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Abstract

In recent decades, Generative Adversarial Network
(GAN) and its variants have achieved unprecedented success
in image synthesis. However, well-trained GANs are under
the threat of illegal steal or leakage. The prior studies on
remote ownership verification assume a black-box setting
where the defender can query the suspicious model with
specific inputs, which we identify is not enough for genera-
tion tasks. To this end, in this paper, we propose a novel IP
protection scheme for GANs where ownership verification
can be done by checking outputs only, without choosing
the inputs (i.e., box-free setting). Specifically, we make use
of the unexploited potential of the discriminator to learn a
hypersphere that captures the unique distribution learned by
the paired generator. Extensive evaluations on two popular
GAN tasks and more than 10 GAN architectures demonstrate
our proposed scheme to effectively verify the ownership.
Our proposed scheme shown to be immune to popu-
lar input-based removal attacks and robust against other
existing attacks. The source code and models are available at

https://github.com/AbstractTeen/gan_ownership_verification.

1. Introduction

With the rapid development of GANs, we have witnessed
fruitful applications of GAN in many fields, such as realistic
facial images synthesis [45], fine-grained attribute editing
[55], etc. Unlike the classification model with specified label
prediction, the GANs learn a data distribution and output
the synthesized data sample within a certain distribution.
In GAN:S, the discriminator and generator are two essential
components, where the discriminator works as a judger to
discriminate whether the sample is produced by the genera-
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Figure 1: Comparison of the verification process between previous black-

box watermark-based verification paradigm [37] and our box-free method.
In the black-box setting, carefully-crafted verification samples should be
fed to the suspicious model to activate a hidden backdoor in the model (the
red circle) and generate watermarked outputs. However, in box-free setting,
querying the model with deterministic inputs is not allowed. Ownership
verification should be done with only output images.

tor, the generator learns to generate more realistic samples to
confuse the discriminator [16, 7]. Usually, the discriminator
is discarded after training since the generator is the core asset
for synthesizing high-quality images.

Training a decent GAN requires a huge investment of
resources, such as computing resources, labeled/unlabeled
training dataset, time, and human labors [47, 31]. However,
well-trained generators are under the threat of unintentional
leakage and theft. The adversary may deploy the stolen
model on the Internet for profit and the owner (also the
defender) is only able to verify the ownership remotely by
querying the suspicious model [35, 37, 23, 14].

Most existing works on IP protection of DNN models as-
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sume the owner can query the suspicious model with specific
inputs (i.e., black-box setting). Based on this fundamental
assumption, two schools of solutions have been proposed:
model watermark [64, 37, 29] and model fingerprint [39, 34].
They either proactively embed or passively extract a hidden
functionality in the model, where outlier outputs can be acti-
vated by a specific query set (known as the verification set).
For verification, the defender queries the model with this set
and observes whether the outputs match the source model.
Since it is improbable for any other model to perform the
same abnormal behavior, the owner can judge whether the
suspicious model is a stolen copy.

However, the black-box assumption is challenged in gen-
eration tasks. For example, the whole-image synthesis task
takes a randomized latent representation as input. In reality,
this representation is usually sampled from a pre-defined
distribution, such as normal distribution. Therefore, the
adversaries can prohibit the verification by sampling the
latent representation themselves. The black-box methods
are also shown to be vulnerable to input transformation-
based removal attacks [19, 53]. Moreover, recent literature
has shown the outlier verification samples can be detected,
inspected, or reverse-engineered [18, 56]. Note that the
verification set plays a similar role to private keys in cryp-
tography [22, 30]. Once it is disclosed, the adversaries are
capable to launch ambiguity attacks, or invalidate the wa-
termark/fingerprint via methods such as adversarial training.
These limitations inspire us to raise an important question:
can ownership verification be done via checking outputs
only, without choosing the inputs (i.e., box-free setting)?
This setting is more challenging because queries made by
the defender are totally equivalent to those of normal users.
There is no chance to activate a hidden functionality.

