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Abstract

Unsupervised anomaly detection is widely studied in in-
dustrial applications where anomalous data is difficult to
obtain. In particular, reconstruction-based anomaly detec-
tion can be a feasible solution if there is no option to use
external knowledge, such as extra datasets or pre-trained
models. However, reconstruction-based methods have lim-
ited utility due to poor detection performance. A score-
based model, also known as a denoising diffusion model,
recently has shown a high sample quality in the gener-
ation task. In this paper, we propose a novel unsuper-
vised anomaly detection method leveraging the score-based
model. The proposed method shows promising performance
without requiring external knowledge. The score, a gradi-
ent of the log-likelihood, has a property that is available
for anomaly detection. The samples on the data manifold
can be restored instantly by the score, even if they are ran-
domly perturbed. We call this score-based perturbation re-
silience. On the other hand, the samples that deviate from
the manifold cannot be restored in the same way. The vari-
ation of resilience depending on the sample position can
be an indicator to discriminate anomalies. We derive this
statement from a geometric perspective. Our method shows
superior performance on three benchmark datasets for in-
dustrial anomaly detection. Specifically, on MVTec AD, we
achieve image-level AUROC of 97.7% and pixel-level AU-
ROC of 97.4% outperforming previous works that do not
use external knowledge.

1. Introduction
Anomaly detection is an important task in the manufac-

turing industry. It finds its usage in production lines, such as
quality control through defect inspection. Consistent qual-
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Figure 1. Illustrations of the proposed method (Left) and the
reconstruction-based method (Right) for unsupervised anomaly
detection. The pink gradation solid line and dotted line denote
the negative log-likelihood and the manifold estimated by the re-
construction model, respectively.

ity control can be ensured by an automated anomaly detec-
tion system which reduces human labor and prevents the de-
crease in attention spans. Supervised anomaly detection is a
simple approach. However, sometimes, the supervised ap-
proach is not feasible in practical applications due to various
reasons. On real-world manufacturing lines, abnormal sam-
ples are rare. As a result, only a few abnormal samples are
available. Because abnormal samples are irregular and have
a large diversity, identifying abnormal patterns with a small
amount of data is difficult. Moreover, obtaining accurate
ground truth is time-consuming and requires experts with
domain knowledge. Thus, gathering an adequate dataset for
training the supervised method is impractical. Therefore, an
unsupervised approach that detects abnormal samples using
only abundant normal samples is widely used. The unsu-
pervised approach to anomaly detection encourages learn-
ing useful features from only normal samples, with no prior
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knowledge of abnormality. This approach is used not only
in the manufacturing industry but also in medical diagnos-
tics [53, 30, 10], video surveillance [36, 21, 13], and au-
tonomous driving [18, 44, 15].

Recently, various unsupervised approaches have been
introduced. Embedding-based methods and synthetic
anomaly-based methods utilize pre-trained models with
large datasets, such as ImageNet, and artificially synthe-
sized anomalous data, respectively, instead of specific su-
pervision. These methods have shown remarkable detec-
tion performance in industrial benchmarks. However, de-
spite their superior performance, a limitation remains in that
the transferability of leveraged external knowledge needs to
be verified with some degree of priori. The reconstruction-
based approach can be another good alternative. The right
side of Figure 1 schematically shows this approach from a
geometrical perspective. The reconstruction model, such as
a variational auto-encoder, is trained to mimic the mapping
function from latent space, also known as feature space, to
the data manifold. A difference between the original sam-
ple and the sample reconstructed by a reconstruction model,
denoted by reconstruction error, is used as a discrimina-
tive measure for anomaly detection. The latent space of
the model can reflect only the representation of data used
to train. Therefore, for unseen anomalous samples, the re-
construction error will be larger than for normal samples.
Not only is this approach theoretically intuitive and reason-
able, but it is also practically versatile in that it requires little
external knowledge.

