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Abstract

Few-shot video action recognition is an effective ap-
proach to recognizing new categories with only a few la-
beled examples, thereby reducing the challenges associated
with collecting and annotating large-scale video datasets.
Existing methods in video action recognition rely on large
labeled datasets from the same domain. However, this setup
is not realistic as novel categories may come from different
data domains that may have different spatial and tempo-
ral characteristics. This dissimilarity between the source
and target domains can pose a significant challenge, ren-
dering traditional few-shot action recognition techniques
ineffective. To address this issue, in this work, we pro-
pose a novel cross-domain few-shot video action recog-
nition method that leverages self-supervised learning and
curriculum learning to balance the information from the
source and target domains. To be particular, our method
employs a masked autoencoder-based self-supervised train-
ing objective to learn from both source and target data in
a self-supervised manner. Then a progressive curriculum
balances learning the discriminative information from the
source dataset with the generic information learned from
the target domain. Initially, our curriculum utilizes super-
vised learning to learn class discriminative features from
the source data. As the training progresses, we transition
to learning target-domain-specific features. We propose a
progressive curriculum to encourage the emergence of rich
features in the target domain based on class discrimina-
tive supervised features in the source domain. We evaluate
our method on several challenging benchmark datasets and
demonstrate that our approach outperforms existing cross-
domain few-shot learning techniques. Our code is available
at https://github.com/Sarinda251/CDFSL-V

1. Introduction

Even though deep learning is inspired by the biological
brain, in sharp contrast to humans, current deep models rely
on large reservoirs of data to learn. The few-shot learning
problem [4 1] is introduced to close this gap, where a learn-
ing model should generalize solely based on a handful of
training data. In traditional few-shot learning [6], the learn-
ing model is initially exposed to an annotated base dataset,
to learn generic features for the domain of interest. Then,
this model is fine-tuned on a few labeled examples (sup-
port samples) of the test dataset and consequently evaluated
on unlabeled test examples (query samples). However, this
classic pipeline assumes the base and test datasets are from
the same domain, thus closely related [35].

To mitigate this shortcoming, cross-domain few-shot
learning (CDFSL) was proposed in [12], where the base
dataset is from a different domain than the test data. Inter-
estingly, it is shown in [25] that standard transfer learning—
consisting of pre-training on the base dataset and fine-
tuning on test data— can significantly outperform few-shot
learning methods in the cross-domain few-shot learning
problem. Recently, extra unlabeled test examples were in-
corporated in addition to the base dataset in [28, 16] . Their
approaches push forward cross-domain few-shot learning
performance. In this paper, we follow this recent adapta-
tion of CDFSL.

While few-shot learning is widely studied in the com-
puter vision community [26], video few-shot learning is
less explored [4]. To the best of our knowledge, current
methods in cross-domain few-shot learning are solely fo-
cused on image data. In this work, for the first time, we
study cross-domain few-shot learning in the video domain.
A common scheme in video few-shot learning [45] utilizes
an implicit assumption about video data, such as: a common
mode of variation, similar temporal dynamics, or class dis-
tinctive features. However, in cross-domain few-shot learn-
ing, the base dataset can be drastically different from the
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Figure 1: On the left, we have the existing benchmark for CDFSL in the image domain. On the right, we present our
proposed benchmark for CDFSL in the video domain. Our benchmark includes tasks from diverse target datasets, which
require recognizing novel actions from different data distributions (UCF101, HMDBS51), strong temporal reasoning (SSV2),
atypical action understanding (RareAct), and fine-grained temporal understanding (Diving48).

target data, For instance, the RareAct dataset [22] contains
atypical actions which significantly deviate from the com-
mon actions present in the standard video datasets in terms
of spatio-temporal dynamics, and the Diving48 dataset [2 1]
contains temporally fine-grained actions which have very
similar spatial layout. Therefore, it is challenging to apply
standard video few-shot learning methods to these datasets.

In the context of cross-domain few-shot learning, super-
vised pre-training on the source dataset has emerged as a
common first step for most techniques [28, 16]. This is be-
cause a strong source backbone can significantly contribute
to the overall performance of the model [25]. However,
simply relying on supervised pre-training may not be suf-
ficient, especially when the target domain is substantially
different from the source domain. To address this, in this
work we propose to perform self-supervised pre-training on
both source and target data to learn generic features. To be
particular, we use recently proposed masked auto-encoder
based [36] feature learning to learn generic features which
are highly scalable and show better generalization perfor-
mance. Nevertheless, the challenge remains on how to bal-
ance the learning of generic features (from source and target
domain) and class discriminative features from the source
dataset.