In this paper, we make the first attempt to box-free own-
ership verification of GANs. Based on the fact that GAN
suffers from unstable training, we reveal the unexploited
potential of the discriminator to capture the model-specific
distribution learned by the paired generator. We utilize the
discriminator’s representations to learn a network featuring
a hypersphere that encloses the distribution learned by the
generator. Our proposed scheme does not require specify-
ing any input nor training additional detection networks, the
ownership verification can be done effectively via feeding a
batch of suspicious images to the learned network. However,
due to the gradual degradation issue, it is challenging for
the discriminator to extract meaningful feature representa-
tions without sacrificing the performance of the generator.
To tackle this problem, we leverage the pearson correlation
coefficient [38] to quantify the implicit reconstruction ability
of the discriminator, and prevent the degradation via adding
the term into the loss function of the discriminator.

To comprehensively evaluate the effectiveness and robust-
ness of our proposed method, we conduct experiments on

two popular GAN tasks (i.e., entire image synthesis, image-
to-image translation) and 10 state-of-the-art GAN architec-
tures to demonstrate the effectiveness of our scheme in veri-
fying the ownership of generator. We also show qualitatively
and quantitatively that our scheme is immune to popular and
powerful removal attacks (e.g., input transformation-based
and reverse engineering-based attacks) and robust to other
existing attacks.
Our main contributions are summarized as follows:

* We identify a fundamental limitation of black-box setting-
based ownership verification schemes on generation tasks,
i.e., choosing deterministic inputs is not allowed for appli-
cations like unconditioned image synthesis.

* We reveal the unexploited potential of the well-trained
discriminator for capturing the unique distribution learned
by the paired generator. Based on this finding, we make
the first attempt towards box-free verification scheme of
GANSs, which does not require specifying the input and
does not rely on additional models.

» Extensive evaluations on two popular GAN applications
and more than 10 GAN architectures demonstrate our pro-
posed scheme to effectively verify the ownership. Through
qualitative and quantitative analysis, we show that our pro-
posed scheme is immune to popular removal attacks and
robust to other existing attacks.

2. Related Work
2.1. Ownership Verification

Black-box Ownership Verification. The black-box own-
ership verification scheme assumes the defender can verify
the ownership via querying the suspicious model with spe-
cific inputs [, 64, 28, 54]. Towards this end, the owner
either predetermines and trains the model to learn a set of
abnormal input-output behaviours (model watermarks), or
extract a set of boundary samples (e.g., adversarial exam-
ples) that can identify the model (model fingerprint). Then,
this hidden behavior can be extracted remotely by querying
the model with these special inputs. Recently, Ong et al.
[37] proposed the first work towards ownership verification
of GANSs. In their work, the IP information was embed-
ded through backdooring the generator, after which trigger
inputs (i.e., carefully-crafted inputs with trigger noises, as
shown in Fig. 1 top panel) will result in a visible watermark
like a company’s logo on generated outputs. However, for
some GAN applications (e.g., unconditional image synthe-
sis), black-box is not enough since deterministic inputs are
not allowed [62]. Moreover, the recent removal attacks have
shown great threats to the survival of backdoor or adversarial
input-based black-box verification paradigms.

Removal Attacks. The black-box methods rely on hid-
den functionalities in the model. Therefore, current attacks
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Table 1: Comparison of our approach with prior works. In the “Img. Syn./Trans.” column, X denotes not applicable or not evaluated in the original paper.

. Target Img. Syn./ | Ambiguity | No external
Method H Year Technique ‘ mosel ‘ Purpose ‘ Box-free? T?:ans}.l? ‘ attafk? y model?