We propose an unsupervised anomaly detection method
using a score-based model. Score-based models have at-
tracted significant attention in the field of data generation
because of their capability to produce high-quality sam-
ples. There are previous studies utilizing this model for
anomaly detection in the medical imaging field [47, 45].
They have shown impressive results. However, the denois-
ing diffusion process involved in their proposed method is
time-consuming, making it difficult to apply to manufac-
turing industries that require real-time processing. Instead,
we have found an inherent property of the score, a gradient
of the log-likelihood, that is available to detect anomalies.
The score can immediately restore the samples on the data
manifold, even if perturbed randomly. We call this score-
based resilience to perturbations. On the other hand, it is
impossible for the samples that deviate from the manifold
to be restored through the score. The left side of Figure 1
shows this principle. The variation of resilience depending
on the sample position can be a discriminator for anomaly
detection. We introduce the stochastic measure, restoration
error, to quantify the resilience of the observed sample. The
restoration error is defined as an expectation of the distance
between the restored sample after being perturbed and the
original sample.

Our key contributions are summarized as follows:

• We propose a novel approach leveraging a score-based
model for unsupervised anomaly detection. The pro-
posed method requires no external knowledge, such as
pre-trained models or extra datasets.

• Interpreting a score function from a geometric view,
we support the theoretical reasonability that score-
based resilience to perturbation can be available for
anomaly detection. In addition, we introduce a
stochastic measure, restoration error, to quantify re-
silience.

• Conducting experiments on public benchmark
datasets, MVtec AD, BTAD, and MPDD, for indus-
trial anomaly detection, we show that our method
can achieve outperforming results in an unsupervised
setting.

2. Related Works
2.1. Reconstruction-based Methods

The core assumption of reconstruction-based methods is
that a model trained only on normal samples cannot ac-
curately reconstruct an abnormal region. They use auto-
encoders [9, 37], variational auto-encoders [7, 19], and gen-
erative adversarial networks [28, 1, 2] for image reconstruc-
tion. The error between the input image and the recon-
structed image is used to calculate the anomaly score. How-
ever, it often fails to detect abnormal regions, due to a well-
generalization of neural networks. RIAD [50] and InTra
[23] proposed integration with the inpainting task to avoid
generalizing to abnormal regions. The MemAE was pro-
posed in [9], MemAE introduced memory modules to avoid
the generalization problem. VAE-grad [7] proposed an ap-
proach using gradient descent to the energy derived from the
loss function of auto-encoders. TrustMAE [37] is an im-
provement to MemAE. CAVGA [40] identifies anomalies
as convolutional latent variables to preserve spatial infor-
mation. MetaFormer[46] uses meta-learning to tackle the
issues of model adaptation and reconstruction gap.

2.2. Embedding-based Methods

In embedding-based anomaly detection, the anomaly
score is based on the distance between the embedding vec-
tors of the normal sample and the test sample. The dif-
ference between embedding vectors is measured using Eu-
clidean distance, Mahalanobis distance, Gaussian distribu-
tion, KNN, etc. Deep-SVDD [27] finds the smallest hy-
persphere that wraps around the normal data and identifies
anomalies based on Euclidean distance between its cen-
troid and the embedding vectors of test samples. Patch-
SVDD [48] extended Deep-SVDD to detect anomalies at
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Figure 2. Overview of the geometric interpretation. The cube with a gray dotted outline denotes a neighborhood of the point x on the
manifold M satisfied the linearity. Point x̃ is a perturbed point by a random vector σϵ from x. Vector σϵv and σϵu denote the perpendicular
and tangential element of σϵ with respect to M, respectively. And, PM(x̃) denotes the projected point from x̃ onto M. The gray box with
a black border denotes a normal space NxM ⊥ TxM, where TxM denotes a tangential space. The vector field contained in the box with a
black and gray border on the right side represents a score function on NxM.

the patch level. Recent works [5, 6, 25] take advantage
of the powerful feature extraction of pre-trained models.
SPADE [5] utilizes hierarchical features extracted from pre-
trained models and pixel-wise k-Nearest Neighbors algo-
rithm for anomaly detection. PaDiM [6] uses features from
several layers of a pre-trained model and multivariate Gaus-
sian distributions to model the distribution of normal sam-
ples. The Mahalanobis distance is then used as an anomaly
score. SPADE and PaDiM are known as memory bank-
based methods. These methods require a complex feature
matching process for inference. To reduce the complexity
of inference, PatchCore [25] introduces greedy coreset sub-
sampling [31] to reduce redundancy in patch-level memory
banks.