To this end, we propose a curriculum learning scheme by
designing a progressive curriculum that balances learning
the discriminative information from the source dataset with
the generic information learned from the target domain. In
the initial phase of the training, our curriculum utilizes su-
pervised cross-entropy loss to learn class discriminative fea-
tures from the source data. As the training progresses, we
strive to transition to the target domain through learning dis-
criminative features in the target domain. To achieve this,
we devise a schedule that increases the weight of a con-
sistency loss to help with this transition. We conduct ex-

tensive experiments to demonstrate the effectiveness of our
proposed approach on various benchmark datasets. Our ex-
periments show significant improvements in cross-domain
few-shot action recognition performance.

In summary, our work makes the following major contri-
butions,

* We propose a new, challenging, and realistic prob-
lem called cross-domain few-shot learning in videos
(CDFSL-V).

* We propose a novel solution based on self-supervised
feature learning and curriculum learning for this chal-
lenging problem, which can address the difficulties as-
sociated with CDFSL-V by striking a balance between
learning generic and class-discriminative features.

* We conduct extensive experimentation on multiple
benchmark datasets. Our proposed method outper-
forms the existing methods in cross-domain few-shot
learning, as well as, strong baselines based on transfer
learning.

2. Related Work

Few-Shot Classification Few-shot Learning methods
can be split into two main categories: Meta-Learning and
Transfer Learning [27]. Meta-Learning [32, 3 1] framework
provides a very common technique for few-shot learning al-
gorithms, where the training procedure mimics the evalua-
tion procedure. Just as few-shot evaluation consists of mul-
tiple few-shot episodes on the target test set, meta-learning
techniques train a model in an episodic fashion on a meta-
train set. In meta-learning this is done to encourage fast
adaptation on the meta-test set. The other main approach
in few-shot learning is Transfer Learning, where a model is
pretrained on the source dataset before being fine-tuned on
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the target data for few-shot evaluation [35, 19, 40, 6]. Meth-
ods that use transfer learning aim to leverage as much infor-
mation as possible from the source dataset in order to pro-
duce easily transferrable features to be adapted to the target
dataset. Both methods assume some degree of similarity be-
tween the source and target datasets, hinging on the idea that
features that can discriminate classes in the source domain
can also discriminate classes in the target domain. When
moving from images to videos, the introduction of tempo-
ral information adds to the difficulty of the task. OTAM [4]
uses temporal alignment to improve few-shot classification
for videos, using a distance metric to compare frames of the
queries and the support set. STRM [34] introduces a spatio-
temporal enrichment module to look at visual and temporal
context at the patch and frame level. HYSRM [39] uses a
hybrid relation model to learn relations within and across
videos in a given few-shot episode. Our method focuses on
training an encoder with generalizable features by leverag-
ing unlabeled target data during training through both self-
supervised learning and enforcing a consistency loss mod-
erated by curriculum learning.

Self-Supervised Learning Self-supervised learning has
been shown to improve performance when combined with
supervised learning by creating more transferable features
[36]. These more generalizable features are extremely im-
portant in the cross-domain few-shot classification task, due
to the domain gap and scarcity of labels. For self-supervised
video classification, existing methods use contrastive learn-
ing to improve learning visual representation, at the cost of
increased data augmentation and batch sizes [37, 23, 43, 1].
Masked auto-encoders [ 4] mask patches of an image and
attempt to reconstruct the missing parts. VideoMAE [36]
extends this to video by adding space-time attention via
a ViT backbone, providing a data efficient solution so the
self-supervised video pretraining. We use VideoMAE as
the backbone of our method.

Curriculum Learning Curriculum learning involves
prioritizing easier samples (or tasks) during training before
increasing the weights of the more difficult samples [2].
Typically, training examples are sorted by a difficulty met-
ric, and used to create mini-batches of increasing difficulty
for training the model [13]. This method has shown success
when applied in computer vision, specifically when used
with transfer learning [42].

For our problem setup we work with two datasets,the la-
beled source dataset and the unlabeled target data (for which
we generate pseudo-labels), simultaneously during training.
In our method we leverage curriculum learning such that we
focus on the large labeled source dataset at the beginning of
training, and eventually shifting towards equal weighting of
the source and target losses.

