε (2)

where ε is the noise sampled from Gaussian distribution

N (0, I). The noise schedule σt denotes the magnitude of

noise added to the clean data at t timestep. It increases

monotonically with t. In this paper, we adopt the stan-

dard variance-preserving diffusion process, where αt =√
1− σ2

t .

The reverse process is parameterized by another Gaus-

sian transition, gradually denoises the latent variables and

restores the real data x0 from a Gaussian noise:

pθ(xt−1|xt) = N (xt−1; μ̂θ(xt), Σ̂θ(xt)). (3)

μ̂θ and Σ̂θ are predicted statistics. Ho et al. [19] set Σ̂θ(xt)
to the constant σ2

t I, and μ̂θ can be decomposed into the

linear combination of xt and a noise approximation model

ε̂θ. They find using a network to predict noise ε works well,

especially when combined with a simple re-weighted loss

function:

Lt
simple(θ) = Ex0,ε

[‖ε− ε̂θ(αtx0 + σtε)‖22
]
. (4)
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Figure 2: We finetune the diffusion model in specific ranges

of timesteps:[100, 200), [200, 300), and [300, 400), then

we investigate how it affects the loss in different timesteps.

The surrounding timesteps may derive benefit from it, while

others may experience adverse effects.

Most previous works [36, 12, 35] follow this strategy and

predict the noise. Later works [17, 44] use another re-

parameterization that predicts the noiseless state x0:

Lt
simple(θ) = Ex0,ε

[‖x0 − x̂θ(αtx0 + σtε)‖22
]
. (5)

And some other works [44, 41] even employ the network to

directly predict velocity v. Despite their prediction targets

being different, we can derive that they are mathematically

equivalent by modifying their loss weights.

3.2. Diffusion Training as Multi-Task Learning

To reduce the number of parameters, previous stud-

ies [19, 36, 12] often share the parameters of the denoising

models across all steps. However, it’s important to keep in

mind that different steps may have vastly different require-

ments. At each step of a diffusion model, the strength of

the denoising varies. For example, easier denoising tasks

(when t → 0) may require simple reconstructions of the

input in order to achieve lower denoising loss. This strat-

egy, unfortunately, does not work as well for noisier tasks

(when t → T ). Thus, it’s extremely important to analyze

the correlation between different timesteps.

In this regard, we conduct a simple experiment. We be-

gin by clustering the denoising process into several separate

bins. Then we finetune the diffusion model by sampling

timesteps in each bin. Lastly, we evaluate its effectiveness

by looking at how it impacted the loss of other bins. As

shown in Figure 2, we can observe that finetuning specific

steps benefited those surrounding steps. However, it’s often

detrimental for other steps that are far away. This inspires

us to consider whether we can find a more efficient solution
that benefits all timesteps simultaneously.

We re-organized our goal from the perspective of mul-

titask learning. The training process of denoising diffu-

sion models contains T different tasks, each task repre-
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sents an individual timestep. We denote the model param-

eters as θ and the corresponding training loss is Lt(θ), t ∈
{1, 2, . . . , T}. Our goal is to find a update direction δ �= 0,

that satisfies:

Lt(θ + δ) ≤ Lt(θ), ∀t ∈ {1, 2, . . . , T}. (6)

We consider the first-order Taylor expansion:

Lt(θ + δ) ≈ Lt(θ) +
〈
δ,∇θLt(θ)

〉
. (7)

Thus, the ideal update direction is equivalent to satisfy:〈
δ,∇θLt(θ)

〉 ≤ 0, ∀t ∈ {1, 2, . . . , T}. (8)

3.3. Pareto optimality of diffusion models

Theorem 1 Consider a update direction δ∗:

δ∗ = −
T∑

t=1

wt∇θLt(θ), (9)

of which wt is the solution to the optimization problem:

min
wt

{
‖

T∑
t=1

wt∇θLt(θ)‖2|
T∑

t=1

wt = 1, wt ≥ 0

}
(10)

If the optimal solution to the Equation 8 exists, then δ∗

should satisfy it. Otherwise, it means that we must sacri-
fice a certain task in exchange for the loss decrease of other
tasks. In other words, we have reached the Pareto Station-
ary and the training has converged.