2.3. Synthetic Anomaly-based Methods

Recently, methods based on simulated synthetic anoma-
lies have been proposed. For example, CutPaste [17] cre-
ates synthetic abnormal samples by pasting a cropped im-
age patch onto a normal image and learns the representa-
tion by classifying the normal sample. In DRÆM [49],
pseudo anomaly regions are created by combining an ad-
ditional textured image with a random noise mask. The
reconstructive sub-network, then, reconstructs the pseudo
anomaly image, and the discriminative sub-network com-
pares the input image with the reconstructed image to de-
termine the anomaly. In [29], NSA extended CutPaste [17]
approach. NSA integrates Poisson image editing to create a
more natural synthetic abnormal sample.

3. Background

3.1. Data Manifold Hypothesis

The hypothesis that data distribution only has support on
low dimensional structured space, data manifold, embedded
in high dimensional space, ambient space, has become com-
monly accepted in the unsupervised setting. Many algo-
rithms linearly approximating the local region of the under-
lying data manifold have developed, such as Locally Linear
Embedding [26], Isomap [39] and Manifold Parzen Win-
dows [42]. In addition, some algorithms, such as denoising
auto-encoder [43] and Non-Local Manifold Tangent Learn-
ing [3], aim to capture the representation of the data mani-
fold. The studies [32, 34, 11] that have motivated us are also
related to this hypothesis. The manifold has a formal defi-
nition, mathematically, but we exploit only some geometric
properties related to the data manifold.

Suppose that the data X is uniformly distributed on the
manifold M ⊂ Rd = supp(X), and M is a globally
smooth structure. Recall the proposition of unsupervised
anomaly detection that we can deal with only the normal
data. Namely, M denotes the normal manifold. Then, there
exists a vector space of dimensionality l ≪ d, which con-
tains all of the tangent vectors to M at point x ∈ M. The
vector space can be called tangent space and denoted by
TxM. The tangent space is almost the same as a linear ap-
proximation to M at the neighborhood of x. In addition, we
state the set of perpendicular vectors to tangent space at x
as normal space NxM ∼= Rd−l.
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3.2. Score Matching

In unsupervised learning literature, there are a number
of approaches to estimate the density of the data distribu-
tion p(x), or log-likelihood, log p(x). Score matching was
introduced by Hyvärinen to circumvent the computation of
intractable partition function terms contained in paramet-
ric modes often used in machine learning to estimate data
density [12]. Vincent established the connection between
the denoising auto-encoder and the score-matching by prov-
ing the equivalence of the denoising auto-encoder objective
and the score-matching [41]. We use this objective, also
known as denoising score-matching, to learn an approxima-
tion model of the score function.

4. Proposed Method
4.1. Interpretation of Score in a Geometric View

We analyze the connection between a score function and
perturbation from geometric and probabilistic perspectives.
Let x̃ be a perturbed point by random vector σϵ. The prob-
ability distribution of x̃ is

p(x̃) =

∫
p(x̃|x)p(x)dx, (1)

where p(x̃|x) is a perturbation kernel. If we apply a gaus-
sian kernel N(x̃; x, σ2I) to perturbation kernel, the score,
∇x̃ log p(x̃), can be derived as

∇x̃ log p(x̃) =
1

σ2

(
E[x|x̃]− x̃

)
, (2)

where E[x|x̃] =
∫
xp(x|x̃)dx for x given x̃. From the data

manifold hypothesis, we assume that the data is uniformly
distributed on the manifold and the tangent space locally
coincides with the manifold. Holding these assumptions,
the conditional expectation is

E[x|x̃] = PM(x̃), (3)

where PM(x̃) denotes orthogonally projected point onto the
manifold from x̃. This fact implies that a score function of x̃
is an orthogonal projector. We provide the detailed deriva-
tion of Equation 2 and Equation 3 in the supplementary ma-
terial.

