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Abstract

Weakly supervised person search aims to jointly de-
tect and match persons with only bounding box annota-
tions. Existing approaches typically focus on improving
the features by exploring the relations of persons. How-
ever, scale variation problem is a more severe obstacle
and under-studied that a person often owns images with
different scales (resolutions). For one thing, small-scale
images contain less information of a person, thus affect-
ing the accuracy of the generated pseudo labels. For an-
other, different similarities between cross-scale images of
a person increase the difficulty of matching. In this pa-
per, we address it by proposing a novel one-step frame-
work, named Self-similarity driven Scale-invariant Learn-
ing (SSL). Scale invariance can be explored based on the
self-similarity prior that it shows the same statistical prop-
erties of an image at different scales. To this end, we intro-
duce a Multi-scale Exemplar Branch to guide the network
in concentrating on the foreground and learning scale-
invariant features by hard exemplars mining. To enhance
the discriminative power of the learned features, we fur-
ther introduce a dynamic pseudo label prediction that pro-
gressively seeks true labels for training. Experimental re-
sults on two standard benchmarks, i.e., PRW and CUHK-
SYSU datasets, demonstrate that the proposed method can
solve scale variation problem effectively and perform favor-
ably against state-of-the-art methods. Code is available at
https://github.com/Wangbenzhi/SSL.git.

*Equal Contribution.
†Corresponding Author.

Figure 1. The scale variation of the same person on PRW and
CUHK-SYSU datasets.

1. Introduction

Recent years have witnessed the remarkable success of
person search which is to match persons existed in real-
world scene images. It is often taken as a joint task con-
sisting of person detection [26, 29, 46] and re-identification
(re-id) [32, 43, 36]. To achieve high performance, existing
methods are commonly trained in a fully supervised setting
[4, 1, 41, 45, 13, 20, 23, 5] where the bounding boxes and
identity labels are required. However, it is time-consuming
and labor-intensive to annotate both of them in a large-scale
dataset, which encourages some researchers to embark on
reducing the supervision.

Considering that it is much easier to annotate bound-
ing boxes than person identities, we dedicate this paper to
weakly supervised person search which only needs bound-
ing box annotations. Intuitively, we can address it with a su-
pervised detection model and an unsupervised re-id model
[37, 44, 11, 12, 6] independently. To be specific, we first
train a detector to crop person images and then apply an un-
supervised re-id model for matching, which is regarded as a
two-step person search model. Nevertheless, one of the ma-
jor drawbacks of such two-step methods is low efficiency,
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i.e., it is of high computational cost with two network pa-
rameters during training and inconvenient for testing. In
contrast, one-step methods can be trained and tested more
effectively and efficiently [14, 40]. Han et al. [14] use a
Region Siamese Network to learn consistent features by ex-
amining relations between auto-cropped images and man-
ually cropped ones. Yan et al. [40] learn discriminative
features by exploring the visual context clues. According to
the learned features, both of them generate pseudo labels to
make full use of unlabeled data and further learn discrimina-
tive features. Although promising results are achieved, they
fail to take into account the scale variation problem that a
person often owns images with different scales (resolutions)
because the same person is captured at different distances
and camera views. As shown in Fig. 1, the images of a per-
son from PRW and CUHK-SYSU datasets have large varia-
tions in scale. Since it is unable to resize the input images to
a fixed scale for one-step methods, the existing scale varia-
tion problem will further affect the procedure of the pseudo
label prediction and the subsequent person matching.

In this paper, we propose a novel Self-similarity driven
Scale-invariant Learning (SSL) weakly supervised person
search framework to solve the scale variation problem. It
consists of two branches: Main Branch and Multi-scale Ex-
emplar Branch. The former branch takes the scene image as
the input and applies a detector to extract instance features
for each person. However, the detected person often have
different scales, which adds to the difficulty in matching. To
solve it, we design the latter branch. Specifically, we first
crop the foreground of person images by using the given
bounding boxes and generated binary masks. Each cropped
image is regarded as an exemplar. Then, we resize each of
the exemplars to several fixed scales. At last, we formulate
a scale-invariant loss by hard exemplar mining. Guided by
Multi-scale Exemplar Branch, we can enable Main Branch
to learn scale-invariant features. To further make the fea-
tures more discriminative, we introduce a dynamic multi-
label learning to explore the information in unlabeled data,
which enjoys two merits: (1) It can find true labels of unla-
beled data progressively and (2) It is adaptable to different
datasets. Finally, we integrate the scale-invariant loss and
multi-label learning loss together and optimize them jointly.

