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Abstract

Denoising diffusion models have been a mainstream
approach for image generation, however, training these
models often suffers from slow convergence. In this pa-
per, we discovered that the slow convergence is partly due
to conflicting optimization directions between timesteps.
To address this issue, we treat the diffusion training as
a multi-task learning problem, and introduce a simple
vet effective approach referred to as Min-SNR-vy. This
method adapts loss weights of timesteps based on clamped
signal-to-noise ratios, which effectively balances the con-
flicts among timesteps. Our results demonstrate a signif-
icant improvement in converging speed, 3.4 faster than
previous weighting strategies. It is also more effective,
achieving a new record FID score of 2.06 on the Ima-
geNet 256 x 256 benchmark using smaller architectures
than that employed in previous state-of-the-art. The code
is available at https://github.com/TiankaiHang/Min-SNR-
Diffusion-Training.

1. Introduction

In recent years, denoising diffusion models [48, 19, 57,
36] have emerged as a promising new class of deep gener-
ative models due to their remarkable ability to model com-
plicated distributions. Compared to prior Generative Ad-
versarial Networks (GANSs), diffusion models have demon-
strated superior performance across a range of generation
tasks in various modalities, including text-to-image gener-
ation [40, 43, 41, 17], image manipulation [26, 34, 4, 56],
video synthesis [18, 47, 22], text generation [28, 16, 59],
3D avatar synthesis [39, 53], etc. A key limitation of
present denoising diffusion models is their slow conver-
gence rate, requiring substantial amounts of GPU hours for
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Figure 1: By leveraging a non-conflicting weighting strat-
egy, our method can converge 3.4 times faster than baseline,
resulting in superior performance.

training [4 1, 40]. This constitutes a considerable challenge
for researchers seeking to effectively experiment with these
models.

In this paper, we first conducted a thorough examina-
tion of this issue, revealing that the slow convergence rate
likely arises from conflicting optimization directions for dif-
ferent timesteps during training. In fact, we find that by
dedicatedly optimizing the denoising function for a specific
noise level can even harm the reconstruction performance
for other noise levels, as shown in Figure 2. This indi-
cates that the optimal weight gradients for different noise
levels are in conflict with one another. Given that cur-
rent denoising diffusion models [19, 12, 36, 41] employ
shared model weights for various noise levels, the conflict-
ing weight gradients will impede the overall convergence
rate, if without careful consideration on the balance of these
noise timesteps.

To tackle this problem, we propose the Min-SNR-v loss
weighting strategy. This strategy treats the denoising pro-
cess of each timestep as an individual task, thus diffusion
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training can be considered as a multi-task learning problem.
To balance various tasks, we assign loss weights for each
task according to their difficulty. Specifically, we adopt a
clamped signal-to-noise ratio (SNR) as loss weight to alle-
viate the conflicting gradients issue. By organizing various
timesteps using this new weighting strategy, the diffusion
training process can converge much faster than previous ap-
proaches, as illustrated in Figure 1.

Generic multi-task learning methods usually seek to mit-
igate conflicts between tasks by adjusting the loss weight
of each task based on their gradients. One classical ap-
proach [1 1, 46], Pareto optimization, aims to seek a gradient
descent direction to improve all the tasks. However, these
approaches differ from our Min-SNR-~v weighting strategy
in three aspects: 1) Sparsity. Most previous studies in the
generic multi-task learning field have focused on scenarios
with a small number of tasks, which differs from the diffu-
sion training where the number of tasks can be up to thou-
sands. As in our experiments, Pareto optimal solutions in
diffusion training tend to set loss weights of most timesteps
as 0. In this way, many timesteps will be left without any
learning, and thus harm the entire denoising process. 2)
Instability. The gradients computed for each timestep in
each iteration are often noisy, owing to a limited number of
samples for each timestep. This hampers the accurate com-
putation of Pareto optimal solutions. 3) Inefficiency. The
calculation of Pareto optimal solutions is time-consuming,
significantly slowing down the overall training.