Uchida et al. [52] 2017 | Model Watermarking DNN Ownership Verification b 4 — X (4
Adietal. [1] 2018 | Model Watermarking | Classifiers | Ownership Verification X — (4
Zhang et al. [64] 2018 | Model Watermarking | Classifiers | Ownership Verification X — X v
Rouhani et al. [43] || 2019 | Model Watermarking DNN Ownership Verification b ¢4 — X v
Lukas et al. [34] 2019 | Model Fingerprinting | Classifiers | Ownership Verification b 4 — X v
Le Merrer et al. [28] || 2020 | Model Watermarking | Classifier | Ownership Verification b 4 — X v
Zhao et al. [68] 2020 | Model Fingerprinting | Classifiers | Ownership Verification X — X v
Jiaetal. [22] 2021 | Model Watermarking | Classifier | Ownership Verification b ¢4 — v v
Caoetal. [8] 2021 | Model Fingerprinting | Classifiers | Ownership Verification b 4 — X v
Bansal et al. [4] 2022 | Model Watermarking DNN Ownership Verification X — v (4
Peng et al. [39] 2022 | Model Fingerprinting | Classifiers | Ownership Verification X — X v
Yang et al. [58] 2022 | Model Fingerprinting | Classifiers | Ownership Verification X — X X
Yuetal. [61] 2019 | Fingerprint Extraction GAN Model Attribution v vIiX X X
Yu et al. [62] 2021 | GAN Fingerprinting GAN Model Attribution v viv v X
Girishetal. [15] 2021 | Fingerprint Extraction GAN Model Attribution (4 viv X X
Asnani et al. [3] 2021 | Fingerprint Extraction GAN Model Attribution v viv X X
Yu et al. [63] 2022 | GAN Fingerprinting GAN Model Attribution v vIiX v X
Guarnera et al. [17] || 2022 | Fingerprint Extraction GAN Model Attribution v vIiX X X
Ong et al. [37] 2021 | GAN Watermarking GAN Ownership Verification 4 viv v v
Ours || 2023 | Distribution Capturing | GAN | Ownership Verification | v | ¢ /v | v | v

aim to remove or avoid activating this hidden functionality.
A straightforward attack is to eliminate the hidden func-
tionality through model modifications like pruning [35]. A
more targeted attack is first to reverse-engineer the verifica-
tion samples and then invalidate the watermarks/fingerprints
through adversarial training [56, 48]. Observing the verifi-
cation samples are less robust than normal inputs, another
attack is to evade verification via preprocessing the input
[19, 56]. This attack has become the recent trend since it
is model architecture-careless and not limited to a specific
watermarking technique. It is also intractable as the input
transformations can be diverse and usually hard to consider
in advance. In contrast, our proposed box-free ownership ver-
ification scheme is free from choosing verification samples
thus totally immune to the intractable input transformation-
based attacks and reverse engineering-based attacks.

Ambiguity Attack. Recent works [12, 13, 37] revealed
the concept of ambiguity attack, where it is proved that
unless an irreversible verification scheme is adopted, the
adversary can forge his/her own vouch using exactly the
same technique the owner adopted. Subsequently, when
one claims ownership of the model, the adversary can also
claim the ownership due to the existence of his/her own
vouch. Finally, the ownership is in doubt. To ensure the
owner is free from this concern, a feasible technique used for
verifying ownership should necessarily be non-reproducible,
even if the adversary has full control of the stolen model and
acquires knowledge of the adopted ownership verification
paradigm. A practical and robust ownership verification
scheme should well survive these two threats.

2.2. Model Attribution

The model attribution was initially developed to combat
DeepFakes, where researchers focus on attributing certain
fake images to the specific types of GAN that generated

them [61, 62, 63, 2, 17]. Generally, the attribution tech-
niques aim to analyse the unique fingerprints carried by the
GAN-generated images, or proactively watermark the output
images through methods like steganography [57, 65, 66].
Due to the merit that these techniques can usually work in
the box-free setting where only generated images are avail-
able, it has shown potential or even applications in ownership
verification of GANs. However, the existing studies on GAN
model attribution are not ready for this challenging task,
since i) most works are limited to classifying the model
architecture and/or datasets [6, 15, 59] rather than a spe-
cific GAN model; ii) nearly all attribution techniques require
training a powerful external classifier, which is both time and
resource consuming; and iii) most works’ external classifiers
can be trained with only real/fake images [61, 3, 11], and the
steganography-based techniques could be easily reproduced
by the attacker [57, 65], which denotes that the adversary can
easily forge the verification vouch and perform ambiguity
attacks or overwriting attacks. A comparison between our
approach with prior studies is illustrated in Tab. 1.

