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Abstract

The emergence of conditional generative adversarial net-
works (cGANs) has revolutionised the way we approach and
control the generation, by means of adversarially learning
joint distributions of data and auxiliary information. De-
spite the success, cGANs have been consistently put under
scrutiny due to their ill-posed discrepancy measure between
distributions, leading to mode collapse and instability prob-
lems in training. To address this issue, we propose a novel
conditional characteristic function generative adversarial
network (CCF-GAN) to reduce the discrepancy by the char-
acteristic functions (CFs), which is able to learn accurate
distance measure of joint distributions under theoretical
soundness. More specifically, the difference between CFs
is first proved to be complete and optimisation-friendly, for
measuring the discrepancy of two joint distributions. To
relieve the problem of curse of dimensionality in calculating
CF difference, we propose to employ the neural network,
namely neural CF (NCF), to efficiently minimise an upper
bound of the difference. Based on the NCF, we establish the
CCF-GAN framework to explicitly decompose CFs of joint
distributions, which allows for learning the data distribution
and auxiliary information with classified importance. The
experimental results on synthetic and real-world datasets
verify the superior performances of our CCF-GAN, on both
the generation quality and stability.

1. Introduction

Generative adversarial network (GAN) has been the
workhorse in deep generative models since its birth for image
generation [16], and its popularity arises from the capability
of generating clear and realistic images from merely small di-
mensions. Despite success, the original architecture of GAN
only allows for randomly generating images from Gaussian
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noise, and an important variant of GANs aims to control
the generation by pre-defined auxiliary information (e.g.,
the class labels or texts), constituting the conditional GAN
(cGAN). Taking advantages of the auxiliary information,
cGANs have been proved to be capable of enhancing the
realistic image generation that is conditioned on extra se-
mantic cues [42, 32, 33]. Therefore, the past few years have
witnessed the extensive applications of cGANs, including
class-conditioned generation [31, 37], style transfer [55],
text-to-image translation [42, 51], to name but a few.

Generally speaking, cGANs establish a joint distribu-
tion between data X and auxiliary information Y , i.e.,
{X ,Y} ∼ p(x,y). Most cGANs agreed on the design
of the generator network, in which the auxiliary information
is embedded to the input noise [31] or the inter-mediate lay-
ers of the generator [11, 37, 9, 50, 40, 4, 33]. As such, the
generator aims to sample from the joint distribution p(x,y).
On the other hand, for designing the discriminator, the way
we formulate the conditional distribution tells the existing
cGANs apart, because p(x,y) can be formulated by either
p(x|y)p(y) or p(y|x)p(x). The former calls for transform-
ing the auxiliary information Y into the discriminator so as
to predict p(x|y), and this can be achieved by concatenating
with X as input [31, 10, 44], or embedding Y to hidden
layers of the discriminator [42, 51]. The latter, however,
requires the discriminator to predict the auxiliary informa-
tion p(y|x), by for example, additional explicit classifiers
[37, 15, 21] or implicit projections [33, 50, 32, 4]. Despite
being able to control the generation by pre-defined auxil-
iary cues, applying cGANs in practice has been significantly
restricted owing to their mode collapse [48, 52, 23] and in-
stability [37, 33] problems in training, thus impeding the
consistent improvement in the realistic image generation.

Indeed, most discriminators of cGANs build upon the
cross-entropy adversarial loss, with an equivalence to the
Jensen-Shannon (JS) divergence between generated and real
data distributions [2]. Unfortunately, it has been verified
both theoretically and empirically that the JS divergence,
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which compares two distributions in a “bin-to-bin” man-
ner [25], can easily max out when the two distributions are
mis-aligned or supported by low dimensions [2]. Conse-
quently, there exists an issue of gradient vanishing in the
discriminator, which misleads the generator to simply learn
fixed patterns or completely break down in training [2, 3].
For unconditional generation, this issue has been elegantly
addressed by introducing a broad class of distance metrics
called integral probability metric (IPM) [35]. Under the
umbrella of the theoretical completeness of IPMs, the dis-
criminator operates as certain bounded functions to compare
distributions in a “cross-bin” style [25], such that smooth
and sufficient gradient can be provided for unconditional
generation.

Therefore, it is intuitive to apply IPMs to conditional
generation, benefiting from the theoretical completeness
of IPMs to stably and consistently improve the generation.
However, it is non-trivial to design an IPM-cGAN, due to
the non-linear coupling between the data and auxiliary in-
formation. In other words, the bounded function of the dis-
criminator prohibits explicitly modelling p(x|y) or p(y|x)
for conditional generation. Several attempts were proposed
to concatenate X and Y as an augmented random variable
X̂ , and equivalently train the cGAN by an unconditional
IPM-GAN [54]. However, it is problematic to straightfor-
wardly combine two random variables at different seman-
tic levels, whereby its deficiency has been proved in many
cGANs [28, 33]. Although several cGANs employed certain
IPMs, e.g., the Wasserstain distance in their implementations
[34, 44, 33], their very basic theories were established upon
the cross-entropy form (equivalent to the JS divergence),
thus still suffering from the mode collapse and instability
problems caused by the “bin-to-bin” comparison. More
importantly, the above cGANs are established upon the ex-
istence of probability density functions (pdfs) of random
variables. This premise, oftentimes taken for granted with-
out verification, may not hold in practice, especially when
real-world data such as images and videos essentially reside
on low-dimensional manifolds [24, 36].