4.2. Perturbation Resilience based on Score

Let the sample be resilient to perturbation if it, after be-
ing perturbed, can be restored to its original state by the
score. In the previous section, we have shown that the
score function is the locally orthogonal projector. Let us
set x̃ = x + σϵ, where ϵ denotes the random perturbation
and x ∈ M (i.e. normal sample). Considering the local lin-
earity of M, NPM(x̃)M ≃ NxM. Then, σ∇x̃ log p(x̃) become

Figure 3. Comparison of the perturbation resilience based on the
score function for normal and abnormal samples. The directional
arrows that denote the vectors show the relations between the per-
pendicular element of the random perturbation ϵv and the score
σ∇x̃ log p(x̃) in the normal space NxM. And, x• denotes the de-
viated sample from M (i.e. abnormal sample).

a counterpart of the perpendicular element ϵv of ϵ with re-
spect to M. Thus, the distance between the original point
and the restored point is ∥x − PM(x̃)∥2 = σ2∥ϵu∥2, where
ϵu denotes the tangential element of ϵ with respect to M and
ϵu ⊥ ϵv . For small enough σ, σ2∥ϵu∥2 can be ignored.
The score function, consequently, can restore the perturbed
sample x̃ to the original state x, as shown on the left in Fig-
ure 3, if x ∈ M. In other words, this sample is resilient to
perturbation according to our definition. On the other hand,
we can easily infer that the resilience of x• is even lower
than that of x through the intuition, as shown on the right in
Figure 3, that the score at the perturbed sample x̃• is unable
to compensate for ϵv .

4.3. Score Function Approximation

In high-dimensional space, the perturbation by random
vector (e.g., Gaussian noise) has a gap from our intuition.
As dimensionality d increases, the isotropic gaussian distri-
bution with variance scale σ2 becomes rapidly close to the
uniform distribution on the surface of a ball of radius σ

√
d.

This phenomenon is also known as the Gaussian Annulus
Theorem. For this reason, the distribution of perturbed sam-
ples by single scale variance would be concentrated at a spe-
cific level. In order to avoid the approximation model being
trained only for a specific level, we borrow the perturbation
strategy with multi-scale variance from [34, 11, 33].

Let x̃k denote the noisy data by additive gaus-
sian noise with multi-scale variance σ2

k, where σk =√
(σ2k − 1)/2 log σ for k ∈ (0, 1]. Then, the denoising

score-matching objective is defined as

L(θ) = EpX(x)Ep(x̃k|x)[∥sθ(x̃k, k)− (
x− x̃k
σk

)∥2], (4)

where sθ(x̃k, k) and pX(x) denote the approximation
model conditioned with k and the probability distribution
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of the normal data, respectively. This formula allows the
optimized score model sθ∗(x̃k; k) ≈ σk∇x̃k

log p(x̃k).

4.4. Restoration Error Estimation

We have shown that score-based perturbation resilience
can serve as a discriminative measure for anomaly detec-
tion. Therefore, for the quantification of the resilience of
the sample to perturbation, we introduce the reconstruction
error. Let x̂θ(x; k) = x̃k+σksθ(x̃k; k) be the restored point
by sθ(x̃k; k), where x̃k = x + σkϵ and ϵ ∼ N(0, I). The
variable k for x̂θ(x; k) is constant in the inference phase.
Then, the restoration error of x is defined as

E
[
∥x− x̂θ(x; k)∥2

]
= σ2

k E
[
∥ϵ− sθ(x̃k; k)∥2

]
, (5)

with respect to sθ(x̃k; k). In practice, to localize the anoma-
lous region in x, we introduce the reconstruction error map.
The reconstruction error map eR(x) can be computed by

eR(x)ij = E
[
∥ϵij − sθ(x̃k; k)ij∥2

]
, (6)

where i and j are the pixel index of an image, and eR(x)ij
is (i, j)th elements of eR(x). Since k is a constant, σ2

k

can be omitted. In addition, we apply a spatial smoothing
operation to eR(x). We use this as a discriminative mea-
sure for pixel-level anomaly detection (i.e., anomaly local-
ization). For image-level anomaly detection, max eR(x) is
used. This metric is also, in general, referred to as anomaly
score. Note that this ”score” does not mean the same as the
score mentioned in this paper.

The description of the proposed method is summarized
in Algorithm 1. Although estimating the restoration error
involves multiple prediction as stated in Algorithm 1, it can
be efficiently resolved through parallel processing because
it is not a sequential process. Note that parallel processing
can improve inference speed.