3. The Proposed Verification Scheme

Motivated by the unstable training phenomenon of GAN
training, the insight behind our proposal is to capture the
model-specific distribution by exploiting the potential of the
paired discriminator. Before stepping into the details of our
proposed scheme, we first introduce the organization of this
section. First, we formalize our threat model. Then, we
describe the details of the essential loss terms used in our
proposed scheme. Finally, we introduce the pipeline and
training flow of our proposed approach.

3.1. Threat Model

In our threat model, two opposing parties are considered.
A model owner (also the defender) who trains the source
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model, and an adversary who has stolen the source model
through illegal means and deploys the piracy model on Inter-
net APIs publicly accessible for profit.

Defender’s Goals and Capabilities. The goal of the de-
fender is to identify the stolen models that are remotely
deployed by the attacker. The defender (1) has white-box
access to the source model, (2) can query the suspicious
model but, (3) can not specify the query input (i.e., box-free
setting). This setting is more challenging than the black-
box setting widely adopted by prior works [, 37, 54], as
specifying carefully-crafted inputs is not allowed.

Adversary’s Goals and Capabilities. The adversary’s goal
is not to be verified as pirated while keeping the piracy a
similar performance as the source model. For this purpose,
the adversary may modify the model (model modification)
or manipulate the inputs/outputs (sample transformation).
Observe that our scheme does not suffer from the intractable
input transformation-based attacks since our inputs are to-
tally equivalent to those of normal users. Adopting such
attacks would only impair the performance yet does not
bring any benefits. The assumptions we make are standard
and are also widely adopted by prior works [, 64, 22, 37].

3.2. Compactness Loss

The discriminator witnessed the gradual development of
the generator and has comparable parameters to the latter.
It learns a hyperplane in its embedding space to distinguish
between real and generated images. Intuitively, it potentially
learned how to extract special representations in images
generated by the paired generator. However, in real-world
scenarios, suspicious images are usually generated by un-
known and unseen GANSs. Since embedding spaces of dif-
ferent generators are not aligned, it is difficult to harness
the discriminator and find maximum margin hyperplanes to
distinguish between different GAN instances.

Inspired by previous works on data description [49, 50],
we propose to separate the data via optimizing a hypersphere
instead of a hyperplane. Specifically, let X C R¢X"*% be
the data space, and ¢ : Re*"*® _; R9 be the “encoder” part
of the discriminator (explained later), which maps the data
to a d-dimensional feature space. Our objective is to find the
smallest hypersphere specified by a center ¢ € R? and radius
R > 0 that encloses the majority of the data distribution of
the paired generator in feature space. Therefore, our main
objective is to minimize the “compactness” of representa-
tions [40, 44, 42]. Given the data {x1,...,x,} from the
paired generator, our objective is defined as:

1 n
. 2 W a2 P2
min R+ - ;_1 max{0, ||¢p(x;; W) —¢||” — R“} (1)

where WV indicates the weights of ¢. This objective contains
two terms. The first term aims to minimize the radius thus
volume of the hypersphere, while the second term penalizes

the points outside the hypersphere. v € (0, 1] is a hyperpa-
rameter that balances the importance of the two terms. We
empirically set v to 0.35 in the following experiments.

The benefits of our approach are as follows. First, our
training is unsupervised, i.e., only requires data generated by
the paired GAN, analogous to the training of GAN itself and
does not introduce additional annotation overhead. Second,
prior works utilizing the compactness loss as their objec-
tive are shown vulnerable to “hypersphere collapse” where
the hypersphere radius collapses to zero and the network
converges to trivial solutions [51]. Fixing ¢ as the mean of
the network representations is shown to be helpful to avoid
overfitting and hypersphere collapse [44, 10]. However, it is
still difficult to define a proper hypersphere center ¢ with an
initial network whose parameters are random. In contrast,
our well-trained discriminator network potentially provides
us with a robust network representation thus a robust c. Em-
pirical results show that this strategy makes the convergence
faster and more robust, the hypersphere collapse hardly exist.