In this paper, we propose a novel cGAN architecture
upon the characteristic function (CF) of random variables,
i.e., conditional characteristic function GAN (CCF-GAN).
We also noticed several works [1, 30] built upon the CF to
achieve enhanced unconditional generation. Those methods,
however, by first embedding the data distributions into latent
spaces, are problematic in learning joint distributions of the
data and auxiliary information in the embedded spaces. In
contrast, this paper explicitly establishes the CFs for both
generated and real joint distributions. By inspecting that the
CF always exists and uniquely corresponds to one distribu-
tion, we propose to calculate the difference between CFs as
a vehicle to indicate the discrepancy of joint distributions.
However, the calculation of CFs requires excessively sam-

pling in the complex domain, which is prohibitive to learn
distributions of images that reside in high dimensions. We
thus develop the neural network as a proxy to calculate an
upper bound of the CF difference, called neural CF (NCF)
metric. Based on the NCF, we establish the CCF-GAN by
explicitly modelling the conditional distribution from the
joint distribution, allowing for a classified treatment on the
image and auxiliary information at different semantic levels.
Consequently, the superior performances of our CCF-GAN
are verified on both synthetic and real-world datasets.

2. Related Work
cGANs basically optimise joint distributions between

images and auxiliary information, which fundamentally dif-
fer from unconditional GANs that solely optimise image
distributions. The joint optimisation of cGANs allows for
controllable generation, the key technique in many scenarios
including categorical generation and style transfer. Incorpo-
rating the auxiliary information within joint distributions has
also been proved to further improve the generation quality,
of which the existing cGANs are reviewed in the following.

cGANs by conditioning on p(x|y): The first cGAN
[31] proposed to learn the joint distribution by p(x,y) =
p(y)p(x|y), and concatenated the auxiliary information Y
with the data X as the input of the generator and discrimi-
nator, such that the generation and discrimination processes
are both informed by the auxiliary information. Similarly,
Laplacian pyramid (LAP) GAN [10] and temporal GAN [44]
also concatenated Y to X as the input of discriminator, to ad-
dress the conditional distribution p(x|y). However, since the
data X and auxiliary information Y are at different semantic
levels, directly concatenating them together may encounter
a mismatched information aggregation, leading to instability
and inefficiency in training [28, 33]. To relieve this issue,
follow-up works [42, 51, 39] proposed to embed Y to cer-
tain hidden layers of the discriminator, such that high-level
cues of the data have been extracted and then aggregated by
the embedded Y . Unfortunately, the above methods are de-
signed for applying GAN to accomplish specific tasks such
as text-to-image translation [42, 51] and image editing [39].

cGANs by conditioning on p(y|x): Another main
trend of cGANs is to decompose p(x,y) into p(y|x)p(x),
whereby p(y|x) is predicted by either an implicit or ex-
plicit classifier. As one of the representative classifier-free
methods, the projection-cGAN was proposed to calculate
the likelihood ratios and to indicate p(y|x) by projections,
such that the optimisation was implemented under the cross-
entropy loss with the theoretical completeness [33]. Due to
its simplicity and theoretical beauty, the projection-cGAN
has been widely applied in many advanced models, includ-
ing spectrum normalisation GAN [32], BigGAN [4] and
self-attention GAN [50], whereby recent advances including
cooperate initialisation [49, 53], knowledge distillation [8]
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and gradient regularisation [12]. On the other hand, it has
been verified that adding a classifier may improve the gener-
ation performance [5]. Auxiliary classifier GAN (ACGAN)
is one of the most widely employed cGANs with an ex-
plicit classifier, which is trained by the marginal distribution
and prediction accuracy [37]. However, ACGAN has been
criticised by its behaviour of learning biased distributions,
which leads to mode collapse especially when training with
large amount of auxiliary information [47, 15, 17]. Later im-
provements therefore include using a twin auxiliary classifier
(TAC) in TACGAN [15], training with a contrastive loss in
ContraGAN [20], adding an auxiliary discriminative classi-
fier (ADC) in ADCGAN [19] and implementing several reg-
ularisations for stable training in ReACGAN [21]. However,
all the above cGANs are based on the cross-entropy loss,
which suffer from the incomplete comparisons between two
well-separated distributions [2] and may result into mode
collapse and instability in training.

IPM-cGANs: The IPM has been widely employed for un-
conditional generation, which successfully reformulates the
cross-entropy loss (of predicting real and generated samples)
into a theoretically complete distance metric. Notable IPM-
GANs include Wasserstein GAN [3], Fisher GAN [34], max-
imum mean discrepancy GAN [30] and CF-related GANs
[1, 30]. To the best of our knowledge, although being ex-
tremely potential in addressing the unstable training prob-
lems in cGANs, applying IPM to cGANs is still yet to start.
This is due to the fact that their IPMs are established based
on unconditional generation, and the extension to conditional
generation has to concatenate the data and auxiliary infor-
mation together, such that the unconditional settings can be
applied. This, however, significantly limits the power of
cGANs because it has been verified that decomposing the
joint distribution into marginal and conditional distributions
can witness remarkable improvements [28, 33]. We also
noticed several cGANs tried to combine cross-entropy pre-
diction and IPMs in an ad hoc manner [34, 44, 33], which
still suffer from the unstable training.