Algorithm 1 Restoration Error Estimation
Input: Optimized score model Sθ∗ , Target sample x,

Num predictions N , Variance scale parameters (σ, k),
Smoothing filter K

Output: Restoration error map eR(x)
Initialisation :

1: h,w, c← height, width, channel of x
2: σk ←

√
(σ2k − 1)/2 log σ

3: eR(x)← 0 ∈ R(h×w)

4: for n = 1 to N do
5: ϵ ∼ N(0, I) ∈ R(h×w×c)

6: x̃k ← x + σkϵ
7: eR(x)ij ← eR(x)ij + ∥ϵij − s∗θ(x̃k; k)ij∥2
8: end for
9: eR(x)← eR(x) ∗ K {∗ : spatial-wise convolution}

10: return eR(x)

5. Experiments

5.1. Datasets

We conduct experiments on a variety of industrial
anomaly detection datasets (MVTec AD [4], Metal Parts
Defect Detection (MPDD) [14], and BeanTech Anomaly
Detection (BTAD) [22]) to demonstrate the effectiveness of
the proposed method.

MVTec AD MVTec AD contains sub-datasets of 15 cate-
gories (textures of 10 and objects of 5). There are 60 to 320
high-resolution images for each category. The image reso-
lutions are in the range between 700 × 700 and 1024 × 1024
pixels. The training set has a total of 3,629 defect-free im-
ages. And, the test set has defect-free images and defect im-
ages of 1,725. The defect types in the test set include cracks,
scratches, broken, and holes. Pixel-level ground truth masks
are also included for each defect image in order to evaluate
anomaly localization performance.

MPDD MPDD is introduced for defect detection of
painted metal parts in 6 categories. The images were col-
lected under various conditions, such as spatial orientations,
distance between objects, position of objects, light lumi-
nance and backgrounds, taking into account the actual man-
ufacturing process. The training set contains 888 defect-
free images and the test set contains 176 defect-free images
and 282 defect images. The resolution is 1024 × 1024 pix-
els.

BTAD BTAD contains a total of 2830 images for three
product categories. Product 01, Product 02, and Product
03 have 400, 1000, and 399 train images respectively. The
resolution of the three product categories is 1600 × 1600
pixels, 600 × 600 pixels, and 800 × 600 pixels, respectively.

5.2. Evaluation Metrics

The area under the receiver operating characteristic (AU-
ROC) is a standard metric for anomaly detection. As in
previous studies [4, 29, 25], we employ image-level AU-
ROC and pixel-level AUROC to measure the performance
of anomaly detection and localization, respectively. We re-
port both individual AUROC for each category and average
AUROC.

5.3. Implementation Details

For experiments, the network architecture and hyper-
parameters are taken almost directly from previous
studies[24, 35]. We use a U-net-based network architecture
with the sinusoidal positional embedding for conditioning
on time steps used in [35]. A detailed description of the

23376



Method Av
er

ag
e

Ca
rp

et

G
rid

Le
at

he
r

Ti
le

W
oo

d

Bo
ttl

e

Ca
bl

e

Ca
ps

ul
e

H
Z

M
N

Pi
ll

Sc
re

w

TB TS Zi
pp

er

With external knowledge
DRÆM[49] 97.3 95.5 99.7 98.6 99.2 96.4 99.1 94.7 94.3 99.7 99.5 97.6 97.6 98.1 90.9 98.8

RD [8] 97.8 98.9 99.3 99.4 95.6 95.3 98.7 97.4 98.7 98.9 97.3 98.2 99.6 99.1 92.5 98.2
PatchCore [25] 98.1 99.0 98.7 99.3 95.6 95.0 98.6 98.4 98.8 98.7 98.4 97.4 99.4 98.7 96.3 98.8

Without external knowledge
AE(MSE)∗ [7] 80.4 53.9 96.0 75.1 47.6 63.0 90.9 73.2 78.6 97.6 88.0 88.5 97.9 97.1 90.6 68.0
AE(SSIM)∗ [7] 81.8 54.5 96.0 71.0 49.6 64.1 93.3 79.0 76.9 96.6 88.1 89.5 98.3 97.3 90.4 82.8
γ-VAE grad.∗ [7] 88.8 72.7 97.9 89.7 58.1 80.9 93.1 88.0 91.7 98.8 91.4 93.5 97.2 98.3 93.1 87.1
TrustMAE∗ [37] 93.9 97.4 99.1 95.1 97.3 99.8 97.0 85.1 78.8 98.5 76.1 83.3 82.4 96.9 87.5 87.5