A more general form of this theorem was first proposed

in [11] and we leave a succinct proof in the supplementary

material. Since diffusion models are required to go through

all the timesteps when generating images. So any timestep

should not be ignored during training. Consequently, a

regularization term is included to prevent the loss weights

from becoming excessively small. The optimization goal in

Equation 10 becomes:

min
wt

{
‖

T∑
t=1

wt∇θLt(θ)‖22 + λ

T∑
t=1

‖wt‖22
}

(11)

where λ controls the regularization strength.

To solve Equation 11, [46] leverages the Frank-

Wolfe [15] algorithm to obtain the weight {wt} through

iterative optimization. Another approach is to adopt Un-

constrained Gradient Descent(UGD). Specifically, we re-

parameterize wt through βt:

wt =
eβt

Z
,Z =

∑
t

eβt , βt ∈ R. (12)
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Figure 3: Demonstration of the instability of optimization-

based weighting strategy. As the number of samples in-

creases, the loss weight becomes stable, while the compu-

tation cost increases.

Combined with Equation 11, we can use gradient descent to

optimize each term independently:

min
βt

1

Z2
‖

T∑
t=1

eβt∇θLt(θ)‖22 +
λ

Z2

T∑
t=1

‖eβt‖22 (13)

However, whether leveraging the Frank-Wolfe or the

UGD algorithm, there are two disadvantages: 1) Ineffi-
ciency. Both of these two methods need additional opti-

mization at each training iteration, it greatly increases the

training cost. 2) Instability. In practice, by using a limited

number of samples to calculate the gradient term ∇θLt(θ),
the optimization results are unstable(as shown in Figure 3).

In other words, the loss weights for each denoising task vary

greatly during training, making the entire diffusion training

inefficient.

3.4. Min-SNR-γ Loss Weight Strategy

In order to avoid the inefficiency and instability caused

by the iterative optimization in each iteration, one possible

attempt is to adopt a stationery loss weight strategy.

To simplify the discussion, we assume that the network

is reparametered to predict the noiseless state x0. However,

it’s worth noting that different prediction objectives can be

transformed into one another, we will delve into it in Sec-

tion 4.2. Now, we consider the following alternative train-

ing loss weights:

• Constant weighting. wt = 1. Which treats different

tasks as equally weighted and has been used in both

discrete diffusion models [17, 51] and continuous dif-

fusion models [5].

• SNR weighting. wt = SNR(t), where SNR(t) =
α2
t /σ

2
t . It’s the most widely used weighting strat-

egy [33, 22, 12, 41]. By combining with Equation 2,

we can find it’s numerically equivalent to the constant

weighting strategy when the predicting target is noise.
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Figure 4: Comparison of the objective values in Equation 11

on different weighting strategies.

• Max-SNR-γ weighting. wt = max{SNR(t), γ}. This

modification of SNR weighting is first proposed in

[44] to avoid a weight of zero with zero SNR steps.

They set γ = 1 as their default setting. However, the

weights still concentrate on small noise levels.

• Min-SNR-γ weighting. wt = min{SNR(t), γ}. We

propose this weighting strategy to avoid the model fo-

cusing too much on small noise levels.

• UGD optimization weighting. wt is optimized from

Equation 13 in each timestep. Compared with the pre-

vious setting, this strategy changes during training.

First, we combine these weighting strategies into Equa-

tion 11 to validate whether they are approach to the Pareto

optimality state. As shown in Figure 4, the UGD optimiza-

tion weighting strategy can achieve the lowest score on our

optimization target. In addition, the Min-SNR-γ weighting

strategy is the closest to the optimum, demonstrating it has

the property to optimize different timesteps simultaneously.

In the following section, we present experimental results

to demonstrate the effectiveness of our Min-SNR-γ weight-

ing strategy in balancing diverse noise levels. Our approach

aims to achieve faster convergence and strong performance.

4. Experiments
In this section, we first provide an overview of the ex-

perimental setup. Subsequently, we conduct comprehensive

ablation studies to show that our method is versatile and

suitable for various prediction targets and network architec-

tures. Finally, we compare our approach with the state-of-

the-art methods across multiple benchmarks, demonstrating

not only its accelerated convergence but also its superior ca-

pability in generating high-quality images.