3. Methodology
3.1. CF Discrepancy

The CF uniquely defines a random variable V ∈ Rd in
terms of cumulative density function (cdf) FV(v), given by

ΦV(t) = EV [e
jtTv] =

∫
v

ejt
TvdFV(v), (1)

where EV [·] denotes the expectation of V . The CF always
exists for arbitrary random variables, even when the pdf
is not well-defined (for example, the Cantor distribution).
When the pdf of a random variable exists, the CF can be
formulated as an inverse Fourier transform of pV(v), i.e.,
ΦV(t) =

∫
v
ejt

TvpV(v)dv. In problems including den-

sity estimation and generative modelling, the distribution
of random variable V is typically unknown whilst only a
set of independent and identically distributed (i.i.d) sam-
ples {vi}ni=1 from V is available; this prohibits continuous
integral over FV(v) in CF calculation. Alternatively, we
resort to the empirical CF (ECF) that can be calculated as
Φ̄V(t) = 1

n

∑n
i=1 e

jtTvi , which is an unbiased and con-
sistent estimator of the population ΦV(t) in (1) [13], thus
promising a well-defined proxy to approximate the unknown
distribution V .

Another appealing property of CF is its boundness, where

|ΦV(t)| = |
∫
v

ejt
TvdFV(v)|≤

∫
v

|ejt
Tv|dFV(v)=1, (2)

and reaches its maxima at ΦV(0) = 1. In other words, two
distributions, V and Ṽ , are automatically aligned in their
CFs. It is the fact that comparing two distributions by their
pdfs may suffer from misalignment in optimisations, where
vanishing gradients and unstable training may exist [2]. This
issue motivates the usage of Wasserstein distance, at the cost
of increased computational complexity [25] or additional
constraints [3]. In contrast, comparing two CFs is naturally
resistant to the misalignment issue, whilst enjoying compu-
tation ease. We thus use the following l2-norm discrepancy
measurement to compare two distributions (i.e., V and Ṽ) via
their CFs, on the basis of the uniqueness between a random
variable and its CF,

D2
T (V||Ṽ)=

∫ (
ΦV(t)−ΦṼ(t)

)(
Φ∗

V(t)−Φ∗
Ṽ(t)

)
pT (t)dt.

(3)
In (3), Φ∗ denotes the complex conjugate of Φ, and pT (t)
represents the distribution of t∼T that is able to indicate
the discrepancy between ΦV(t) and ΦṼ(t) [30]. It has been
proved that when the support of pT (t) resides in Rd, D is
a valid distance metric to compare two distributions [30].
We may need to point out that besides the l2 norm, the
discrepancy measurement d(ΦV(t),ΦṼ(t)) can be flexibly
chosen by other forms, such as l1 norm or log operation.

Furthermore, we focus on the scenario where V and Ṽ
can be only accessed by their discrete random samples, e.g.,
{vi}ni=1∼V for real images and {ṽi}ñi=1∼Ṽ for generated
images in image generation tasks. Thus, their CFs can be
only accessed by the ECFs, which basically falls into the
scope of two-sample test problem, and under mild condi-
tions, the equivalence between two ECFs almost surely (a.s.)
ensures the equivalence of two distributions with statistical
significance [14], thus indicating the consistency between
the corresponding two CFs. Due to this equivalence, instead
of using the extra notation Φ̄V(t), we denote in the sequel
the ECF by ΦV(t) for simplicity without ambiguity.

More importantly, for conditional generation that involves
two joint distributions, for example, (X ,Y) for real images
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and labels, together with (X̃ , Ỹ) for generated ones, we are
able to formulate V = (X ,Y) and Ṽ = (X̃ , Ỹ). This way,
the above desirable properties including universal existence
and uniqueness still hold for their corresponding ECFs, be-
cause ΦX ,Y(t) = ΦV(t) and ΦX̃ ,Ỹ(t) = ΦṼ(t). Then, by
sampling {ti}ki=1 from T in (3), we are able to calculate the
difference between the two distributions in practice:

D2
T (V||Ṽ)=

1

k

k∑
i=1

(
ΦV(ti)−ΦṼ(ti)

)(
Φ∗

V(ti)−Φ∗
Ṽ(ti)

)
=

1

k

k∑
i=1

(
ΦX ,Y(ti)−ΦX̃ ,Ỹ(ti)

)(
Φ∗

X ,Y(ti)−Φ∗
X̃ ,Ỹ(ti)

)
= D2

T (X ,Y||X̃ , Ỹ),
(4)

where ΦX ,Y(ti) and ΦX̃ ,Ỹ(ti) represent the ECFs for real
and generated joint distributions, respectively. It should be
pointed out that in (4), the number of samples k plays a
crucial role in distinguishing (X̃ , Ỹ) from (X ,Y), so as to
indicate sufficient discrepancy for probability estimation. We
illustrate in Fig. 1 that without any discriminator modules,
optimising a generator network solely by setting k = 128
and T to be the standard Gaussian distribution in (4) can
generate roughly realist images towards MNIST digits [27].