Our contributions are summarized as follows:

• We propose a novel end-to-end Self-similarity driven
Scale-invariant Learning framework to solve the task
of weakly supervised person search. It bridges the gap
between person detection and re-id by using a multi-
scale exemplar branch as guidance.

• We design a scale-invariant loss to solve the scale
variation problem and a dynamic multi-label learning
which is adaptable to different datasets.

• We confirm the efficacy of the proposed method by
achieving state-of-the-art performance on PRW and
CUHK-SYSU datasets.

2. Related Work
Person Search. Nowadays, person search has attracted

increasing attention because of its wide application in a real-
world environment. Its task is to retrieve a specific person
from a gallery set of scene images. It can be seen as an
extension of the re-id task by adding a person detection task.

Existing methods addressing this task can be classified
to two manners: one-step [39, 41, 1, 45, 16] and two-step
[15, 10, 4] methods. One-step methods tackle person de-
tection and re-id simultaneously. The work [39] proposes
the first one-step person search approach based on deep
learning. It provides a practical baseline and proposes On-
line Instance Matching(OIM), which is still used in recent
works. Yan et al. [41] introduce an anchor-free framework
into person search task and tackle the misalignment issues
at different levels. Dong et al. [9] proposes a bi-directional
interaction network and uses the cropped image to allevi-
ate the influence of the context information. In contrast,
two-step methods process person detection and re-id sep-
arately, which alleviates the conflict between them [13].
Chen et al. [4] introduce an attention mechanism to obtain
more discriminative instance features by modeling the fore-
ground and the original image patches. Wang et al. [34]
propose an identity-guided query detector to filter out the
low-confidence proposals.

Due to the high cost of obtaining the annotated data, Li et
al. [21] propose a domain adaptive method. In this setting,
the model is trained on the labeled source domain and trans-
ferred to the unlabeled target domain. In recent years, Han
et al. [14] and Yan et al. [40] propose the weakly supervised
person search methods, which only need the bounding box
annotations. Due to the absence of person ID annotations in
the weakly supervised setting, we need to generate pseudo
labels to guide the training procedure. The quality of the
pseudo labels has a significant impact on the performance.
Thus, how to generate reliable pseudo labels is an important
issue of the weakly supervised person search.

Unsupervised re-id. Due to the limitation of the anno-
tated data, fully supervised re-id has poor scalability. Thus,
lots of unsupervised re-id are proposed, which try to gener-
ate reliable yet valid pseudo labels for unsupervised learn-
ing. Some of them consider the global data relationship and
apply unsupervised cluster algorithms to generate pseudo
labels. For example, Fan et al. [11] propose an iterative
clustering and fine-tuning method for unsupervised re-id.
Ge et al. [12] use the self-paced strategy to generate pseudo
labels based on the clustering method. Cho et al. [6] pro-
pose a pseudo labels refinement strategy based on the part
feature information. Although cluster-level methods have
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Figure 2. Details of our SSL for weakly supervised person search. The SSL consists of the multi-scale exemplar branch, the main branch,
and two extra memory banks. The Main branch takes the scene image as input, which is utilized to detect persons and extract their instance
features. Given the multi-scale images (original scale and three different scales for example) corresponding to the persons in the scene
image, the multi-scale exemplar branch takes them as input and obtains the multi-scale features. We conduct the scale-invariant loss
(SL) between instance features and multi-scale features to learn scale-invariant features. We also adopt our dynamic threshold multi-label
classification strategy to obtain reliable yet valid pseudo labels as the supervision for unsupervised learning.

made great progress, the within-class noise introduced by
cluster algorithms still limits further improvement.

To solve this issue, another method introduce fine-grid
instance-level pseudo labels as the supervision for unsu-
pervised learning. For example, Zhong et al. [49] pro-
pose an instance exemplar memory learning scheme that
considers three invariant cues as the instance-level supervi-
sion, including exemplar-invariance, camera invariance and
neighborhood-invariance. Lv et al. [27] look for underly-
ing positive pairs on the instance memory. Wang et al. [35]
consider the instance visual similarity and the instance cycle
consistency as the supervision. Lin et al. [24] regard each
training image as a single class and train the model with the
soften label distribution.