RIAD∗ [50] 94.2 96.3 98.8 99.4 89.1 85.8 98.4 84.2 92.8 96.1 92.5 95.7 98.8 98.9 87.7 97.8
Patch-SVDD [48] 95.7 92.6 96.2 97.4 91.4 90.8 96.8 98.1 95.8 97.5 98.0 95.1 95.7 98.1 97.0 95.1

CutPaste [17] 96.0 98.3 97.5 99.5 90.5 95.5 97.6 90.0 97.4 97.3 93.1 95.7 96.7 98.1 93.0 99.3
NSA [29] 96.3 95.5 99.2 99.5 99.3 90.7 98.3 96.0 97.6 97.6 98.4 98.5 96.5 94.9 88.0 94.2

Ours 97.4 96.4 98.9 99.3 96.8 95.4 95.9 96.9 96.6 98.7 96.6 98.2 99.5 97.8 94.7 98.8
Table 1. Performance comparison of anomaly localization in pixel-level AUROC(%) on MVTec AD. For clarity, the category names
Hazelnut, Metal Nut, Toothbrush, and Transistor are abbreviated as HN, MN, TB, and TS respectively. *: reconstruction-based method

network structure can be found in the supplementary mate-
rial. For the training phase, k is randomly sampled from a
uniform distribution on (0, 1]. For the inference phase, the
perturbation scale parameters (σ, k) are set to (25, 0.001).
The number of predictions N is set to 3. We train the model
from scratch with a batch size of 16 for 3000 epochs. Image
augmentation is not used because it requires prior knowl-
edge. For MVTec AD [4], the network is trained using the
AdamW [20] optimizer with β = (0.9, 0.999) and a learning
rate of 0.0001 which is reduced by a factor of 10 at epoch
1000 and 2000. For MPDD [14] and BTAD [22], the learn-
ing rate is set to 0.0001 without any learning rate schedule.
The weight decay is set to 0.001. The exponential mov-
ing average (EMA) technique is used and the EMA rate is
0.9999. We resize the images from all datasets to 192 ×
192 pixels. For a fair comparison with previous works, the
anomaly maps are resized to 256 × 256 pixels. We resize the
images and the anomaly maps using Lanczos interpolation.
The anomaly maps are smoothed by a 31 × 31 averaging
filter. Our method is implemented by PyTorch 1.11.0 and
CUDA 11.1, and all experiments run with NVIDIA RTX
A6000 GPU. All experimental settings except the learning
rate scheduler are identical regardless of the datasets.

5.4. Baseline Methods

MVTec AD For anomaly localization, we compare our
method with AE(MSE) [7], AE(SSIM) [7], γ-VAE grad.
[7], TrustMAE [37], RIAD [50], CutPaste [17], Patch-
SVDD [48], NSA [29], DRÆM [49], RD [8], and Patch-
Core [25]. The results for AE(MSE) and AE(SSIM) are re-
ported in [7]. For anomaly detection, we compare our meth-
ods with Metaformer [46], DRÆM [49], DSR [51], Patch-
Core [25], TrustMAE [37], RIAD [50], Patch-SVDD [48],
CutPaste [17], and NSA [29].

Method Average Product 01 Product 02 Product 03
With external knowledge

FYD [52] 97.0 96.1 95.3 99.7
Without external knowledge

AE(MSE)∗ [22] 78.0 49.0 92.0 95.0
AE(MSE+SSIM)∗ [22] 79.0 53.0 96.0 89.0

VT-ADL∗ [22] 90.0 99.0 94.0 77.0
Patch-SVDD [48] 93.1 94.9 92.7 91.7

Ours 96.0 96.7 96.2 95.2
Table 2. Performance comparison of anomaly localization in pixel-
level AUROC(%) on BTAD. *: reconstruction-based method

Method Average BBK BBN BWH CN MP Tubes
With external knowledge

SemiOrthogonal [16] 88.2 85.3 89.6 94.1 94.6 85.9 79.9
PatchCore [25] 95.7 98.4 91.5 97.4 95.0 96.6 95.1