However, the grey-scale digital images from MNIST
dataset [27] with size 28× 28 are simplified scenarios when
comparing with real-world images. When optimising images
of high dimensions and with diversifying content, k has to
increase exponentially, especially for high-dimensional data,
encountering the curse of dimensionality (cod) problem. To
address this, rather than Gaussian distribution, {ti}ki=1 need
to be smartly chosen. More importantly, in this preliminary
experiment of Fig. 1, we straightforwardly concatenated
the label information Y with the images X , which has been
verified to be ineffective since the pixel-wise images and
class-wise labels are essentially at different semantic levels
[28, 33]. In Section 3.2, we first introduce the way of ad-
dressing the cod problem, followed by a novel way to treat
the semantic levels at different importance in Section 3.3.

3.2. Adversarial NCF Learning

To address the cod problem when calculating the dis-
crepancy between ECFs, several methods [1, 30], which
were born for unconditional generation, proposed to reduce
the dimensions of images by learning an embedding func-
tion f(·) : Rd → Rd′

, where d′ ≤ d [1, 30]; this allows
for explicitly enumerating T in the low dimension d′ when
comparing two embedded distributions f(V) ∈ Rd′

and
f(Ṽ) ∈ Rd′

. However, the embedding requires extra re-
quirements on the function f(·), including injection [1] and
bijection [30], resulting into additional hyper-parameters
and instability when training GANs. More importantly, the
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Figure 1: Preliminary generation results on the MNIST
dataset by solely training the generator upon (4). Zero-
mean standard Gaussian distribution was chosen as T in
(4), whereby k = 128 and output image was of size 28× 28.

embedding function f(·) is basically implemented by the
discriminator network (also known as the critic), which is
highly non-linear. Its extension to conditional generation is
therefore highly limited, and the only possible compromise is
to embed a concatenated joint distribution f(V) = f(X ,Y),
the way that the majority of IPM-cGANs operate. This
compromise, however, is proved to be inefficient [28, 33].

On the other hand, the very basic operation of CFs in (1),
namely, tTv, projects from high dimension Rd to a scalar
R. Thus, instead of explicitly enumerating T , we propose
to implicitly optimise T when comparing two complicated
distributions in (4). This is also motivated by the Cramer-
Wold Theorem [7], which states that two random variables
V, Ṽ ∈ Rd have the same distribution if and only if dis-
tributions of tTV ∈ R and tT Ṽ ∈ R are the same for all
t ∈ Rd. In other words, we are able to compare two compli-
cated and high-dimensional distributions, by means of their
infinite projections Rd → R in the one-dimensional space.
Therefore, instead of explicitly sampling T from several
pre-defined distributions [1, 30], we propose to implicitly
search all possible t and directly output the corresponding
projections tTV and tT Ṽ , so as to compare the projected
distributions in low dimensions. Thus, the difference of two
CFs in (4) can be generalised by the projection function f
as

DF (V||Ṽ) =

(
1

k

k∑
i=1

(
Φfi

V −Φfi

Ṽ

)(
Φfi∗

V −Φfi∗
Ṽ

))1
2

, (5)

where Φfi
V is calculated by the i-th projection fi(·):

Φfi
V = EV [e

jfi(v)] =
1

n

n∑
iv

ejfi(viv ). (6)

In (5), fi(viv ) is parameterised by the proposed NCF net-
work, whereby the input is viv and fi(viv ) represents the
i-th dimension output of the NCF network.

Furthermore, compared with excessively sampling by
varying f(v), it is more efficient to decide the "best repre-

7207



Algorithm 1: Training algorithm of the proposed CCF-GAN.
input: Real images Pr; standard Gaussian distribution PN ; number of class labels c; category distribution of c classes PC ; batch

size bs; learning rate lr; training steps sd and sg for discriminator and generator per iteration
output: Net parameters θd and θg for the discriminator f(·) and generator g(·), respectively
while θd and θg not converged do

/* train discriminator */
for index← 1 to sd do

Sample from real distribution:
{xj ,yj}bsj=1 ∼ Pr; {zj}bsj=1 ∼ PN ; {ỹj}bsj=1 ∼ PC ; {tiy}ki=1 sampled by the linear space rule from [−1, 1]
Calculate NCF of real images X and generated images X̃ = g(Z):
{fi(xj)}k,bsi=1,j=1 ← {xj}bsj=1; {fi(x̃j)}k,bsi=1,j=1 = {fi

(
g(zj)

)
}k,bsi=1,j=1 ← {g(zj)}

bs
j=1

Calculate ECFs Φfi
X ,Y(t

i
y) and Φfi

X̃ ,Ỹ
(tiy) by (11), whereby p(yiy |xix) (or p(ỹiy |x̃ix)) is ground-truth or predicted by [15]

Calculate discriminator loss by (12): LD = −L(X ,Y||X̃ , Ỹ)
Update: θd ← θd + lr ·Adam (θd,∇θd [LD])