Multi-scale Matching Problem. Person search suffers
from the multi-scale matching problem because of the scale
variations in scene images. Lan et al. [19] propose a two-
step method with knowledge distillation to alleviate this
problem. Unlike the fully supervised setting, due to the
absence of ID annotations, it is much harder to learn a
consistent feature for the same person appearing in various
scales. In this paper, we propose the Self-similarity driven
Scale-invariant Learning to improve the feature consistency
among different scales in a weakly supervised setting.

3. Proposed Method

In this section, we first introduce the overall framework
in Sec. 3.1, then describe the scale-invariant learning in
Sec. 3.2. A dynamic multi-label learning method is detailed
in Sec. 3.3. and the training and inference procedure is fi-
nally explained in Sec. 3.4.

3.1. Framework Overview

Different from the fully supervised person search, only
the bounding box annotations are accessible in the weakly
supervised setting. Firstly, we propose a scale-invariant
loss to address the scale variance problem by hard exem-
plar mining. Furthermore, we propose a dynamic threshold
multi-label learning method to enhance the discriminative
power of the final features.

The general pipeline of the framework is illustrated in
Fig. 2. Our detection part is based on Faster R -CNN [31], a
widely used object detection baseline. As aforementioned,
scale variation problem is a severe obstacle and will further
affect the procedure of the pseudo label prediction and the
subsequent sample matching. To address it, we propose the
SSL that consists of multi-scale exemplar branch and main
branch. The main branch locates the persons first and ex-
tracts the instance features by the deformable RoI pooling
layer [7] with the localization information. The multi-scale
exemplar branch is used to obtain the features of the same
person with different scales. Specifically, the multi-scale
cropped images with background filtering [22] and scene
images are fed into the two branches for scale-invariant fea-
ture learning.

To generate reliable pseudo labels, we propose a dy-
namic threshold multi-label learning method, which uses an
exponential decay threshold, i.e., using a higher threshold
at the beginning to obtain more precise labels and gradually
decreasing the threshold with the epoch of the training pro-
cess to introduce some hard samples in the vicinity of the
classification boundary to learn a better classifier.
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3.2. Scale-invariant Learning

In this section, we adopt a scale augmentation strategy
to obtain multi-scale exemplars and propose scale-invariant
learning to learn scale-invariant features.

Scale Augmentation. Given a scene image I , we ob-
tain the cropped image of the i-th person xi

o with the given
localization annotation gti.

Then, we apply a binary mask [22] filtering the back-
ground to obtain the person’s emphasized region:

xi
s ←− T (xi

o ⊙mask, s), (1)

where⊙means pixel-wise multiplication and T is the bilin-
ear interpolation function that transforms the masked image
to the corresponding scale s.

Scale-invariant Loss. When we have obtained multi-
scale exemplars by scale augmentation, we use them to
learn the scale-invariant features in the guidance of the
multi-scale exemplar branch which takes the exemplars as
the inputs and extracts multi-scale features. At the same
time, our main branch takes the scene image as the input
and extracts instance features of detected persons.

Assume a mini-batch contains B scene images. In the
b-th scene image, the variable Pb represents the total count
of persons present in the image. We use bounding box an-
notations to extract cropped images and then augment each
cropped image to K different scales. Therefore, we have
obtained a total of Pb(K + 1) cropped images that vary in
scale. The scale-invariant loss can be formulated as follows:

Lscale =
1

B

B∑
b=1

1

Pb

Pb∑
i=1

Lb,i
scale, (2)

and

Lb,i
scale = [m+ max

s=1...K
D(fi, f

s
i )− min

j=1...Pb
s=1...K+1

j ̸=i

D(fi, f
s
j )]+

+ γD(fi, f
o
i ), (3)

where D(·) denotes the squared euclidean distance between
two features, fi stands for the instance feature extracted
from the main branch. fs

j and fs
i stand for the multi-scale

features of the i-th and j-th persons, respectively. And fo
i

means for the original scale feature of the i-th person. m de-
notes the distance margin and γ denotes the regularization
factor. Furthermore, the obtained features are processed by
l2-normalization.

Lscale tries to select the most difficult positive and neg-
ative ones from multi-scale exemplars for a query person.
It learns the scale-invariant features by decreasing the dis-
tance with the hardest positive exemplar and increasing the
distance with the hardest negative exemplar. Meanwhile,

it is notable that the original scale cropped image could be
aligned better with the instance feature. Thus, we addition-
ally constrain the distance between the instance feature and
its corresponding original scale feature to make the model
focus on the foreground information and extract body-aware
features.