SPADE [5] 95.9 94.3 97.2 96.8 98.4 93.0 95.9
PaDiM [6] 96.7 94.2 92.4 98.1 97.9 92.9 93.9

Without external knowledge
Skip-GANomaly∗ [2] 82.2 89.0 87.1 78.8 80.2 89.7 77.3

DAGAN∗ [38] 83.3 89.7 81.5 70.6 85.7 90.0 82.3
Ours. 96.8 99.0 97.7 86.2 99.4 99.0 99.4

Table 3. Performance comparison of anomaly localization in pixel-
level AUROC(%) on MPDD. For clarity, the category names
Bracket black, Bracket brown, bracket white, Connector, Metal
plate are abbreviated as BBK, BBN, BWH, CN and MP respec-
tively. *: reconstruction-based method

BTAD The comparison baselines include AE(MSE),
AE(SSIM), VT-ADL [22], Patch-SVDD [48], and FYD
[52]. The results for AE(MSE) and AE(SSIM) are reported
in [22].

MPDD We consider methods including Skip-GANomaly
[2], DAGAN [38], SPADE [5], SemiOrthogonal [16],
PaDiM [6], and PatchCore [25]. The results of these meth-
ods are all reported in [14].
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Figure 4. Examples of anomaly localization in MVTec AD using proposed method. The category names Hazelnut, Metal Nut, Toothbrush
and Transistor are abbreviated as HN, MN, TB and TS respectively. From left to right: input image, restoration error map, ground truth.
More examples of anomaly localization can be found in the supplementary material.

5.5. Results for Anomaly Localization

In the bottom part of Table 1, We compare the anomaly
localization performance on MVTec AD between our
method and others[7, 37, 50, 48, 17, 29]. In terms of pixel-
level AUROC, our method reaches 97.4% and outperforms
the previous top performer NSA [29].

In particular, the proposed method outperforms RIAD
[50], the top-performing reconstruction-based method, by
3.2%p in terms of pixel-level AUROC. The anomaly local-
ization examples of the different types of defects included in
MVTec AD are shown in Figure 4. More anomaly localiza-
tion examples can be found in the supplementary material.

The top part of Table 1 shows the comparison of our
method with the state-of-the-art methods. PatchCore [25]
and RD [8] use pre-trained models. DRÆM [49] uses an
additional dataset for creating synthetic anomalies instead
of the pre-trained model. Looking at the results, it seems
that external knowledge helps to improve the localization
performance. However, in general, since learned features
of the pre-trained model are biased on the dataset used for
pre-training, it is not free to use the model. In the unsuper-
vised setting, we assume that there is no prior knowledge.
Therefore, extra data to help improve performance is also
unavailable. In this respect, the proposed approach show-
ing competitive results without external knowledge is very
meaningful.

We also evaluate the anomaly localization performance
of the proposed method on BTAD and MPDD, and report
the results in Table 2 and Table 3. Our method achieves

pixel-level AUROC of 96.0% and 96.8% on BTAD and
MPDD. The results demonstrated the effectiveness of the
restoration-based approach for anomaly localization show-
ing the best performance for product 01 and product 02
in BTAD and most categories in MPDD. In addition, the
performance is higher than previous works using external
knowledge, such as PatchCore [25], PaDiM [6], and SPADE
[5]. Summarizing the results, the high anomaly localization
performance of the proposed model is unconfined to a spe-
cific dataset. The result images of anomaly localization for
MPDD and BTAD can be found in the supplementary ma-
terial.

5.6. Results for Anomaly Detection

Comparing our method to state-of-the-art methods, such
as PatchCore [25], DSR [51], and DRÆM [49], which get
help from external knowledge is unfair. Therefore, we focus
on the comparison with methods trained from scratch. Table
4 shows the anomaly detection results on MVTec AD. Our
method achieves an image-level AUROC of 97.7%. This
result is 0.5%p higher in image-level AUROC compared to
NSA [29].