/* train generator */
for index← 1 to sg do

Sample from real distribution:
{xj ,yj}bsj=1 ∼ Pr; {zj}bsj=1 ∼ PN ; {ỹj}bsj=1 ∼ PC ; {tiy}ki=1 sampled by the linear space rule from [−1, 1]
Calculate NCF of real images X and generated images X̃ = g(Z):
{fi(xj)}k,bsi=1,j=1 ← {xj}bsj=1; {fi(x̃j)}k,bsi=1,j=1 = {fi

(
g(zj)

)
}k,bsi=1,j=1 ← {g(zj)}

bs
j=1

Calculate ECFs Φfi
X ,Y(t

i
y) and Φfi

X̃ ,Ỹ
(tiy) by (11), whereby p(yiy |xix) (or p(ỹiy |x̃ix)) is ground-truth or predicted by [15]

Calculate generator loss by (12): LG = L(X ,Y||X̃ , Ỹ)
Update: θg ← θg + lr ·Adam

(
θg,∇θg [LG ]

)
;

sentative" samples that are able to maximally distinguish the
two CFs in DF (V||Ṽ) in (5), as follows

L(V||Ṽ) = max
f

DF (V||Ṽ). (7)

Lemma 1. For any two random variables V, Ṽ ∈ Rd,
L(V||Ṽ) ≥ DT (V||Ṽ) for any T , where DT (V||Ṽ) is de-
fined in (4).

Lemma 11 proves an upper bound of L(V||Ṽ) against
the true CF discrepancy DT (V||Ṽ). This way, minimising
L(V||Ṽ) naturally reduces the difference between two dis-
tributions, as measured by DT (V||Ṽ). We further provide
in Lemma 2 that the measurement L(V||Ṽ) is a valid dis-
tance metric, which is able to precisely reflect the difference
between two distributions.

Lemma 2. If V, Ṽ ∈ Rd are two random variables, L(V||Ṽ)
in (7) is a valid distance metric.

3.3. Conditional Generation by CCF-GAN

By far, the conditional generation can be achieved by
setting V = (X ,Y) as illustrated by Fig. 1. However, since
the image X and auxiliary information Y reside at different
semantic levels, directly stacking them together is problem-
atic in cGANs [28, 33]. In this section, we propose to treat

1Please refer to the supplementary material for the proofs of all lemmas.

them separately such that the auxiliary information Y can be
well accommodated along with generating X , thus enjoying
improved generation performances. More specifically, the
definition of CF allows for an explicit decomposition on p(x)
and p(y|x) as follows,

ΦV(t) = ΦX ,Y(t) =

∫
x

∫
y

ej(t
T
x x+tTy y)p(x,y)dxdy

=

∫
x

[ ∫
y

ejt
T
y yp(y|x)dy

]
ejt

T
x xp(x)dx,

(8)

where t = [tTx , t
T
y ]

T . We may need to point out that (8)
plays a key role in our CCF-GAN, which effectively decom-
poses Y from X . In many tasks, the auxiliary information
follows the discretely distribution, e.g., the class labels. Thus,
we are able to obtain the CF of p(y|x) in (8) as∫

y

ejt
T
y yp(y|x)dy =

c∑
i=1

ejt
T
y yip(yi|x), (9)

where c is the number of discrete values of Y . Correspond-
ingly, the ECF of (X ,Y) now arrives at

ΦX ,Y(t) =
1

n

n∑
ix=1

c∑
iy=1

ejt
T
y yiy p(yiy |xix)e

jtTx xix . (10)

More importantly, the image distribution X typically resides
in high dimensions and thus requires smart strategies to avoid
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Figure 2: Evolution of adversarial learning when training CF-related GANs, in terms of projected generated/real samples ejt
Tv

on the complex plane of CFs, at the beginning, middle and end stages. The output ejt
Tv from the discriminator was averaged

in a batch-size manner for visualisation ease, which is then plotted by angle-based histograms on the complex plane. Pink color
indicates the histogram for generated samples while purple indicates that for the real samples. Please note that (a) OCFGAN
[1] and (b) RCFGAN [29] were proposed for unconditional generation solely, whereby ejt

Tx is plotted and analysed. (c) The
proposed CCF-GAN is analysed by illustrating the dynamics of both ejt

Tx and ejt
Ty for conditional generation.

cod when choosing tx. In contrast, the auxiliary information
Y is with relatively low dimensions. Therefore, instead of
directly enumerating tTxX in high dimensions, the NCF net-
work f(·) proposed in Section 3.2 is employed to calculate
tTxX in (10), which now becomes

Φf
X ,Y(ty) =

1

n

n∑
ix=1

c∑
iy=1

ejt
T
y yiy p(yiy |xix)e

jf(xix ). (11)

Recall that we use superscript f to indicate the ECF is cal-
culated by the proposed NCF network. In (11), p(yiy |xix)
can be directly chosen by the ground-truth labels to achieve
the conditional generation, although the performance can
be further improved by training an additional classifier [15];
this shall be analysed in our ablation study.