4.1. Setup

Datasets. We perform experiments on both uncondi-

tional CelebA dataset [30] and the conditional ImageNet

dataset [10]. The CelebA dataset, which comprises 162,770

human faces, is a widely-used unconditional image gener-

ation benchmark. We follow ScoreSDE [57] for data pre-

processing, which involves center cropping each image to a

resolution of 140× 140 and then resizing it to 64× 64. For

class conditional generation, we adopt ImageNet [10] with

a total of 1.3 million images from 1000 different classes.

We test the performance on both 642 and 2562 resolutions.

Training Details. For low resolution (64×64) image gener-

ation, we follow ADM [12] and directly train the diffusion

model on the pixel-level. For high-resolution image gen-

eration, we utilize LDM [41] approach by first compress-

ing the images into latent space, then training a diffusion

model to model the latent distributions. To obtain the la-

tent for images, we employ VAE from Stable Diffusion1,

which encodes a high-resolution image (256×256×3) into

32× 32× 4 latent codes.

In our experiments, we employ both ViT and UNet as

our diffusion model backbones. We adopt a vanilla ViT

structure without any modifications [13] as our default set-

ting. we incorporate the timestep t and class condition c
as learnable input tokens to the model. Although further

customization of the network structure may improve per-

formance, our focus in this paper is to analyze the general

properties of diffusion models. For the UNet structure, we

follow ADM [12] and keep the FLOPs similar to the ViT-B

model, which has 1.5× parameters. Additional details can

be found in the supplementary material.

For the diffusion settings, we use a cosine noise sched-

uler following the approach in [36, 12]. The total number of

timesteps is standardized to T = 1000 across all datasets.

We adopt AdamW [27, 31] as our optimizer. For the CelebA

dataset, we train our model for 500K iterations with a batch

size of 128. During the first 5,000 iterations, we implement

a linear warm-up and keep the learning rate at 1× 10−4 for

the remaining training. For the ImageNet dataset, the de-

fault learning rate is fixed at 1× 10−4. The batch size is set

to 1024 for 642 resolution and 256 for 2562 resolution.

Evaluation Settings. We utilize an Exponential Moving

Average (EMA) model with a rate of 0.9999 for evalua-

tion. During the evaluation phase, we generate images with

the Heun sampler from EDM [24]. For conditional image

generation, we also implement the classifier-free sampling

strategy [21] to achieve better results. Finally, we measure

the quality of the generated images using the FID score cal-

culated on 50K images.

4.2. Analysis of the Proposed Min-SNR-γ

Comparison of Different Weighting Strategies. To

demonstrate the significance of the loss weighting strat-

egy, we conduct experiments with different loss weight set-

tings for predicting x0. These settings include: 1) con-

stant weighting, where wt = 1, 2) SNR weighting, with

1https://huggingface.co/stabilityai/sd-vae-ft-mse-original
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Figure 5: Comparing different loss weighting designs on predicting x0, ε, v. Taking the neural network output as noise with

const or Max-SNR-γ strategy lead to divergence. Min-SNR-γ strategy converges the fastest under all these settings.
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wt = SNR(t), 3) truncated SNR weighting, with wt =
max{SNR(t), γ} (following [44] with a set value of γ = 1),

and 4) our proposed Min-SNR-γ weighting strategy, with

wt = min{SNR(t), γ}, we set γ = 5 as the default value.

The ViT-B serves as our default backbone and experi-

ments are performed on ImageNet 256×256. As illustrated

in Figure 5, we observe that all results improve as the num-

ber of training iterations increases. However, our method

demonstrates a significantly faster convergence compared

to other methods. Specifically, it exhibits a 3.4× speedup in

reaching an FID score of 10. It is worth mentioning that the

SNR weighting strategy performed the worst, which could

be due to its disproportionate focus on less noisy stages.

For a deeper understanding of the reasons behind the

varying convergence rates, we analyzed their training loss at

different noise levels. For a fair comparison, we exclude the

loss weight term by only calculating ‖x0− x̂θ‖22. Consider-

ing that the loss of different noise levels varies greatly, we

calculate the loss in different bins and present the results in

Figure 6. The results show that while the constant weight-

ing strategy is effective for high noise intensities, it per-

forms poorly at low noise intensities. Conversely, the SNR

weighting strategy exhibits the opposite behavior. In con-

trast, our proposed Min-SNR-γ strategy achieves a lower

training loss across almost all cases, and indicates quicker

convergence through the FID metric.