6. Discussion

Multiple Prediction. The proposed method requires the
number of predictions N for multiple prediction to estimate
the restoration error. While multiple prediction alleviates
uncertainty caused by random perturbation, they increase
computational cost. In Table 5, we report the anomaly de-
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With external knowledge
Metaformer∗ [46] 95.8 94.0 85.9 99.2 99.0 99.2 99.1 97.1 87.5 99.4 96.2 90.1 97.5 100 94.4 98.6

DRÆM [49] 98.0 97.0 99.9 100 99.6 99.1 99.2 91.8 98.5 100 98.7 98.9 93.9 100 93.1 100
DSR [51] 98.2 100 100 100 100 96.3 100 93.8 98.1 95.6 98.5 97.5 96.2 99.7 97.8 100

PatchCore [25] 99.1 98.7 98.2 100 98.7 99.2 100 99.5 98.1 100 100 96.6 98.1 100 100 99.4
Without external knowledge

TrustMAE∗ [37] 90.8 97.4 99.1 95.1 97.3 99.8 97.0 85.1 78.8 98.5 76.1 83.3 82.4 96.9 87.5 87.5
RIAD∗ [50] 91.7 84.2 99.6 100 98.7 93 99.9 81.9 88.4 83.3 88.5 83.8 84.5 100 90.9 98.1

Patch-SVDD [25] 92.1 92.9 94.6 90.9 97.8 96.5 98.6 90.3 76.7 92.0 94.0 86.1 81.3 100 91.5 97.9
CutPaste [17] 96.1 93.9 100 100 94.6 99.1 98.2 81.2 98.2 98.3 99.9 94.9 88.7 99.4 96.1 99.9

NSA [29] 97.2 95.6 99.9 99.9 100 97.5 97.7 94.5 95.2 94.7 98.7 99.2 90.2 100 95.1 99.8
Ours 97.7 91.7 100 99.9 99.8 96.1 100 94.2 97.2 98.6 96.6 96.1 98.6 98.1 98.7 99.9

Table 4. Performance comparison of anomaly detection in image-level AUROC(%) on the MVTec AD. For clarity, the category names
Hazelnut, Metal Nut, Toothbrush and Transistor are abbreviated as HN, MN, TB and TS respectively. *: reconstruction-based method

Image-level AUROC(%) Pixel-level AUROC(%)
N = 1 97.5 97.3
N = 3 97.7 97.4
N = 5 97.7 97.4

Table 5. Results of the anomaly detection and localization perfor-
mance with different N on MVTec AD.

Figure 5. Example showing a change of the perturbed data distri-
bution depending on variance scale.

tection and anomaly localization performance with different
N on MVTec AD. The result shows that the detection per-
formance is not significantly affected by N . Furthermore,
the best performance can be reached by just using N ≥ 3.

Effective Region. As shown in Figure 5, too small or
large a variance scale prevents the distribution of perturbed
data from reflecting the structural characteristics of the un-
derlying manifold. From this result, we infer that there ex-
ists an effective region where the approximated score func-
tion works well depending on a variance scale because the
approximation by denoising score-matching is affected by
the variance scale. We compare the anomaly detection per-
formance of applying the optimal k for each category and
applying the empirically selected k = 0.001 (see Figure
6). In the case of applying the optimal k, the image-level

Figure 6. Radar chart showing the image-level detection perfor-
mances depending on a variance scale parameter k. (Red line :
optimized k for each class using log-scale grid search. Blue line :
arbitrarily selected k = 0.001.)

AUROC of some categories, such as bottle, wood, hazelnut,
and metal nut, is improved. Also, the average image-level
AUROC increases to 98.9%. Therefore, we will study to de-
velop a method to find the effective region in future work.

7. Conclusion

In this paper, we proposed a novel unsupervised ap-
proach using a score-based model for anomaly detection.
Our proposed method detects anomalies by identifying the
samples that deviate from the normal manifold. In order
to accomplish this, we leverage the score-based perturba-
tion resilience for the sample. We defined score-based re-
silience to perturbation as the ability of the score to restore a
perturbed sample to its original state instantly. Specifically,
the variation of resilience depending on the sample position
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was used as an indicator for anomaly detection. In addi-
tion, we derived this statement from the geometric perspec-
tive. The effectiveness of the proposed method for anomaly
detection and localization was demonstrated, showing the
outperforming results on the industrial anomaly detection
benchmarks compared to the previous studies. Notably,
considering that our proposed method does not rely on ex-
ternal knowledge such as pre-trained models or extra data,
the proposed method has the potential to be widely scal-
able.
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