Therefore, by substituting (11) into (5) and (7), we arrive
at the final loss function of training our CCF-GAN:

min
g

L(X ,Y||X̃ , Ỹ) = min
g

max
f

DF (X ,Y||X̃ , Ỹ)

=

(
1

k

k∑
i=1

(
Φfi

X ,Y(t
i
y)−Φfi

X̃ ,Ỹ
(tiy)

)(
Φfi∗

X ,Y(t
i
y)−Φfi∗

X̃ ,Ỹ
(tiy)

))1
2

(12)
In (12), tiy represents the i-th sample of ty . Since Y resides
in low dimensions, we are able to sample ty with fixed rules,
thus reducing the complexity when training the proposed
CCF-GAN. Recall that X̃ denotes the generated images from
the generator network g(·), and f(·) is the proposed NCF
network, which acts as the discriminator in our CCF-GAN.

To the best of our knowledge, the IPMs have been incor-
porated in existing cGANs by non-linear transform functions,

which make the decomposition between X and Y intractable.
In contrast, our CCF-GAN, benefiting from proposing the
NCF network to directly output tTxx, is able to explicitly
extract X from the joint distribution, and the remaining part
is formulated by the conditional distribution p(y|x). This
way, the data distribution and auxiliary information can be
well learned with different importance, allowing for an op-
timised discrepancy measure between the real (X ,Y) and
generated (X̃ , Ỹ) joint distributions. In practice, we imple-
ment the proposed NCF network as the discriminator, so as
to measure the generated distribution (X̃ , Ỹ) from the gener-
ator g(·). The details are presented in Algorithm 1, whereas
the pipeline is provided in Fig. 2. We further illustrate the
superiority of the proposed CCF-GAN against existing CF
related GANs in Fig. 2. As can be seen from this figure,
CCF-GAN can well separate real and generated samples
at the middle stage, whereby RCFGAN fails. At the end
stage, real and generated samples are aligned by CCF-GAN,
whereas separation still exists in OCFGAN.

4. Experiment

4.1. Experimental Settings

Datasets: By comparing the proposed CCF-GAN with other
state-of-the-art cGANs, we performed the experiments to
evaluate the performances of conditional generation on 1
synthetic dataset and 3 widely accepted real-world datasets,
namely, CIFAR10 [26], VGGFace2 [38] and ImageNet [43].
For the synthetic dataset, we employed a mixture of 3 von
Mises–Fisher (vMF) distributions [6], and their parameters
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{p, τ, θ} were set to {0.33, 30, 2π/3}, {0.33, 30, 4π/3} and
{0.33, 30, 2π}, respectively, where 100k points were ran-
domly sampled. The real samples were plotted in Fig. 3-(e).
More importantly, the consideration of using vMF clusters
is because the vMF distribution is basically supported in low
dimensions, which can effectively mimic the real-world sce-
narios where the data are typically in high dimensions and
the generating spaces reside on low dimensions. For real-
world scenarios, images in CIFAR10 dataset were of size
32× 32. We followed [15] to randomly select 200, 500 and
1, 000 classes from the VGGFace2 dataset, denoted as VG-
GFace_c200, VGGFace_c500, and VGGFace_c1000. Then,
the images were centercropped and resized to 64× 64. For
ImageNet, we resized the images to resolution of 128× 128.
Metrics: The widely applied Fréchet inception distance
(FID) [18] metric was adpoted in our evaluation to assess the
generation quality of GANs, which basically implements the
Wasserstein distance between the real and generated features
extracted from the Inception_V3 network. We also adopted
the Inception Score (IS) [46] to evaluate the conditional gen-
eration performances. When calculating FID and IS scores,
we sampled 50k images for both generated and real images,
which is a common choice in many reported GAN results.
Furthermore, we calculated the precision and recall metrics
[45], to indicate the mode collapse problem in generation.
The stability was also evaluated by repeatedly training GANs
under various conditions.
Baselines: We compared the proposed CCF-GAN with the
BigGAN [4], ACGAN [37], TACGAN [15] and ADCGAN
[19]. Besides, FisherGAN [34] and cRCFGAN2 [29] were
adopted for comparison as conditional IPM-GANs. Fur-
thermore, we also evaluated our CCF-GAN with several
most recent GANs without the classifier, including Coop-
Init [53], KD-DLGAN [8] and DigGAN [12]. We imple-
mented our CCF-GAN on the Pytorch BigGAN platform3,
by using exactly the same architecture for the generator and
discriminator networks as the BigGAN [4]. All the compar-
ing cGANs were trained and tested based on the Pytorch
BigGAN platform, under the same architecture. Most re-
cently, there comes with a new rising-star platform called
the StudioGAN4 [22], which implements ContraGAN [20]
and ReACGAN [21]. Because the new StudioGAN em-
ployed random flipping and different image resize functions
by default, we believe it is unfair to report the result upon
the StudioGAN platform. Otherwise, it might be unclear
to show the origin of our improvements. Indeed, we have
witnessed further improvements on the StudioGAN plat-
form on all the datasets, which we decided to put in the

2Due to non-linear coupling, RCFGAN was designed for unconditional
generation. cRCFGAN is its compromised variant by channel-wise concate-
nating images and labels as augmented input for condition generation.

3https://github.com/ajbrock/BigGAN-PyTorch
4https://github.com/POSTECH-CVLab/

PyTorch-StudioGAN

Table 1: Comparison on FID scores against existing state-
of-the-art methods. Symbol ∗ denotes that the results are
reported from the corresponding paper, whereas † from [15].
Otherwise, we ran the available codes by the corresponding
default settings. We denote the best FID by red color and the
second best by blue color.