Cross-Domain Few-Shot Learning Similar to open-
world semi-supervised learning [3, 11, 30, 29] that allows

semi-supervised learning methods to perform on loosely re-
lated domains, the cross domain few shot learning frame-
work permits base and test data that belong to different do-
mains. BS-CDFSL [12] introduces a benchmark for the
Cross-Domain Few-Shot problem for images. It consists of
minilmageNet as the source dataset, and four target datasets
of increasing difficulty: CropDisease [24], EuroSAT [15],
ISIC [7], and ChestX [38]. STARTUP [28] attempts to solve
this problem by learning a teacher model on the source
dataset that is applied to generate pseudo-labels for the tar-
get dataset. Eventually, a new model on both the labeled
source set and pseudolabeled target set is trained. Dynamic
Distillation [16] improves upon this by updating the teacher
model as a moving average of the student’s weights. Both
of these methods exhibit redundancy in the supervised train-
ing across their stages that we strive to eliminate in our ap-
proach.

While source-target dataset pairs such as UCF-HMDBS51
from the SDAI Action II dataset [9] and the UCF-
OlympicSport datasets [17] have been proposed [£8], these
dataset pairs share classes across domains, which is not
representative of the CDFSL problem. We take inspira-
tion from the BS-CDFSL benchmark and use Kinetics-100
[44] as our source, with UCF101 [33], HMDBS51 [20],
Something-SomethingV?2 [10], Diving48 [21], and RareAct
[22] as our datasets. We ensure that we remove any class
overlap between the source and target datasets.

3. Methodology

This section elaborates on our approach to tackle the
CDFSL problem in the video domain. At the core of our
method, we learn features from the source and target data
in a supervised and self-supervised fashion, respectively.
Furthermore, we propose a progressive curriculum to en-
courage the emergence of rich features in the target do-
main based on class discriminative supervised features in
the source domain. In the following, first, we discuss our
problem formulation (Sec. 3.1). After that, we present
our approach involving self-supervised feature learning and
curriculum learning (Sec. 3.2).

3.1. Problem Formulation

The Cross-Domain Few-Shot Video Classification task
requires the classification of an unlabeled query video be-
longing to the target dataset Dr. A large labeled source
dataset Dg is available during training. Dg and Dp have no
shared classes, and usually have a significant domain gap.
The unlabeled training split of D is leveraged during train-
ing, denoted as Dr,,. For evaluation, multiple Few-Shot
episodes are sampled from the testing split of Dr. These
episodes consist of a small labeled support set S C D,
consisting of a few labeled samples of each target class in
the episode, and a disjoint query set @ C Dy to be classi-

11645



fied. In the V-way K-shot classification setting, Q and S
share the same N classes sampled from Dr with S having
K labeled examples for each class.

3.2. Approach

3.2.1 Self-Supervised Feature Learning

A fundamental challenge in solving few-shot problems is
learning generalizable representations. A successful repre-
sentation learning method is based on self-supervised learn-
ing, therefore, it has been readily applied to few-shot learn-
ing problem. Even though, it has yet to be applied in CDFS
learning. Following the success of VideoMAE, to extract
strong representations from video data we apply VideoMAE
model in our Pretraining phase. To this end, a rich set of
features are extracted from a combination of the source and
unlabeled-set of target dataset Dg | J Dry,. After this step,
the encoder model from VideoMAE, f, is utilized as our
primary feature extractor.

3.2.2 Curriculum Learning

Next, in our framework, we further improve the quality of
the extracted features with the help of the ground-truth la-
bels of the source data. To this end, we train a classifier g on
top of f, where this classifier outputs the number of classes
equal to the classes in the source domain. Training a classi-
fier in such a supervised manner makes the self-supervised
representation more compact and class discriminative, par-
ticularly in the source domain. Ideally, we want to achieve
the same in the target domain. However, doing such is dif-
ficult without accessing the ground-truth labels in the target
domain. To overcome this challenge and to better utilize
the target data, we minimize a consistency loss for the unla-
beled target samples. This consistency loss is minimized at
the output space of the source domain where pseudo-labels
are generated using a teacher network.

Supervised Representation Learning To extract the dis-
criminative features from the source dataset, we first train a
student model f; based on a supervised loss on the labeled
source data. We use the commonly used cross-entropy loss
as the supervised loss, Ly, defined in the following,

Lsup :ﬁCE(Softmax(fs (Xi))7 yl)
M

= — Zyi log(Softmax(fs(x;))), (D)

=1

where, x; € Dg, M = |Dg|, and y; is the ground-truth
label. The learned discriminative features provides us with
more generalizable features to the target domain.