Our proposed Min-SNR-v strategy is a predefined global
step-wise loss weighting setting, instead of run-time adap-
tive loss weights for each iteration as in the original Pareto
optimization, thus avoiding the sparsity issue. Moreover,
the global loss weighting strategy eliminates the need for
noisy computation of gradients and the time-consuming
Pareto optimization process, making it more efficient and
stable. Though suboptimal, the global strategy can be also
almost as effective: Firstly, the optimization dynamics of
each denoising task are largely shaped by the task’s noise
level, without the need to account for individual samples
too much. Secondly, after a moderate number of iterations,
the gradients of the majority subsequent training process
become more stable, thus it can be approximated by a sta-
tionery weighting strategy.

To validate the effectiveness of the Min-SNR-v weight-
ing strategy, we first compute its Pareto objective value and
compare it with the optimal step-wise loss weights obtained
by directly solving the Pareto problem. Together, we also
compare it with several conventional loss weighting strate-
gies, including constant weighting, SNR weighting, and
SNR with an lower bound. Figure 4 shows that our Min-
SNR-v weighting strategy produces Pareto objective val-
ues almost as low as the optimal one, significantly better
than other existing works, indicating a significant allevia-

tion of the gradient conflicting issue. As a result, the pro-
posed weighting strategy not only converges much faster
than previous approaches, but is also effective and general
for various generation scenarios. It achieves a new record
of FID score 2.06 on the ImageNet 256x256 benchmark,
and proves to also improve models using other prediction
targets and network architectures.
Our contributions are summarized as follows:

e We have uncovered a compelling explanation for the
slow convergence issue in diffusion training: a conflict
in gradients across various timesteps.

* We have proposed a new loss weighting strategy for
diffusion model training, which greatly mitigates the
conflicting gradients across timesteps and results in a
marked acceleration of convergence speed.

¢ We have established a new FID score record on the
ImageNet 256 x 256 image generation benchmark.

2. Related Works

Denoising Diffusion Models. Diffusion models [19, 50,
12] are strong generative models, particularly in the field of
image generation, due to their ability to model complex dis-
tributions. This advantage has led to superiority over previ-
ous GAN models in terms of both high-fidelity and diversity
of generated images [12, 24, 35, 40, 41, 43]. Besides, diffu-
sion models also show great success in text-to-video gener-
ation [18, 47, 52], 3D Avatar generation [39, 53], image to
image translation [37], image manipulation [4, 26], music
generation [23], and even drug discovery [55]. The most
widely used network structure for diffusion models in the
field of image generation is UNet [19, 12, 35, 36]. Recently,
researchers have also explored the use of Vision Transform-
ers [13] as an alternative, with U-ViT [2] borrowing the skip
connection design from UNet [42] and DiT [38] leverag-
ing Adaptive LayerNorm and discovering that the zero ini-
tialization strategy is critical for achieving state-of-the-art
class-conditional ImageNet generation results.

Improved Diffusion Models. Recent studies have tried to
improve the diffusion models from different perspectives.
Some works aim to improve the quality of generated im-
ages by guiding the sampling process [12, 21]. Other stud-
ies propose fast sampling methods that require only a dozen
steps [49, 29, 32, 24] to generating high-quality images.
Some works have further distilled the diffusion models for
even fewer steps in the sampling process [44, 33]. Mean-
while, some researchers [19, 24, 6] have noticed that the
noise schedule is important for diffusion models. Other
works [36, 44] have found that different predicting targets
from denoising networks affect the training stability and
final performance. Finally, some works [14, 1] have pro-
posed using the Mixture of Experts (MoE) approach to han-
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dle noise from different levels, which can boost the perfor-
mance of diffusion models, but require a larger number of
parameters and longer training time.

Multi-task Learning. The goal of Multi-task learning
(MTL) is to learn multiple related tasks jointly so that the
knowledge contained in a task can be leveraged by other
tasks. One of the main challenges in MTL is negative
transfer [9], means the joint training of tasks hurts learn-
ing instead of helping it. From an optimization perspective,
it manifests as the presence of conflicting task gradients.
To address this issue, some previous works [58, 54, 8] try
to modulate the gradient to prevent conflicts. Meanwhile,
other works attempt to balance different tasks through care-
fully design the loss weights [7, 25]. GradNorm [7] consid-
ers loss weight as learnable parameters and updates them
through gradient descent. Another approach MTO [11, 46]
regards the multi-task learning problem as a multi-objective
optimization problem and obtains the loss weights by solv-
ing a quadratic programming problem.