Method CIFAR10 VGGFace_c200 VGGFace_c500 VGGFace_c1000

BigGAN [4] 14.73∗ 66.23† 43.10† 24.07†

ACGAN [37] 8.01 95.70† 31.90† —
FisherGAN [34] 11.46 13.28 9.02 7.30
TACGAN [15] 8.42 29.12† 12.42† 13.60†

cRCFGAN [29] 6.90 27.03 18.03 20.72
ContraGAN [20] 10.60∗ — — —
ReACGAN [21] 6.22 13.48 7.19 6.47
ADCGAN [19] 7.17 18.64 11.34 7.94
DigGAN [12] 8.49∗ — — —

CoopInitBigGAN [53] 6.95∗ — — —
KD-DLGAN [8] 8.19∗ — — —

CCF-GAN (Ours) 6.08 11.61 6.81 5.70

supplementary material. Our code, implemented on both the
BigGAN and StudioGAN platforms, is available at https:
//github.com/Zhangjialu126/ccf_gan.
Technical details: In our experiments, we selected a steady
learning rate of 0.0001 for generator and 0.0002 for discrim-
inator with classifier. Although being able to achieve condi-
tional generation by directly inputting ground-truth labels,
the default setting of our CCF-GAN included the classifier
[15]. The discriminator, together with the classifier, was
trained 2 steps per generator update. For other comparing
methods that were replicated by their public repositories, we
set the same hyper-parameters as those in the corresponding
papers. More importantly, the batch sizes for CIFAR10, VG-
GFace_c200, VGGFace_c500 and VGGFace_c1000 were
set to 64. Batch size for ImageNet was set to 256.

4.2. Distribution Fitting Results on Synthetic Data

We illustrate in Fig. 3 the comparisons among the AC-
GAN, TACGAN, ADCGAN and the proposed CCF-GAN,
on the 2D synthetic dataset. As can be seen from this fig-
ure, our CCF-GAN almost recovered the ground-truth dis-
tribution, whereas others are either over-concentrated (AD-
CGAN) or imbalanced (ACGAN and TACGAN). This vali-
dates the effectiveness of employing the NCF in our CCF-
GAN, which stably and accurately measured two distribu-
tions even when they were supported in low dimensions.
In contrast, existing cGANs that are designed based on the
cross-entropy loss may suffer from the ill-posed discrepancy
measure, such that the fitted distributions were biased.

4.3. Realistic Image Generation Results

We also compared our CCF-GAN with existing state-of-
the-art baselines in Tables 1 and 2. As can be seen from
Table 1, the proposed CCF-GAN achieved the lowest (best)
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Ground truthACGAN TACGAN ADCGAN CCF-GAN (Ours)(a) ACGAN Ground truthACGAN TACGAN ADCGAN CCF-GAN (Ours)(b) TACGAN Ground truthACGAN TACGAN ADCGAN CCF-GAN (Ours)(c) ADCGAN Ground truthACGAN TACGAN ADCGAN CCF-GAN (Ours)(d) CCF-GAN (Ours) Ground truthACGAN TACGAN ADCGAN CCF-GAN (Ours) (e) Ground truth

Figure 3: Distribution fitting results on 2D synthetic dataset, which consists of 100k samples from the mixture of vMF
distributions. Please note that ACGAN, TACGAN, ADCGAN and CCF-GAN were trained by the same networks, which
consist of 4-layer (for generator) and 3-layer (for discriminator) fully connected neural networks of hidden size equal to 10.

Airplane:

Automobile:

Bird:

Cat:

Deer:

Dog:

Frog:

Horse:

Ship:

Truck:

(a) CIFAR10

ID980:

ID773:

ID577:

ID224:

ID157:

(b) VGGFace_c1000

Dandie Dinmont:

Agaric:

Alp:

Carbonara:

(c) ImageNet

Figure 4: Conditional image generation on CIFAR10, VGGFace2_c1000 and ImageNet datasets by the proposed CCF-GAN.
Each row represents one class-conditioned generation.

Table 2: Comparison on the ImageNet. Symbol ∗ denotes
that the results are reported from [19], whereas † from [15],
‡ from [21] and ∗∗ for [20]. Otherwise, we ran the available
codes by the corresponding default settings.

ImageNet
Method

FID IS

BigGAN [4] 22.77† 38.05†

ContraGAN [20] 19.69∗∗ 31.10∗∗

ACGAN [37] 184.41† 7.26†

TACGAN [15] 23.75† 28.86†

ReACGAN [21] 13.98‡ 68.27‡

ADCGAN [19] 16.75∗ 55.43∗

CCF-GAN (Ours) 11.34 180.84

FID against all the compared methods. Similar results can
be also concluded in Table 2, whereby the proposed CCF-
GAN achieved the value 11.34 of FID by training under the
batch size of 256 for the ImageNet dataset. The IS score of
our CCF-GAN, however, was much remarkable and reached
180.84, almost tripled against the second best ReACGAN.