3.3. Dynamic Multi-label Learning

In weakly supervised settings, we do not have the ID
annotations of each person. Thus, it is essential to predict
pseudo labels and their quality will extremely affect the sub-
sequent training.

As shown in Fig. 2, we maintain two extra memory
banks MI ∈ RN×d and MM ∈ RN×d to store the fea-
tures extracted from the main branch and multi-scale exe-
plar branch, separately. Where N is the number of samples
in the training data set and d is the feature dimension. For
the latter branch, we extract features [fo

i , f
1
i , f

2
i , f

3
i ] corre-

sponding to scale-o, scale-1, scale-2, and scale-3, and ob-
tain the average feature fh

i = mean(fo
i , f

1
i , f

2
i , f

3
i ). For

the main branch, we extract the instance feature fi from the
scene image. After each training iteration, MM and MI

are updated as:

MM [i] = λ · fh
i + (1− λ) · MM [i],

MI [i] = λ · fi + (1− λ) · MI [i],
(4)

where λ is the momentum factor and is set to 0.8 in the
following experiments.

In order to obtain reliable pseudo labels for multi-label
learning, we employ scale-enhancement features, which en-
hance both feature robustness and pseudo labels accuracy.
The scale-enhancement features are obtained as follows:

M = mean(MM ,MI). (5)

Dynamic Pseudo Label Prediction. Suppose we have
a training set X with N samples, we treat the pseudo label
generation as an N -classes multi-label classification prob-
lem. In other words, the i-th sample has an N -dim two-
valued label Yi = [Yi1, Yi2 . . . , YiN ]. The label of the i-th
sample can be predicted based on the similarity between its
feature fi and the features of others. Based on theM, the
similarity matrix can be obtained as follows:

S =MMT =

 s11, . . . , s1N
...

. . .
...

sN1, . . . , sNN

 , (6)

we can further get two-valued labels Y matrix with a thresh-
old t:

Yi,j =

{
1 sij ≥ t
0 sij < t

. (7)
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However, the multi-label classification method is sensi-
tive to the threshold. An unsuitable threshold can seriously
affect the quality of label generation, i.e., the low threshold
will introduce a lot of noisy samples, while the high thresh-
old omits some hard positive samples. Thus, we further
adopt an exponential dynamic threshold to generate more
reliable pseudo labels. That is,

t = tb + α · eβ·e, (8)

where tb is the lower boundary of the threshold, α and β are
the ratio factors, and e stands for current epoch number. So
far, we can use the dynamic threshold to get the label vector
for each sample at each iteration by Eq. (7).

We define the positive label set of the i-th sample as Pi

and negative label set asNi. To make the pseudo label more
reliable, we further process the label based on the hypothe-
sis: persons who appear in the same image can not be the
same person. For the i-th sample, we can get its similarity
vector Si by Eq. (6). We sort the Si in descending order and
get the sorted index:

SIi = arg sort(sij)
j∈Pi

w.r.t., 1 ≤ j ≤ N. (9)

Then, we traverse the label Yi by the SIi. If the j-th
sample is predicted to be the same person as the i-th sample,
i.e., Yi,j = 1. We consider the other samples belonging to
the same image with the j-th sample can not have the same
ID with the i-th sample, and set these labels to 0.
MM andMI based re-id feature learning. As afore-

mentioned, we use theM to generate reliable pseudo labels
and calculate the loss function on the two branches withMI

andMM , separately. Multi-label learning loss function is
then adopted:

Lml(M∗, f∗) =

q∑
i=1

[
δ

|Pi|
∑
p∈Pi

||M∗[p]T × f∗ + (−1)Yi,p ||2+

1

|Ni|
∑
v∈Ni

||M∗[v]T × f∗ + (−1)Yi,v ||2],

(10)

whereM∗ ∈ {MI ,MM}, f∗ ∈ {fi, fh
i }, q is the number

of samples in a mini-batch and δ is used as a balance factor
of the loss. The total dynamic multi-label learning loss can
be formulated as follows:

LDML = Lml(MI , fi) + Lml(MM , fh
i ). (11)

3.4. Training and Inference

In general, our SSL is trained in an end-to-end manner
by using the following loss function:

L = Lscale + LDML + Ldet, (12)

where Ldet denotes the detection loss used in SeqNet [23].
In the inference phase, we only use the main branch to

detect the persons and extract the instance features. No-
tably, the multi-scale exemplar branch is only used in the
training phase to help the main branch learn scale-invariant
features and there are no extra memory and computation re-
sources used in the inference phase.