3. Method
3.1. Preliminary

Diffusion models consist of two processes: a forward
noising process and a reverse denoising process. We de-
note the distribution of training data as p(xg). The forward
process is a Gaussian transition, gradually adds noise with
different scales to a real data point xo ~ p(Xg) to obtain a

series of noisy latent variables {x1, X2, ..., X7}
q(xt|%0) = N (x4; exo, 07 1) (1)
X; = ouXq + 0€ 2)

where € is the noise sampled from Gaussian distribution
N(0,I). The noise schedule o, denotes the magnitude of
noise added to the clean data at ¢ timestep. It increases
monotonically with ¢. In this paper, we adopt the stan-
dard variance-preserving diffusion process, where oy =
V1—o2

The reverse process is parameterized by another Gaus-
sian transition, gradually denoises the latent variables and
restores the real data xg from a Gaussian noise:

pg(thl‘Xt) :N(thl;/le(xt)vzo(xt))‘ 3)

[1g and Sy are predicted statistics. Ho et al. [19] set flg(xt)
to the constant 071, and /iy can be decomposed into the
linear combination of x; and a noise approximation model
€p. They find using a network to predict noise € works well,
especially when combined with a simple re-weighted loss
function:
Limpre(0)
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Figure 2: We finetune the diffusion model in specific ranges
of timesteps:[100, 200), [200, 300), and [300, 400), then
we investigate how it affects the loss in different timesteps.
The surrounding timesteps may derive benefit from it, while
others may experience adverse effects.

Most previous works [36, 12, 35] follow this strategy and
predict the noise. Later works [17, 44] use another re-
parameterization that predicts the noiseless state x:

‘Cgimple(a) = ]EXO,G |:||X0 - )A(Q(OétXO + ate)”%] N E))

And some other works [44, 41] even employ the network to
directly predict velocity v. Despite their prediction targets
being different, we can derive that they are mathematically
equivalent by modifying their loss weights.

3.2. Diffusion Training as Multi-Task Learning

To reduce the number of parameters, previous stud-
ies [19, 36, 12] often share the parameters of the denoising
models across all steps. However, it’s important to keep in
mind that different steps may have vastly different require-
ments. At each step of a diffusion model, the strength of
the denoising varies. For example, easier denoising tasks
(when t — 0) may require simple reconstructions of the
input in order to achieve lower denoising loss. This strat-
egy, unfortunately, does not work as well for noisier tasks
(when t — T). Thus, it’s extremely important to analyze
the correlation between different timesteps.

In this regard, we conduct a simple experiment. We be-
gin by clustering the denoising process into several separate
bins. Then we finetune the diffusion model by sampling
timesteps in each bin. Lastly, we evaluate its effectiveness
by looking at how it impacted the loss of other bins. As
shown in Figure 2, we can observe that finetuning specific
steps benefited those surrounding steps. However, it’s often
detrimental for other steps that are far away. This inspires
us to consider whether we can find a more efficient solution
that benefits all timesteps simultaneously.

We re-organized our goal from the perspective of mul-
titask learning. The training process of denoising diffu-
sion models contains 7' different tasks, each task repre-
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sents an individual timestep. We denote the model param-
eters as 6 and the corresponding training loss is £!(0),t €
{1,2,...,T}. Our goal is to find a update direction § # 0,
that satisfies:

LYO+6) < L), Vt e {1,2,...,T}. (6)
We consider the first-order Taylor expansion:

L0+ 6) ~ LY0) + (5, VoL (0)) . (7

Thus, the ideal update direction is equivalent to satisfy:
(6,VoL'(0)) <0,Vt €{1,2,...,T}. (8)

3.3. Pareto optimality of diffusion models

Theorem 1 Consider a update direction §*:

T
== w VoL (D), ©)

of which wy is the solution to the optimization problem:

T T
min {||Z w; VoL (0)] Zwt =1w > 0} (10)
i t=1

t=1

If the optimal solution to the Equation 8 exists, then 0*
should satisfy it. Otherwise, it means that we must sacri-
fice a certain task in exchange for the loss decrease of other
tasks. In other words, we have reached the Pareto Station-
ary and the training has converged.