We further present in Fig. 4 the conditional generation re-
sults of our CCF-GAN. As can be seen from this figure, our
CCF-GAN achieved high-quality image generation. More
importantly, by inspecting each row, the class-wise seman-
tics are obvious and the generated images within each class
are of diversifying content, which verifies that the proposed
CCF-GAN, by incorporating the CF distance measure, is

able to overcome the mode collapse issue. In Fig. 5, the in-
terpolation was performed across different classes, whereby
the interpolation between two different faces is smooth, ver-
ifying the desirable continuity of the latent space learnt by
our CCF-GAN. Qualitative comparisons, together with more
subjective results and analysis, are provided in the supple-
mentary material.

Figure 5: Interpolation across class labels of the proposed
CCF-GAN, which was trained on VGGFace_c1000 dataset.

4.4. In-depth Analysis

Ablation study on k, classifier and ty: Since the number
of t samples, namely, k, plays a crucial role in distinguish-
ing CFs between generated and real distributions, FIDs of
varying k are plotted in Fig. 6-(a). We thus can conclude
that in complicated real-world scenarios, the proposed NCF
effectively resolves cod issue, and k= 256 is sufficient to
be the best among the existing baselines. Another ablation
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k FID

With classifier

Without classifier

6.08

7.48

(a) FIDs with different k (b) FIDs w./wo. classifier

Figure 6: Ablation study on CIFAR dataset. (a) Training
CCF-GAN by varying k. (b) Training CCF-GAN with and
without the classifier.

Table 3: Ablations on different choices on ty .

Fixed ty Uniform ty Gaussian ty

α 0.5 1 10 — —
FID↓ 6.51 6.08 7.02 7.05 7.07

investigates the usage of classifier, as shown in Fig. 6-(b).
As can be seen from this figure, our CCF-GAN can still
achieve conditional generation by directly using the ground-
truth labels as p(yiy |xix) in (11), i.e., without the classifier.
However, training a classifier witnessed improvements on
FIDs in our CCF-GAN, which is in accordance with [5].
Moreover, we also ablated on different choices on ty, in-
cluding fixed linear space rule of range [−α, α], as well as
random samples from uniform and Gaussian distributions.
Table 3 indicates that the proposed CCF-GAN performs well
under ty from different distributions, particularly when ty
was fixed to be [−1, 1].
Analysis on mode collapse: We quantitatively evaluated
the mode collapse of generation by the precision and recall
metrics [45] plotted in Fig. 7. From this figure, we can find
that our CCF-GAN achieved the highest (best) precision and
recall values, and the improvements on the recall were even
more significant, which verifies the capability of relieving
mode collapse of our CCF-GAN.

(a) CIFAR10 (b) VGGFace_c1000

Figure 7: Precision and recall metrics [45] on CIFAR10 and
VGGFace_c1000 datasets.

Improvements on training stability: We further evaluated
the stability by repeatedly training cGANs under different
conditions. For fair comparisons, we disabled the exponen-
tial moving average module and set the discriminator training
step to 1 for all methods. We varied 2 learning rates {0.0001,

FID Thresholds

Su
cc

es
sf

ul
 T

ria
ls

Figure 8: Stability evaluation under 48 conditions. The
horizontal axis represents FID thresholds, and vertical axis
denotes the number of trials whose best FIDs are lower than
the corresponding FID threshold within 100k iterations.

0.001}, 3 batch sizes {32,64,128}, 2 base channel numbers
{64,96}, 2 generator architectures {simple convolution layers
[41], residual blocks [4]} and 2 discriminator architectures
{simple convolution layers [41], residual blocks [4]}, thus
obtaining 48 different challenging conditions. The other pa-
rameters of cGANs were kept by their corresponding default
values. For each method, 48 trials were implemented to train
the model by 100k iterations, corresponding to the 48 condi-
tions. The best FID of each trial was then recorded. Fig. 8
reports the number of successful trails filtered by different
FID thresholds for our and other state-of-the-art methods.
Note that a trail is defined to be successful when its best
FID is lower than the threshold. Therefore, it is obvious that
our CCF-GAN consistently achieved the most numbers of
successful trials given all FID thresholds. The significant
improvement on the training stability verifies the theoretical
completeness and benefits of our CCF-GAN.

5. Conclusion
In this paper, we have proposed a novel CCF-GAN for

consistently improving the conditional generation perfor-
mances on both synthetic and real-world datasets. Different
from the existing cGANs built upon the cross-entropy loss,
our CCF-GAN benefits from the characteristic function (CF),
which processes unique and universal correspondence to a
random variable, even when the random variable does not
possess probability density function. On the basis of the CF,
we have proposed an efficient neural characteristic function
(NCF) network to calculate the difference between CFs with
theoretical completeness. We further explicitly decomposed
the joint distribution by the marginal and conditional distribu-
tions, with classified treatment for different semantics levels.
This way, CCF-GAN has overcome the deficiency of almost
all cGANs of employing the cross-entropy loss. The exper-
imental results have verified that the proposed CCF-GAN
achieved the best conditional generation, whilst significantly
reducing mode collapse and unstablility in cGANs.
Acknowledgments. This work was supported by NSFC
under Grants 62206011, 62250001 and 62231002, and Bei-
jing Natural Science Foundation under Grant JQ20020 and
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