Unsupervised Representation Learning For the unla-
beled data from target domain, we apply pseudo-labels to
increase generalizability of the learned features in an unsu-
pervised fashion. To this end, after obtaining the pseudo-
labels we compute a consistency loss. The consistency
loss ensures that the representations from the student model
match the representations from a teacher network. We cre-
ate a teacher model f; by taking an exponential moving av-
erage of the student model in the following manner,

FD = aff 4 (1 - a) fiHY, )

where, « is the exponential decay parameter, ¢ refers to ith
iteration.

This consistency loss ensures that the f predictions for
unlabeled target data match with the pseudo-labels gener-
ated from f;. Additionally, following the success of DINO
[5] we want to extract features that can learn a local-to-
global relationship between data. To this end, each batch
of unlabeled target data X &€ Dy, is transformed into
two separate sets to make strong and weak augmented
copies of the batch: X, and X,,.qrx. To be specific,
we use temporally consistent RandomResizeCrop and
RandomHorizontalFlip as a set of weak augmentations,
while the set of strong augmentations consists of tempo-
rally consistent RandomColorJitter, RandomGreyscale,
and RandomGaussianBlur in addition to the set of weak
augmentations.

To compute the consistency loss, first the weakly aug-
mented unlabeled target data is passed through the teacher
model to get the teacher outputs f:(Xyeqr). These outputs
are then sharpened by a temperature 7 to form pseudo-labels
for the target data after performing the Softmax operation.
The consistency loss is a cross-entropy loss between the stu-
dent outputs of the strongly augmented videos f,(X¢,-) and
the sharpened teacher outputs which is defined in the fol-
lowing,

Leon = — Y _ Ylog(Softmax(fs(Xsir))),  (3)

where, Y = Softmax(f;(Xuweak)/7)-

The overall training objective for updating the param-
eters of the student network is a weighted average of the
Supervised and the Consistency losses, defined in the fol-
lowing,

Etotal = Esup + )\Econa (4)

where, the consistency loss scaling parameter A controls the
relative contribution of consistency loss to the total loss.
While previous CDFS methods have applied both super-
vised loss and consistency loss, they applied them in sep-
arate stages [16, 28]. One of the unique characteristics of
our approach is to combine these losses through curriculum
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learning, which not only simplifies the training pipeline but
also improves performance.

In our curriculum, we adjust the difficulty of the con-
sistency through tuning its scaling parameter A following a
pre-defined curriculum. In particular, at the beginning of
training, we set the consistency loss scaling parameter, A,
to a very low value. This makes the beginning of the train-
ing similar to performing supervised training solely on the
source dataset. As the training progress, we emphasize the
importance of consistency by increasing A over the course
of the training, which encourages the emergence of local-
to-global features that can potentially generalize better in
the target domain. Additionally, to facilitate the transition
from the source domain to the target domain, we decay the
learning rate of the classifier in the student model over the
course of training. Initially, this classifier is trained at the
same rate as the rest of the student model. This learning rate
is decreased over the course of training to emulate freezing
the classifier after supervised training on the source data.
Once the training is complete, the student model is kept and
the classifier is discarded. Using the labeled support set of
the target data, a new logistic regression layer ¢’ is learned
on top of the student model. The model can now be used for
inference on the target query images. The entire procedure
is summarized in Algorithm 1.

Algorithm 1 Curriculum Learning for CDFSL-V

fs» ft: student, teacher model with parameters 6, 6;.
T: teacher temperature
«: momentum rate to update teacher
for (x5, ys), X; in loader do
sample x,y, from base data
sample x; from target data
Lsup = ﬁCE (fe (Xs); ys)
Xweaks Xstr = WeakAUg(Xt)v StrongAug(xt)
outy, s = fi(Xweak ), Softmax(fs(xst)) > teacher
logits and student pseudo-labels
py = Softmax(outs /7, dim = —1).detach() >
sharpen + stop-grad
ﬁcon = ACCE(psapt)
Etotal = Esup + )\Ccon
98 — 93 + Bveb £total
Ht — a@t + (1 — 0&)95
end for

> consistency loss

> update student
> update teacher

4. Experiments

In this section we evaluate our proposed method with
strong transfer learning baselines and the recent techniques
applied in cross-domain few-shot learning. For a thorough
comparison, we utilize a variety of target domains to capture
performance of different methods when encountering a va-
riety of cross-domain scenarios. Our main result is that our

approach outperforms existing sate-of-the-art cross-domain
few-shot learning techniques. Finally, we conduct an abla-
tion and analyse the significance of different components of
our approach.