A more general form of this theorem was first proposed
in [11] and we leave a succinct proof in the supplementary
material. Since diffusion models are required to go through
all the timesteps when generating images. So any timestep
should not be ignored during training. Consequently, a
regularization term is included to prevent the loss weights
from becoming excessively small. The optimization goal in
Equation 10 becomes:

mln{HZ wi Vo L(

t=1

T
)||§+AZ||wt||§} (11)
t=1

where A controls the regularization strength.

To solve Equation 11, [46] leverages the Frank-
Wolfe [15] algorithm to obtain the weight {w;} through
iterative optimization. Another approach is to adopt Un-
constrained Gradient Descent(UGD). Specifically, we re-
parameterize w; through f;:

P
- — Bt
= Z,Z_zt:e’,ﬁte]&. (12)
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Figure 3: Demonstration of the instability of optimization-
based weighting strategy. As the number of samples in-
creases, the loss weight becomes stable, while the compu-
tation cost increases.

Combined with Equation 11, we can use gradient descent to
optimize each term independently:

min *IIZ Vo Li(0)3 + 5

ZII P30 a3)

However, whether leveraging the Frank-Wolfe or the
UGD algorithm, there are two disadvantages: 1) Ineffi-
ciency. Both of these two methods need additional opti-
mization at each training iteration, it greatly increases the
training cost. 2) Instability. In practice, by using a limited
number of samples to calculate the gradient term VL' (0),
the optimization results are unstable(as shown in Figure 3).
In other words, the loss weights for each denoising task vary
greatly during training, making the entire diffusion training
inefficient.

3.4. Min-SNR-~ Loss Weight Strategy

In order to avoid the inefficiency and instability caused
by the iterative optimization in each iteration, one possible
attempt is to adopt a stationery loss weight strategy.

To simplify the discussion, we assume that the network
is reparametered to predict the noiseless state x. However,
it’s worth noting that different prediction objectives can be
transformed into one another, we will delve into it in Sec-
tion 4.2. Now, we consider the following alternative train-
ing loss weights:

e Constant weighting. w; = 1. Which treats different
tasks as equally weighted and has been used in both
discrete diffusion models [17, 51] and continuous dif-
fusion models [5].

* SNR weighting. w; = SNR(t), where SNR(t) =
a?/o?. It’s the most widely used weighting strat-
egy [33, 22, 12, 41]. By combining with Equation 2,
we can find it’s numerically equivalent to the constant
weighting strategy when the predicting target is noise.

7444



E —— Const
04FfF SNR
R —— Min-SNR-5
S 03F — UGD
o
Z r
S o02FfF
= [
e) [
0.1F _—
0.0 L . \ \ ) 1
60 80 100 120 140

Training Iterations (K)
Figure 4: Comparison of the objective values in Equation 11
on different weighting strategies.

* Max-SNR-vy weighting. w; = max{SNR(t),~}. This
modification of SNR weighting is first proposed in
[44] to avoid a weight of zero with zero SNR steps.
They set v = 1 as their default setting. However, the
weights still concentrate on small noise levels.

* Min-SNR-y weighting. w; = min{SNR(¢),v}. We
propose this weighting strategy to avoid the model fo-
cusing too much on small noise levels.

* UGD optimization weighting. w; is optimized from
Equation 13 in each timestep. Compared with the pre-
vious setting, this strategy changes during training.

First, we combine these weighting strategies into Equa-
tion 11 to validate whether they are approach to the Pareto
optimality state. As shown in Figure 4, the UGD optimiza-
tion weighting strategy can achieve the lowest score on our
optimization target. In addition, the Min-SNR-vy weighting
strategy is the closest to the optimum, demonstrating it has
the property to optimize different timesteps simultaneously.

In the following section, we present experimental results
to demonstrate the effectiveness of our Min-SNR-vy weight-
ing strategy in balancing diverse noise levels. Our approach
aims to achieve faster convergence and strong performance.