3.3. Pearson Correlation Loss

Recall that we expect our discriminator to provide a robust
initial center for training. This is feasible since we assume
the discriminator extracts data representations well, thus
network representations are useful. However, in reality, we
observe that the discriminator usually converges to a constant
and no helpful network representation is preserved. This
is not surprising since the more the GAN is trained, the
less possible to distinguish between samples of real and
generated data. The optimal discriminator converges to 1/2
and thus no extraction ability is preserved, as many existing
literature has pointed out [16, 67].

To tackle this challenge, we propose to preserve the useful
network representations of the discriminator via encouraging
it to implicitly reconstruct the ground truth latent representa-
tion z. Our key insight is that this additional task encourages
the discriminator to fit the generator’s latent distribution and
prohibits its trivial convergences. However, we empirically
found that the straightforward MSE loss makes the train-
ing extremely unstable. In our approach, we leverage the
pearson correlation loss, which is inspired by the pearson
Correlation Coefficient (PCC) [38], to measure the quality of
the reconstructed latent representation. We define our term

as:
p(z,2) = E?:zl(zz — ) (2 — pz)/n.
’ 0.0z

2

where z is the reconstructed latent representation and z
is the ground truth. n, is the dimension of z. u and o
indicates the mean value and standard deviation, respectively.
p(-,-) € [—1,1] measures the linear correlation between
the variables. The higher p indicates better reconstruction
performance.

PCC is “milder” than MSE [46]. The pearson correlation
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loss ensures that the discriminator can implicitly reconstruct
the latent representation from its corresponding generated
image while avoiding making the training unstable. For train-
ing, obviously, this additional task can be easily cooperated
with the BCE loss of the native GAN training. There is no
annotation cost and no notable training overhead. We show
in the supplementary materials that this additional loss does
not bring any degradation to the original generation task.

Note that this loss is optional for GANSs that are trained
in supervised setting (e.g., StarGAN). This is because these
tasks usually require the discriminator to do an additional
classification task, therefore the aforementioned convergence
problem does not necessarily exist.

3.4. Training Pipeline

The whole training pipeline of our scheme is presented
in Algorithm 1. We utilize the pearson correlation loss to
preserve the network representations of the well-trained dis-
criminator and harness these representations to train a robust
hypersphere in the embedding space which captures the
unique data distribution of the paired generator. We show
the whole training pipeline as follows.

Step 1. Redefine the Training Objective: For unsupervised
GANSs, we introduce an additional task (i.e., reconstructing
the latent representation) to ensure the network representa-
tions of the well-trained discriminator are useful. The native
GAN is composed of a generator mapping R% — Re¢*xw
and a discriminator mapping R*"**® — R, which can be di-
vided into an “encoder” ¢ : Re*"*¥ — R% and a “classifier”
that maps R — R. As explained in Sec. 3.3, we wish the
reconstructed latent representation 2 = ¢(G(z); W) € R?
to be close to the ground truth representation z € RY. This
is done via adding the pearson correlation loss to the adver-
sarial objective of both G and D. The training objective of
the generator is:

mén Lo =E.p, (z)llog(l = D(G(2))) — Mp(z,2)] (3)
The training objective of the discriminator is:
m[z)mx Lp= EwNpD(w)[log D(x) — Mp(z,2)] @

where ) is a hyper-parameter that adjusts the pearson corre-
lation strength. We empirically set A = 0.5 in experiments.

Step 2. Train the GAN Models: We then initialize and
train the GAN models G and D with some training data
D = {x,...,z,} C X until we reach the maximum
epochs. Except for the additional pearson correlation loss,
the training of the GANs follow the settings in their original
papers. After this, the generator is capable to tackle the task
distribution and can be deployed.