Furthermore, we present visual results in Figure 7 to

demonstrate the fast convergence of Min-SNR-γ. We sam-

ple images from training iteration 50K, 200K, 400K, and

1M with different loss weights. Our results show that Min-

SNR-γ generates a clear object with only 200K iterations,

which is significantly better in quality than other methods.

Min-SNR-γ for Different Prediction Targets. Instead of

predicting the original signal x0 from the network, some re-

cent works have employed alternative re-parameterizations,

such as predicting noise ε, or velocity v [44]. To verify

the applicability of our weighting strategy to these predic-

tion targets, we conduct experiments comparing the four

aforementioned weighting strategies across these different

re-parameterizations.

As we discussed in Section 3.4, predicting noise ε is

mathematically equivalent to predicting x0 by intrinsically

involving Signal-to-Noise Ratio as a weight factor, thus we

divide the SNR term in practice. For example, the Min-

SNR-γ strategy in predicting noise can be expressed as

wt =
min{SNR(t),γ}

SNR(t) = min{ γ
SNR(t) , 1}. And the SNR strat-

egy in predicting noise is equivalent to a “constant strat-

egy”. For simplicity and consistency, we still refer to them

as Min-SNR-γ and SNR strategies. Similarly, we can derive

that when predicting velocity v, the loss weight factor must

be divided by (SNR + 1). These strategies are still referred

to by their original names for ease of reference.

We conduct experiments on these two variants in Fig-

ure 5. Noise output with const or Max-SNR-γ setting leads

to divergence. Meanwhile, our proposed Min-SNR-γ strat-

egy converges faster than other loss weighting strategies for
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Images in each column are sampled from 50K, 200K, 400K, and 1M iterations. Our Min-SNR-5 strategy yields significant

improvements in visual fidelity from the same iteration.

both prediction noise and predicting velocity. These demon-

strate that balancing the loss weights for different timesteps

is intrinsic, independent of any re-parameterization.

Min-SNR-γ on Different Network Architectures. The

Min-SNR-γ strategy is versatile and robust for different

prediction targets and network structures. We conduct ex-

periments on the widely used UNet and keep the number

of parameters close to the ViT-B model. For each experi-

ment, models are trained for 1 million iterations and their

FID scores are calculated at multiple iterations. The results

in Table 1 indicate that the Min-SNR-γ strategy converges

significantly faster than the baseline and provides better per-

formance for both predicting x0 and predicting ε.
Robustness Analysis. We utilize a single hyper-parameter,

γ, as the truncate value. To assess its robustness, we con-

duct thorough analysis in various settings. Our experiments

were performed on ImageNet-256 using the ViT-B model

and predicting x0. We vary the truncate value γ by setting

it to 1, 5, 10, and 20. The results are shown in Table 2. We

find there are only minor variations in the FID score when

γ is smaller than 20. Additionally, we conducted more ex-

periments by modifying the predicting target to the noise ε,

Training Iterations 200K 400K 600K 800K 1M

Baseline (x0) 25.93 15.41 11.54 9.52 8.33

+ Min-SNR-5 7.99 5.34 4.69 4.41 4.28

Baseline (ε) 8.55 5.43 4.64 4.35 4.21

+ Min-SNR-5 7.32 4.98 4.48 4.24 4.14

Table 1: Ablation studies on the UNet backbone. Whether

the network predicts x0 or ε, the Min-SNR-5 weighting de-

sign converges faster and achieves better FID score.

and modifying the network structure to UNet. We find that

the results were also consistently stable. Our results indi-

cate that good performance can usually be achieved when γ
is set to 5, making it the established default setting.