4. Experiments

In this section, we first provide an overview of the ex-
perimental setup. Subsequently, we conduct comprehensive
ablation studies to show that our method is versatile and
suitable for various prediction targets and network architec-
tures. Finally, we compare our approach with the state-of-
the-art methods across multiple benchmarks, demonstrating
not only its accelerated convergence but also its superior ca-
pability in generating high-quality images.

4.1. Setup

Datasets. We perform experiments on both uncondi-
tional CelebA dataset [30] and the conditional ImageNet
dataset [10]. The CelebA dataset, which comprises 162,770

human faces, is a widely-used unconditional image gener-
ation benchmark. We follow ScoreSDE [57] for data pre-
processing, which involves center cropping each image to a
resolution of 140 x 140 and then resizing it to 64 x 64. For
class conditional generation, we adopt ImageNet [10] with
a total of 1.3 million images from 1000 different classes.
We test the performance on both 642 and 2562 resolutions.
Training Details. For low resolution (64 x 64) image gener-
ation, we follow ADM [12] and directly train the diffusion
model on the pixel-level. For high-resolution image gen-
eration, we utilize LDM [41] approach by first compress-
ing the images into latent space, then training a diffusion
model to model the latent distributions. To obtain the la-
tent for images, we employ VAE from Stable Diffusion',
which encodes a high-resolution image (256 x 256 x 3) into
32 x 32 x 4 latent codes.

In our experiments, we employ both ViT and UNet as
our diffusion model backbones. We adopt a vanilla ViT
structure without any modifications [13] as our default set-
ting. we incorporate the timestep ¢ and class condition c
as learnable input tokens to the model. Although further
customization of the network structure may improve per-
formance, our focus in this paper is to analyze the general
properties of diffusion models. For the UNet structure, we
follow ADM [12] and keep the FLOPs similar to the ViT-B
model, which has 1.5x parameters. Additional details can
be found in the supplementary material.

For the diffusion settings, we use a cosine noise sched-
uler following the approach in [36, 12]. The total number of
timesteps is standardized to 7" = 1000 across all datasets.
We adopt AdamW [27, 31] as our optimizer. For the CelebA
dataset, we train our model for 500K iterations with a batch
size of 128. During the first 5,000 iterations, we implement
a linear warm-up and keep the learning rate at 1 x 10~% for
the remaining training. For the ImageNet dataset, the de-
fault learning rate is fixed at 1 x 10~%. The batch size is set
to 1024 for 642 resolution and 256 for 256 resolution.
Evaluation Settings. We utilize an Exponential Moving
Average (EMA) model with a rate of 0.9999 for evalua-
tion. During the evaluation phase, we generate images with
the Heun sampler from EDM [24]. For conditional image
generation, we also implement the classifier-free sampling
strategy [21] to achieve better results. Finally, we measure
the quality of the generated images using the FID score cal-
culated on S0K images.

4.2. Analysis of the Proposed Min-SNR-~

Comparison of Different Weighting Strategies. To
demonstrate the significance of the loss weighting strat-
egy, we conduct experiments with different loss weight set-
tings for predicting xg. These settings include: 1) con-
stant weighting, where w; = 1, 2) SNR weighting, with

Uhttps://huggingface.co/stabilityai/sd-vae-ft-mse-original
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const or Max-SNR-v strategy lead to divergence. Min-SNR-~ strategy converges the fastest under all these settings.
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w; = SNR(t), 3) truncated SNR weighting, with w; =
max{SNR(¢), v} (following [44] with a set value of y = 1),
and 4) our proposed Min-SNR-vy weighting strategy, with
wy = min{SNR(¢), v}, we set v = 5 as the default value.

The ViT-B serves as our default backbone and experi-
ments are performed on ImageNet 256 x 256. As illustrated
in Figure 5, we observe that all results improve as the num-
ber of training iterations increases. However, our method
demonstrates a significantly faster convergence compared
to other methods. Specifically, it exhibits a 3.4 x speedup in
reaching an FID score of 10. It is worth mentioning that the
SNR weighting strategy performed the worst, which could
be due to its disproportionate focus on less noisy stages.