4.1. Datasets

We use the Kinetics-100 [44] train split as our Source
dataset. It contains 100 of the original dataset further split
into 64, 12, and 24 class subsets for train, validation, and
test, respectively for few-shot action recognition. We also
conduct experiments on the larger Kinetics-400 [18] (Ta-
ble 1). Due to class overlap between Kinetics and two of
our target datasets, UCF101 and HMDBS51, we remove the
overlapping classes from the source dataset. Without this
removal, the supervised training on shared classes between
the source and target datasets would be an unfair repre-
sentation of the Cross-Domain Few-Shot problem setting.
The target datasets in the order of increasing difficulty are:
UCF101, RareAct, HMDBS51, Something-SomethingV2,
and Diving48. UCF101 and HMDBS51 are most similar
to Kinetics datasets in terms of domain gap. They even
have overlapping classes that needed to be removed in or-
der to make them appropriate target datasets However, that
is not the case for the other target datasets. For instance, the
Something-SomethingV?2 dataset has 87 classes, consisting
of actions doing ‘something’ to ‘something’. This dataset
primarily contains zoomed-in videos focusing on the object
instead of the person which is generally not the case for ac-
tions present in the actor-centric Kinetics dataset. Diving48
on the other hand is a dataset for fine-grained action recog-
nition with 48 different dives, each comprised of different
sequences of complex sub-actions. The RareAct is very
different from all other source and target datasets since it
contains unusual actions like ‘blend phone’ and is generally
used for evaluating few/zero-shot action compositionality.
For evaluation, we compute the 5-way 5-shot accuracy on
the test-split for each target dataset.

4.2. Experiment Details

We use the encoder network from VideoMAE with a
ViT-S backbone for our feature extraction. For videos we
sample 16 frames at a 112 x 112 resolution. We train on
the combined training data of both the source and target
datasets without labels for 400 epochs at a batch size of
32 using SGD optimizer at a learning rate of 0.1. After
initializing the student and teacher models using the Video-
MAE encoder, the student is trained for 200 epochs on the
combined supervised and consistency losses. The student
is updated directly using SGD with a learning rate of 0.01,
and the teacher is updated as a moving average of the stu-
dent weights with a momentum of 0.9. The teacher output
is sharpened at a temperature of 0.1 to be used as pseudo-
labels for the student output on the unlabeled target data.
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Figure 2: Our goal is to solve the cross-domain few-shot learning task for the target dataset, leveraging the labeled base
dataset alongside unlabeled target data. Our method three three stages: 1: Self-supervised pretraining of an autoencoder
on both the source and target data without labels is performed. 2: The encoder is used to initialize a student and teacher
model for curriculum learning. We compute a supervised loss on the labeled source data. For the consistency loss, we
generate pseudo-labels using the sharpened teacher output for weakly augmented target images. The pseudo-labels are then
used with the student output on strong augmentations of the same images to calculate the consistency loss. The supervised
and consistency losses are both used to directly update the student, while the teacher is updated as a moving average of the
student’s weights. 3: for few-shot evaluation, the student classifier is replaced with a few-shot classifier that is fine-tuned on
the labeled target support set. This classifier can then be used to classify the target query images.

The batch size used for the curriculum learning stage is 16. !
—=—- UCF101

Over the course of training, we set the consistency loss scal-
ing parameter, \ as: 60| [—&- SSV2 B
HMDB51
N — arctan(10(z — .5)) L5 5) —5— RareAct
™
where z is the ratio of current epoch to total epochs in train- 40 - |
ing. This reduces the weight of the consistency loss signifi- gl

cantly in the start of training, while making it on par with the
supervised loss towards the end. Similarly, the learning rate
for the student classifier head (the classifier layer follow-
. . _arctan(—10(z—.5)) 20 |
ing f,) decayed according to Ay = —————— +.5.

so that the classifier head learns primarily from the super- ‘ ‘ ‘ ‘
vised loss early on and effectively freezes towards the end K100 K200 K300 K400
of training.