4.3. Comparison with state-of-the-art Methods

CelebA-64. We conduct experiments on CelebA 64×64 for

unconditional generation. Both UNet and ViT are trained

for 500K iterations. During the evaluation, we use Heun

sampler [24] to generate 50K samples. The FID results are

summarized in Table 3. Our ViT-Small [13] model outper-

forms previous ViT-based models with an FID score of 2.14.
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γ 1 5 10 20

ViT (x0) 4.98 4.92 5.34 5.45

ViT (ε) 4.89 4.84 4.94 5.41

UNet (x0) 4.49 4.28 4.32 4.37

UNet (ε) 4.30 4.14 4.14 4.12

Table 2: Ablation study on γ. The results are robust to the

hyper-parameter γ in different settings.

Method #Params FID

DDIM [49] 79M 3.26

Soft Truncation [49] 62M 1.90

Our UNet 59M 1.60

U-ViT-Small [2] 44M 2.87

ViT-Small (ours) 43M 2.14

Table 3: FID results on unconditional CelebA 64× 64 [30]

benchmark. We experiment with both UNet and ViT.

Method #Params FID

BigGAN-deep [3] 4.06

StyleGAN-XL [45] 1.51

IDDPM (small) [36] 100M 6.92

IDDPM (large) [36] 270M 2.92

CDM [20] 1.48

ADM [12] 296M 2.61

EDM [24] 296M 1.36

U-ViT-Mid [2] 131M 5.85

U-ViT-Large [2] 287M 4.26

ViT-L (ours) 269M 2.28

Table 4: FID results on ImageNet 64 × 64. We conduct

experiments using the ViT-L backbone which significantly

improves upon previous methods.

It is worth mentioning that no modifications are made to

the naive network structure, demonstrating that the results

could still be improved further. Meanwhile, our method

using the UNet [12] structure achieves an even better FID

score of 1.60, outperforming previous UNet methods.

ImageNet-64. We also validate our method on class-

conditional ImageNet 64 × 64 benchmark. During train-

ing, the class label is dropped with the probability 0.15 for

classifier-free inference [21]. The model is trained for 800K

iterations and images are synthesized using classifier-free

guidance scale of 1.5. For a fair comparison, we adopt a

21-layer ViT-Large model without additional architecture

designs, which has a similar number of parameters to U-

ViT-Large [2]. The results presented in Table 4 show that

our method achieves an FID score of 2.28, significantly im-

proving upon the U-ViT-Large model.

Method #Params FID

BigGAN-deep [3] 340M 6.95

StyleGAN-XL [45] 2.30

Improved VQ-Diffusion [17] 460M 4.83

IDDPM [36] 270M 12.26

CDM [20] 4.88

ADM-U, ADM-G [12] 608M 3.94

LDM [41] 400M 3.60

UNet (ours) 395M 2.81†

U-ViT-L [2] 287M 3.40

DiT-XL-2 [38] 675M 2.27

ViT-XL (ours) 451M 2.06

Table 5: FID results on ImageNet 256×256. † denotes only

train 1.4M iterations. Our model with a ViT-XL backbone

achieves a new record FID score of 2.06.

ImageNet-256. We also apply diffusion models for higher-

resolution image generation on the ImageNet 256 × 256
benchmark. To enhance training efficiency, we first com-

press 256 × 256 × 3 images into 32 × 32 × 4 latent codes

using the encoder from LDM [41]. During the sampling

process, we employ the Heun sampler and the classifier-free

guidance CFG = 1.5. The FID comparison is presented in

Table 5. Under the setting of predicting ε with Min-SNR-

5, our ViT-XL model achieves the FID of 2.08 for only

2.1M iterations, which is 3.3× faster than DiT and outper-

forms the previous state-of-the-art FID of 2.27. Moreover,

with longer training (about 7M iterations as in [38]), we are

able to achieve FID 2.06 by predicting x0 with Min-SNR-5.

Our UNet-based model with 395M parameters is trained for

about 1.4M iterations and achieves FID score of 2.81.

5. Conclusion

In this paper, we point out that the conflicting optimiza-

tion directions between different timesteps may cause slow

convergence in diffusion training. To address it, we regard

the diffusion training process as a multi-task learning prob-

lem and introduce a novel weighting strategy, named Min-

SNR-γ, to effectively balance different timesteps. Experi-

ments demonstrate our method can boost diffusion training

several times faster, and achieves the state-of-the-art FID

score on ImageNet-256 dataset.
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