Step 3. Empower the Discriminator: The final step is to
utilize the discriminator’s well-trained network representa-
tions and optimizes the network which forms a hypersphere
to enclose the learned distribution. We first harness the gener-

Algorithm 1: Training Pipeline
Input :Training data D, Iteration K, Interval k, Learning rates
Tand 7.
Output : Generator G, Network ¢ with parameters WV, center ¢,
and radius R.
Initialize the generator G and discriminator D.
fori € {1...K} do
Get a batch of D
Calculate adversarial loss of D
Update D < D —7-VpLp
Calculate adversarial loss of G
Update G < G —7-VgLg
end
# Form a dataset D’ that consists of n samples generated by G
D' =Ul ,G(z)
Initialize center ¢, and radius R
step=0
while loss not converge do
step += 1
Get a batch of D’
Calculate compactness loss:

1 n
L.=R*+ — > " max{0, ||¢(z; W) — c||> — R?}
=1

Update W <~ W — 7/ - V4 L.
if step % k == 0 then

| Update R via line search
end

end

ator to generate a few data points sampled from the distribu-
tion, forming a set of training data D’ = {x/,...,z/,} C X,
where x;, = G(z), z ~ p.(z). As explained in Sec. 3.2,
we fix c as the mean of the network representations of the
discriminator and train the network with data D’ and the
objective described in Eq. (1).

We use stochastic gradient descent (SGD) to optimize the
parameters W of the neural network with backpropagation.
Noticeably, using one common SGD learning rate may be
inefficient to optimize WV and R simultaneously since they
usually have different scales, as Ruff et al. [44] pointed out.
Therefore, we optimize WV and R alternatively as suggested.
In detail, we first fix the radius R and train the network
parameters WV for every interval & € N epochs. Then, af-
ter every k epoch, we solve for radius R via line search
with the current network parameters. We train the network
parameters YV and radius R until convergence.

3.5. Ownership Verification

In predicting a given input, we can calculate a score which
measures the representation proximity to the captured unique
distribution using the network parameters. Given an input
x, the representation proximity score is calculated by the
distance of the point to the center of the hypersphere:

s(@) = [|p(x; W) — ¢||* — R? )
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Figure 2: Effectiveness evaluation on image synthesis, in terms of three
critical elements. The top panel indicates the evaluation on LSUN and the
bottom panel denotes the evaluation on CelebA. We use D, to distinguish
source model G, and suspect model Gp. The results on the diagonal
represent that the two models are identical (i.e. G is copied from G,).

The prediction is time and memory-efficient, since s(x)
is totally characterized by the network parameters W, radius
R, and the representation center c. We do not require storing
any other data for prediction and the prediction is done within
a single forward pass.

Note that s(x) has different scales in different cases.
Therefore, we feed a batch of images produced by the sus-
picious GAN and use Area Under Curve (AUC) score to
measure the performance. This avoids selecting a determin-
istic proximity score threshold. Through extreme results on
AUC scores (see Sec. 4.2), we set the suspicious AUC score
to 60%. That is, if a batch of suspicious images (batch size
is empirically set to 500 in the following experiments) has an
AUC < 60%, we claim ownership of the suspicious model.

50.86 74.58 77.48

StarGAN

74.23 50.92 73.84

Model Architecture of G,
AUGAN
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74.42 76.59 51.47

StarGAN AUGAN STGAN
Model Architecture of G,

Figure 3: Effectiveness evaluation for image-to-image translation.

4. Experiments

In this section, we mainly explore the effectiveness, scal-
ability and robustness of our proposed approach. Some
additional experiments and ablation studies of our method
refer to supplementary materials. For the below experiments,
we report the average result of ten independent replicates.

4.1. Setup

Models. For image synthesis, we use DCGAN [41] and
its two variants: SNDCGAN [36] and DCGAN established
with residual block [20]. We also conducted experiments on
SOTA architectures including ProGAN [24], StyleGAN [25],
StyleGAN2 [26] and StyleGAN3 [27]. For image-to-image
translation, we consider three popular GANs that edit face
attributes: StarGAN [9], AttGAN [21], and STGAN [32].
Datasets. We evaluate our method on two popular datasets,
LSUN [60] and CelebA [33]. We use LSUN bedroom for
image synthesis and CelebA for both image synthesis and
image-to-image translation.

Evaluation Metrics. For evaluating the effectiveness, we
use the AUC score as mentioned earlier. We use structural
similarity (SSIM) and Frechet Inception Distance (FID) [5]
to measure image quality and similarity.