) ) ) Figure 3: Results with varying size of source data.
For few-shot adaptation, the student encoder is retained

and the student classifier head is discarded. We then learn a
new logistic regression classifier on top of the encoder using
a sampled 5-way 5-shot support set from the target testing
data. We report the accuracy on the remaining testing data Random initialization is used as the baseline for this ex-
for the selected classes. periment and entails learning a logistic regression classi-

4.3. Kinetics-400 Experiment

11648



| Method | UCF101 | SSV2 [ HMDB51 | Diving48 | RareAct | Average |
Random Initialization 23.83 [ 16.02 12.08 15.37 16.57 16.78
STARTUP++ 60.82 | 39.60 44.71 14.92 45.22 41.05
Dynamic Distillation++ 63.26 44.50 48.04 16.23 47.01 43.81
STRM 4233 | 35.01 24.98 16.69 39.01 31.60
HYRSM 45.65 | 40.09 29.81 17.57 44.27 35.49
Ours 65.42 | 49.92 53.23 17.84 49.80 47.24

Table 1: 5-way 5-shot Accuracy using Kinetics-400 as the source dataset. We use STARTUP++ and Dynamic Distillation++
to denote that these methods include self-supervised pretraining, despite being used in their original papers.

\ Method, Source Dataset: Kinetics-100 \ UCF101 \ HMDBS51 \ SSV2 \ Diving48 \ RareAct \ Average \

Equal Loss Weighting 32.02
No Temperature Sharpening 34.01
Self-Supervised Training 37.54
Supervised Training 32.06
Ours 36.53

27.39 15.34 16.07 33.67 24.90
28.18 15.21 16.77 33.80 25.59
25.09 16.21 17.14 29.58 25.11
23.86 14.40 16.16 31.15 23.53
29.80 17.21 16.37 3391 26.82

Table 2: The effect of removing different components of our proposed method.

fier on top of an untrained VideoMAE encoder. We com-
pare our method to two Cross-Domain Few-Shot methods
for images, as no other methods exist to solve the CDFSL
problem for videos. For this experiment, we include
self-supervised pre-training for Dynamic Distillation and
STARTUP, denoting them as Dynamic Distillation++ and
STARTUP++, respectively. In addition, we compare our
method to two Few-Shot methods for Videos: STRM [34]
and HYRSM[39]. Our method outperforms the previous
state-of-the-art method, Dynamic Distillation [16], across
all 5 target datasets while using the Kinetics-400 dataset
as the source. Additionally, the absolute improvement in
classification performance is consistent with the aforemen-
tioned relative difficulty of each of the target datasets, with
Diving48 improving the least.

Our main result is that we do better than existing CDFSL
methods for images, as well as the Few-Shot methods for
videos. As shown in Table [18], We outperform Dynamic
Distillation by 2.2% on UCF101, 5.2% on HMDBS51, 5.4%
on SSV2,2.7% on RareAct, and 2.8% on Diving48, averag-
ing to a 3.4% increase. Compared to STARTUP, STRM, and
HYSRM our method outperforms by 6.19%, 15.64%, and
11.8%, respectively. Interestingly, even our modified im-
age baselines (STARTUP++ and Dynamic Distillation++)
outperform these video few-shot methods, highlighting the
inadequacy of traditional video few-shot approaches for this
challenging Cross-Domain Few-Shot problem.

4.4. Kinetics-100/200/300 Experiments

We repeat the experiments using Kinetics-100, Kinetics-
200, and Kinetics-300 as the source datasets. We com-
pare our method’s performance across these varying source
datasets. In this experiment, we evaluate how the increase in
the number of classes in the source dataset impacts perfor-

mance. As shown in Fig 3, increasing the size of the source
dataset consistently improves performance on all datasets.

4.5. Ablation and Analysis

In this section we analyze the importance of different
components of our approach. Particularly we study the ef-
fect of increasing the size of the source dataset, the effect of
sharpening temperature, and the impact of curriculum learn-
ing on the performance of the method.

Increasing the size of the source dataset In few-shot
learning and transfer learning literature, it is common to
utilize a source domain with a significantly larger number
of classes than the target domain [12]. A dataset with a
larger number of classes can capture a more diverse set
of features which facilitates its application on less diverse
datasets. For example, in the BS-CDFSL benchmark for
images, minilmageNet, the source dataset, has 100 classes.
The target image datasets: CropDisease, EuroSAT, ISIC,
and ChestX have 38, 10, 5, and 15 classes, respectively. In
that setup, the source dataset has over double the amount
of classes of the largest target dataset. In comparison, the
source dataset in our video benchmark has 61 classes, which
is less than two of the target datasets: UCF101 with 101
and Something-SomethingV2 with 87. In this experiment,
we explore the impact of the size of the source dataset in
CDFSL. To be more specific, we apply the larger Kinetics-
400 dataset instead of Kinetics-100 as the source.