For a deeper understanding of the reasons behind the
varying convergence rates, we analyzed their training loss at
different noise levels. For a fair comparison, we exclude the
loss weight term by only calculating ||xo — Xg||3. Consider-
ing that the loss of different noise levels varies greatly, we
calculate the loss in different bins and present the results in
Figure 6. The results show that while the constant weight-
ing strategy is effective for high noise intensities, it per-
forms poorly at low noise intensities. Conversely, the SNR
weighting strategy exhibits the opposite behavior. In con-
trast, our proposed Min-SNR-v strategy achieves a lower
training loss across almost all cases, and indicates quicker
convergence through the FID metric.

Furthermore, we present visual results in Figure 7 to
demonstrate the fast convergence of Min-SNR-v. We sam-

ple images from training iteration 50K, 200K, 400K, and
1M with different loss weights. Our results show that Min-
SNR-v generates a clear object with only 200K iterations,
which is significantly better in quality than other methods.
Min-SNR-~ for Different Prediction Targets. Instead of
predicting the original signal x( from the network, some re-
cent works have employed alternative re-parameterizations,
such as predicting noise €, or velocity v [44]. To verify
the applicability of our weighting strategy to these predic-
tion targets, we conduct experiments comparing the four
aforementioned weighting strategies across these different
re-parameterizations.

As we discussed in Section 3.4, predicting noise € is
mathematically equivalent to predicting x( by intrinsically
involving Signal-to-Noise Ratio as a weight factor, thus we
divide the SNR term in practice. For example, the Min-
SNR-v strategy in predicting noise can be expressed as
) s 1} And the SNR strat-
egy in predicting noise is equivalent to a “constant strat-
egy”. For simplicity and consistency, we still refer to them
as Min-SNR-v and SNR strategies. Similarly, we can derive
that when predicting velocity v, the loss weight factor must
be divided by (SNR + 1). These strategies are still referred
to by their original names for ease of reference.

We conduct experiments on these two variants in Fig-
ure 5. Noise output with const or Max-SNR-+ setting leads
to divergence. Meanwhile, our proposed Min-SNR-+ strat-
egy converges faster than other loss weighting strategies for

wy = = min{
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Figure 7: Qualitative comparison of the generation results from different weighting strategies on ImageNet-256 dataset.
Images in each column are sampled from 50K, 200K, 400K, and 1M iterations. Our Min-SNR-5 strategy yields significant

improvements in visual fidelity from the same iteration.

both prediction noise and predicting velocity. These demon-
strate that balancing the loss weights for different timesteps
is intrinsic, independent of any re-parameterization.
Min-SNR-vy on Different Network Architectures. The
Min-SNR-v strategy is versatile and robust for different
prediction targets and network structures. We conduct ex-
periments on the widely used UNet and keep the number
of parameters close to the ViT-B model. For each experi-
ment, models are trained for 1 million iterations and their
FID scores are calculated at multiple iterations. The results
in Table | indicate that the Min-SNR-+ strategy converges
significantly faster than the baseline and provides better per-
formance for both predicting x( and predicting €.
Robustness Analysis. We utilize a single hyper-parameter,
v, as the truncate value. To assess its robustness, we con-
duct thorough analysis in various settings. Our experiments
were performed on ImageNet-256 using the ViT-B model
and predicting xg. We vary the truncate value ~y by setting
itto 1, 5, 10, and 20. The results are shown in Table 2. We
find there are only minor variations in the FID score when
v is smaller than 20. Additionally, we conducted more ex-
periments by modifying the predicting target to the noise e,

Training Iterations 200K 400K 600K 800K 1M

Baseline (xg) 2593 1541 11.54 9.52 8.33
+ Min-SNR-5 799 534 4.69 441 4.28
Baseline (€) 855 543 464 435 421
+ Min-SNR-5 732 498 448 424 4.14

Table 1: Ablation studies on the UNet backbone. Whether
the network predicts xq or €, the Min-SNR-5 weighting de-
sign converges faster and achieves better FID score.

and modifying the network structure to UNet. We find that
the results were also consistently stable. Our results indi-
cate that good performance can usually be achieved when ~
is set to 5, making it the established default setting.