4.2. Effectiveness

We first show preliminarily that our method can effec-
tively find out the piracy and would not mistakenly recognize
homogeneous models (i.e., the model independently trained
in similar settings) as piracy as well, even only small factors
(e.g., initial seeds) are different. Fig. 2 and Fig. 3 present the
experimental results on verifying the two popular GAN tasks
(i.e., entire images synthesis, image-to-image translation)
measured with AUC score.

The closer the AUC score is to 100%, the greater the dif-
ference between two batches of synthesized outputs exposed.
On the contrary, the closer the AUC score is to 50%, the
more likely the two batches of images are from the same
model because ¢ judges that there is no notable difference
in the data distribution represented by the two batches.
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Model Architectures. We consider the case where GANs
with different architectures are trained on the same dataset
and initial seeds. Experimental results in Fig. 2 and 3 illus-
trated that our method can identify the differences between
GANSs with different model architectures with an AUC score
larger than 70% and determine a piracy GAN with the same
elements with an AUC score close to 50%.

Training Datasets. We also investigate the effect of training
a GAN on different datasets. We respectively split CelebA
and LSUN into 3 disjoint subsets with 50k images each. This
ensures the training data are from the similar distribution.
Fig. 2 (c) shows that the AUC scores of two GANs trained
on different datasets are all above 75%. The AUC score is
higher than the other two elements, which indicates that the
GAN training is sensitive to the training datasets.
Initialization seeds. We finally investigate the effects of
initial random seeds in ownership verification. Fig. 2 shows
that our method maintains AUC around 60%. Meanwhile,
all the AUC scores of two identical models are less than
53%. We note that the initialization random seed is the
smallest variable in training a homogeneous GAN. This
extreme situation (i.e., the source model and the piracy only
differ in random seeds) is almost impossible to happen in
reality. However, our scheme still achieves an AUC score of
~ 60%, notably margins from the AUC score of two same
models (~ 50%). This is why we set the suspicious AUC
score to 60%.

| StyleGAN2 | StyleGAN3 | StyleGAN | ProGAN

StyleGAN2 53.39 82.57 84.93 85.66
StyleGAN3 83.12 53.28 83.52 86.34

Table 2: Evaluation on unknown and SOTA GANs. The AUC means
the classifier is trained with {row}’s discriminator, measuring the images
generated by the {column}’s G. We mark the results from the paired G and
D in bold font and unpaired in normal font.

4.3. Scalability to SOTA Architectures

Table 2 shows the experimental results on the SOTA GAN
Architectures. The results show that on SOTA architectures
the performances are even better (AUC > 80%). This is
because the more complex the task is (e.g., larger datasets,
higher resolution, more sophisticated network architecture),
the discriminator has larger parameters and the distributions
learned by different GAN instances are more complex thus
more different from each other. This shows that our method
generalizes well on SOTA and potential future architectures.

4.4. Robustness

In this section, we mainly evaluate the robustness of our
method in tackling the three existing attacks, i.e., model
pruning, output transformations, and ambiguity attack. The
experiments here are done on DCGAN trained on CelebA
with size 128 x 128. Specifically, we note that the discrim-
inator plays a similar role to private keys and should be

AUC (%)

Figure 4: left: Performance in evaluating the robustness against model
pruning measured by AUC score. The dotted line is the ROO Divider, the
operation region where acceptable image quality holds. right: Visualization
of synthesized images when the pruning rate is 40%.

kept secret by the owner. Therefore, according to our threat
model, attacks that require the presence of the discriminator
(e.g., fine-tuning) are not considered.

Pruning. The model pruning aims to reset the the unim-
portant weights to O without introducing any performance
degradation to the main task, like image synthesis in GANs.
In experiments, we randomly reset the weights in GANs
to explore whether our proposed method is sensitive to the
model pruning. Experimental results in Fig. 4 (left) shows
the AUC score for measuring the similarity of two mod-
els is less than 60% when the pruning rate reaches almost
40%. This indicates that our proposed method could verify
two models in high confidence in this pruning rate settings.
Here, the pruning rate less than 40% is a region of operation
(ROOQ) as the quality of synthesized image is almost accept-
able, where the FID score is larger than 69. Fig. 4 (right)
visualizes the synthesized images when the pruning rate is
40%, which exhibits obvious damage. Thus, our method
could survive the model pruning well.