Both STARTUP and Dynamic Distillation make use of
supervised pretraining on the source dataset. For the ex-
periments on Kinetics-400, we supplement the pretraining
stages of both methods with self-supervised pretraining as
well to highlight the effect of our curriculum-based sched-
ule. In Table 1, We observe a drastic improvement in the
performance when we utilize a more diverse source dataset.
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Figure 4: Temperature parameter experiments. We use Kinetics-100 as the source dataset and vary the sharpening temperature
for the teacher pseudo-labels. As the temperature increases (and sharpness decreases) the performance tends to decrease.

Interestingly, we further notice an increase in the relative
performance of our method to Dynamic Distillation.

Temperature Sharpening Analysis As in STARTUP
[28], we want to leverage the unlabeled target data during
training by using a consistency loss. We use the teacher
model to create the ground truth for this loss, dividing the
teacher output by the temperature parameter T to sharpen it
and use as pseudo-labels. Similarly to Dynamic Distillation
[16], sharpening of the labels is used to develop low-entropy
predictions from the student.

We study the impact of temperature sharpening by set-
ting the temperature parameter to 1 (with the default value
taken from Dynamic Distillation being 0.1), making the
teacher output completely unsharpened. As shown in sec-
ond row of Table 2, removing the temperature sharpen-
ing reduces performance in almost all datasets (the excep-
tion being Diving48 with a 0.4% increase) with an aver-
age decrease in performance of 1% compared to our origi-
nal method. We can see that temperature sharpening has a
slight but positive impact when used with our CDFSL prob-
lem setup for videos.

Pretraining Baselines It has been shown that pretrain-
ing contributes a significant part to few-shot learning [25].
To examine how much of the performance is attributed to
this, we compare some established transfer learning base-
lines with multiple pretraining configurations followed by
few-shot adaptation. Self-supervised training refers to only
self-supervised training on the combined source and target
datasets without labels, and supervised training is simply
training on the labeled source dataset. In rows 3 and 4 of
Table 2, we can see the contribution of each of the pretrain-
ing techniques. For most of the datasets, only using self-
supervised pretraining outperforms using supervised pre-
training, with the exception being RareAct. On average,
our method performs 1.7% over the self-supervised base-
line and 3.3% over the supervised baseline.

Impact of Curriculum Learning The motivation be-
hind curriculum learning is to ease the training of the model
by focusing more on easier data first. For our problem setup

where we leverage unlabeled target data alongside the la-
beled source, we begin with focusing more on the super-
vised source loss as it is an easier task than matching tar-
get videos to pseudo-labels in the source domain. Once the
model has sufficiently learned relationships from the source
dataset, the importance of the target consistency loss can
increase to help improve the adaptation.

We use A.ons to scale the consistency loss during train-
ing, as shown in Eq. 5. To analyze the effect of enforcing the
curriculum scaling, we compare keeping A.o,s at 1 for the
entirety of training and making both supervised and consis-
tency losses weighted equally the whole time. Additionally,
we train our model at temperatures of 0.5, 1.5, 5, and 10 as
shown in Figure 4. Weighting both losses equally results in
an average drop in performance of 1.6%. We see that using
curriculum learning improves the performance.

5. Conclusion

In this paper, we addressed the problem of cross-domain
few-shot action recognition in videos, which is a challeng-
ing and realistic problem with several practical applica-
tions in fields such as robotics. We proposed a novel ap-
proach based on self-supervised feature learning and cur-
riculum learning to address the challenges associated with
this problem. Our approach strikes a balance between learn-
ing generic and class-discriminative features, which sig-
nificantly improves the few-shot action recognition perfor-
mance. We conducted extensive experiments on various
benchmark datasets, where our proposed method outper-
forms current cross-domain few-shot learning methods in
the image domain and few-shot learning methods in the
video domain. Our work contributes to the computer vision
community by introducing a new problem and providing a
novel solution to address it. We hope that this work will in-
spire further research in this direction and help advance the
state-of-the-art in few-shot action recognition.
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