4.3. Comparison with state-of-the-art Methods

CelebA-64. We conduct experiments on CelebA 64 x 64 for
unconditional generation. Both UNet and ViT are trained
for 500K iterations. During the evaluation, we use Heun
sampler [24] to generate S0K samples. The FID results are
summarized in Table 3. Our ViT-Small [13] model outper-
forms previous ViT-based models with an FID score of 2.14.
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v 15 10 20

ViT (xg) 498 492 534 545
ViT (e) 489 484 494 541
UNet (xg) 4.49 428 432 437
UNet (€) 430 4.14 414 412

Table 2: Ablation study on ~. The results are robust to the
hyper-parameter ~ in different settings.

Method #Params FID
DDIM [49] TOM 3.26
Soft Truncation [49] 62M 1.90
Our UNet 59M 1.60
U-ViT-Small [2] 44M 2.87
ViT-Small (ours) 43M 2.14

Table 3: FID results on unconditional CelebA 64 x 64 [30]
benchmark. We experiment with both UNet and ViT.

Method #Params FID
BigGAN-deep [3] 4.06
StyleGAN-XL [45] 1.51
IDDPM (small) [36] 100M 6.92
IDDPM (large) [36] 270M 2.92
CDM [20] 1.48
ADM [12] 296M 2.61
EDM [24] 296M 1.36
U-ViT-Mid [2] 131M 5.85
U-ViT-Large [2] 287M 4.26
ViT-L (ours) 269M  2.28

Table 4: FID results on ImageNet 64 x 64. We conduct
experiments using the ViT-L backbone which significantly
improves upon previous methods.

It is worth mentioning that no modifications are made to
the naive network structure, demonstrating that the results
could still be improved further. Meanwhile, our method
using the UNet [12] structure achieves an even better FID
score of 1.60, outperforming previous UNet methods.
ImageNet-64. We also validate our method on class-
conditional ImageNet 64 x 64 benchmark. During train-
ing, the class label is dropped with the probability 0.15 for
classifier-free inference [21]. The model is trained for 800K
iterations and images are synthesized using classifier-free
guidance scale of 1.5. For a fair comparison, we adopt a
21-layer ViT-Large model without additional architecture
designs, which has a similar number of parameters to U-
ViT-Large [2]. The results presented in Table 4 show that
our method achieves an FID score of 2.28, significantly im-
proving upon the U-ViT-Large model.

Method #Params  FID

BigGAN-deep [3] 340M 6.95
StyleGAN-XL [45] 2.30

Improved VQ-Diffusion [17] 460M 4.83
IDDPM [36] 270M 12.26
CDM [20] 4.88
ADM-U, ADM-G [12] 608M 3.94
LDM [41] 400M 3.60
UNet (ours) 395M  2.81f
U-ViT-L [2] 287TM 3.40
DiT-XL-2 [38] 675M 2.27
ViT-XL (ours) 451M 2.06

Table 5: FID results on ImageNet 256 x 256. T denotes only
train 1.4M iterations. Our model with a ViT-XL backbone
achieves a new record FID score of 2.06.

ImageNet-256. We also apply diffusion models for higher-
resolution image generation on the ImageNet 256 x 256
benchmark. To enhance training efficiency, we first com-
press 256 x 256 x 3 images into 32 x 32 x 4 latent codes
using the encoder from LDM [41]. During the sampling
process, we employ the Heun sampler and the classifier-free
guidance C F'G = 1.5. The FID comparison is presented in
Table 5. Under the setting of predicting € with Min-SNR-
5, our ViT-XL model achieves the FID of 2.08 for only
2.1M iterations, which is 3.3 x faster than DiT and outper-
forms the previous state-of-the-art FID of 2.27. Moreover,
with longer training (about 7M iterations as in [38]), we are
able to achieve FID 2.06 by predicting xo with Min-SNR-5.
Our UNet-based model with 395M parameters is trained for
about 1.4M iterations and achieves FID score of 2.81.

5. Conclusion

In this paper, we point out that the conflicting optimiza-
tion directions between different timesteps may cause slow
convergence in diffusion training. To address it, we regard
the diffusion training process as a multi-task learning prob-
lem and introduce a novel weighting strategy, named Min-
SNR-v, to effectively balance different timesteps. Experi-
ments demonstrate our method can boost diffusion training
several times faster, and achieves the state-of-the-art FID
score on ImageNet-256 dataset.
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