4. Experiments
4.1. Datasets and Settings

CUHK-SYSU [39] is one of the largest public datasets
for person search. It contains 18,184 images, including
12,490 frames from street scenes and 5,694 frames captured
from movie snapshots. CUHK-SYSU provides 8,432 anno-
tated identities and 96,143 annotated bounding boxes in to-
tal, where the training set contains 11,206 images and 5,532
identities, and the test set contains 6,978 images and 2,900
query persons. CUHK-SYSU also provides a set of evalu-
ation protocols with gallery sizes from 50 to 4000. In this
paper, we report the results with the default 100 gallery size.

PRW [47] is collected in a university campus by six
cameras. The images are annotated every 25 frames from
a 10 hours video. It contains 11,816 frames with 43,110
annotated bounding boxes. The training set contains 5,401
images and 482 identifies, and the test set contains 6,112
images and 2,507 queries with 450 identities.

Evaluation Protocol. We adopt the Cumulative Match-
ing Characteristic (CMC), and the mean Averaged Precision
(mAP) to evaluate the performance of person search. We
also adopt recall and average precision to evaluate person
detection performance.

4.2. Implementation Details

We adopt ResNet50 [17] pre-trained on ImageNet [8]
as our backbone. We set the batch size to 4 and adopt
the stochastic gradient descent (SGD) algorithm to opti-
mize the model for 26 epochs. The initial learning rate
is 0.001 and is reduced by a factor of 10 at 16 and 22
epochs. We set the momentum and weight decay to 0.9
and 5 × 10−4, respectively. We set the hyper-parameters
m = 0.3, tb = 0.6, α = 0.1, β = −0.05, γ = 0.05,
and δ = 5. Instead of choosing the scales of the exemplars
by hand, we adopt k-means clustering on the training set
ground truth bounding boxes to select the scales of the ex-
emplars [30]. In our experiments, the scale-1, scale-2, and
scale-3 are set to 102×38, 200×72, and 346×132 on PRW,
and 72×46, 170×96, and 430×208 on CUHK-SYSU, re-
spectively. More details about the scale selection are de-
scribed in the supplementary material. For inference, we
resize the images to a fixed size of 1500 × 900 pixels. Fur-
thermore, we use PyTorch to implement our model and run
all the experiments on an NVIDIA Tesla V100 GPU.
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4.3. Ablation Study

Baseline DML SL
PRW

mAP Top-1

✓ 13.0 63.8
✓ ✓ 16.8 66.9
✓ ✓ 27.4 81.4
✓ ✓ ✓ 33.9 82.7

Table 1. Ablation study on the two key components of our ap-
proach. We report the mAP(%) and top-1 accuracy(%) on PRW.
DML denotes dynamic multi-label learning and SL means scale-
invariant learning.

Baseline. We adopt a classical two-stage Faster R-CNN
detector as our baseline model. Following SeqNet [23], we
adopt two RPN structure to obtain more quality proposals.
Furthermore, we generate pseudo labels and optimize the
model with a fixed threshold t = 0.7.

Effectiveness of Each Component. We analyze the ef-
fectiveness of our SSL framework and report the results on
PRW in Tab. 1, where DML denotes dynamic multi-label
learning and SL means scale-invariant learning.

Firstly, we can see that the baseline model achieves
13.0% mAP and 63.8% top-1 on PRW. With the DML, the
baseline improves the mAP and top-1 by 3.8% and 3.1%
on PRW, respectively. Secondly, with the SL, the baseline
model obviously improves the mAP and top-1 by 14.4%
and 17.6%. This improvement indicates that the proposed
SSL is effective to handle the person scale variation prob-
lem. Moreover, the DML further improves baseline + SL by
6.5%/1.3% in mAP/top-1. This improvement illustrates our
dynamic multi-label learning strategy could progressively
seek more correct pseudo labels for unsupervised learning
compared to the fixed threshold strategy.

Methods
PRW

mAP Top-1

SSL w/ Original Scale 29.4 79.7
SSL w/ One Scale 30.1 80.2
SSL w/ Multi-Scale 32.5 81.6
SSL w/ Multi-Scale† 33.9 82.7

Table 2. Comparison of different scale settings on PRW. † means
filtering the background of the cropped images. W/ means com-
bined with.