Image transformation (magnitude) ‘ AU(éelrb;AS ™ | Au é‘ S‘UI:S M

blur (ks=3, 0=2)
JPEG (factor=60)

noise (e=0.05) 56.41 | 0.81 | 5593 | 0.84
crop (15%)

Table 3: Evaluation for the image transformation attacks measured by AUC
scores and the similarity of images is measured by SSIM. The value of
magnitude indicates the ROO, where the image has acceptable quality.

Image Transformations. Though input transformations are
vain attempts, the adversary may conduct various output
transformations to evade the verification. In experiments,
we explore whether the sample transformation brings any
degradation to our verification. Fig. 6 shows the perfor-
mance of our method measured by AUC score in identifying
suspicious models under four types of image transforma-
tions. The dotted line in Fig. 6 indicates a ROO where the
synthesized images have no serious damage to human eyes.
Fig. 5 visualizes the images under the ROO setting and Tab.
3 shows the corresponding magnitudes for the four types
of image transformation. Experimental results illustrated
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(a) Original (b) Noise

(¢) Blur

(d) JPEG (e) Crop

Figure 5: Visualization of synthesized images where the magnitude of image transformation is in the ROO (the value refer to Tab. 3).

that our method could identify the ownership effectively
in the ROO of image transformations. We attribute this to
the distribution-capturing property of our proposed method,
which potentially learned some high-level features that are
robust against these low-level transformations.
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Figure 6: Four image transformation attacks under different intensities.

Ambiguity Attacks. In a real scenario, the adversary
launches an ambiguity attack by obtaining a classifier that
performs as well as the owner’s one after replicating the
model illegally. We simulate this attack by training a clas-
sifier using exactly the same technique described in Sec. 3
but without the help of the discriminator. Tab. 4 shows that
random initialization will significantly degrade the perfor-
mance of the learned hypersphere. The reason, as we have
mentioned earlier, is that the discriminator provides a strong
and unique center ¢, compared to naive random initialization.
Thus, the attacker failed to obtain a well-performed classifier
even if he obtains the philosophy of our proposed method.

5. Conclusion and Discussion

In this paper, we propose a novel ownership verification
scheme for GANs, which working in box-free manner, uni-
versal to popular GAN tasks, and resisting the powerful am-
biguity attack well. Inspired by the power of discriminator

Training strategy ‘ ‘ AUC (same) | ‘ AUC (different) 1

w/o The Discriminator (piracy) ‘ ‘ 5191 ‘ 57.21

w/ The Discriminator (Ours) ‘ ‘ 50.18 ‘ 75.63

Table 4: Performance in resisting ambiguity attacks. The column same
indicates the verification of two same GAN models, while the column
different denotes the verification for different GAN models.

in witnessing the development of generators in synthesizing
images gradually, we empower the discriminator to capture
the unique GAN training which is important for ownership
verification. Evaluation experiment results show that our
method is highly effective, general and robust.

Limitations and Discussions. Though there seem to be no
trivial adaptive attacks, our method relies on the empowered
discriminator to capture the unique distribution learned by
the generator. Therefore, if the discriminator is disclosed,
the adversary may train a same classifier to confuse the
verification, or leverage the discriminator to perform adver-
sarial attacks. However, the discriminator is conventionally
considered useless and will not be used after training. In
the popular MLaaS scenario, there is also no reason for
the model owner to open it to a third party. The adversary
could not even access the discriminator through APIs. In our
proposed scheme, the discriminator plays a similar role to
private keys and should be kept secret by the owner.

There are many spaces worth discovering for future works.
For example, one may extend our insight of distribution
capturing to other generative models like diffusion models.
It is also interesting to explore effective methods to evade
our box-free verification, which could be our future work.
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