Effectiveness of Scale-invariant Learning. We ana-
lyze the effectiveness of the scale-invariant learning mod-
ule and the results are reported in Tab. 2. In the method
SSL w/ Original Scale, we only adopt the original size of
the cropped person images as the exemplar, which is ob-
tained by bounding box annotations directly. In the method

SSL w/ One Scale, we resize the cropped person images
to 154×58 pixels. We observe that the One Scale method
just surpasses the Original Scale method by 0.7% and 0.5%
in mAP and top-1. Furthermore, the SSL w/ Multi-Scale
method could significantly improve the performance, which
achieves 32.5% in mAP and 81.6% in top-1. † means fil-
tering the background with the method in Sec. 3.2, which
makes the model concentrate more on the foreground in-
formation and obtains more discriminative features. Filter-
ing the background information further improves the per-
formance by 1.4% and 1.1% in terms of mAP and top-1.

Methods
PRW

mAP Top-1

t=0.6 27.8 76.1
t=0.7 27.4 81.4
Ours 33.9 82.7

Table 3. Comparison between the fixed threshold and dynamic
threshold. t = 0.6 and t = 0.7 mean generating the pseudo labels
with fixed thresholds respectively, that is, 0.6 and 0.7.

Effectiveness of Dynamic Multi-label Learning. The
efficacy of DML is evaluated against fixed-threshold multi-
label classification in Tab. 3, where t = 0.6 and t = 0.7
denote pseudo label generation with fixed thresholds of 0.6
and 0.7, respectively. The results reveal that the t = 0.7
condition performs better in top-1 due to the high thresh-
old’s ability to extract more accurate instance relationships.
Conversely, the t = 0.6 condition shows superior mAP per-
formance as the lower threshold recalls more positive la-
bels, thus increasing model robustness. Our DML strategy
merges these benefits using an exponential decay threshold,
i.e., beginning with a high threshold for precision and pro-
gressively lowering it through training epochs to augment
robustness. This dynamic threshold strategy notably outper-
forms its fixed-threshold strategy, underlining DML’s effec-
tiveness.

Analysis on hyper-parameters. The hyper-parameters
tb, α, and β are used to control the dynamic threshold in
Eq. (8). Among them, tb is used to control the lower bound-
ary of the threshold, α is used to control the threshold range.
As shown in Fig. 3, When we set α to 0.1, an inappropri-
ate tb will significantly affect the performance. On the one
hand, the lower boundary will involve too many incorrect
labels. On the other hand, the higher boundary will filter too
many predicted labels. The β is used to control the change
ratio, and we set it to -0.05 in our experiments. The hyper-
parameter K is the number of the multi-scale exemplars for
a person. As shown in Fig. 3, adopting multi-scale exem-
plars could achieve better performance than the single scale.
However, there is no significant gain when K > 3, and we
set K to 3 in our experiments.
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Figure 3. Evaluation of hyper-parameters: tb, α, β in Eq. (8) and K in Eq. (3).

4.4. Comparison with the State-of-the-arts

In this section, we compare our method with current
state-of-the-art methods including fully supervised methods
and weakly supervised methods.

Results on CUHK-SYSU. Tab. 4 shows the perfor-
mance on CUHK-SYSU with the gallery size of 100. Our
method achieves the best 87.6% mAP and 89.0% top-1,
outperforming all existing weakly supervised person search
methods. Specifically, we outperform the state-of-the-art
method R-SiamNet by 1.6% in mAP and 1.9% in top-1
accuracy. We also evaluate these methods under different
gallery sizes from 50 to 4,000. In Fig. 4, we compare mAP
with other methods. The dashed lines denote the weakly
supervised methods and the solid lines denote the fully su-
pervised methods. It can be observed that our method still
outperforms all the weakly supervised with gallery increas-
ing. Meanwhile, Our method surprisingly surpasses some
fully supervised methods, e.g., [39], [42],[2] and [4]. How-
ever, there still exists a significant performance gap. We
hope our work could give some inspiration to others to ex-
plore weakly supervised person search.

Results on PRW. As shown in Tab. 4, among ex-
isting two weakly supervised methods, CGPS [40] and
R-SiamNet [14] achieve 16.2%/68.0% and 21.2%/73.4%

50 100 500 1000 2000 4000
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Figure 4. Performance comparison on the CUHK-SYSU dataset
with different gallery sizes. The solid (or dashed) lines denote the
fully (or weakly) supervised methods.

in mAP/top-1. Our method achieves 33.9%/82.7% in
mAP/top-1, surpassing all existing weakly supervised
methods by a large margin. We argue that, as shown
in Fig. 1, PRW has large variations of pedestrians scales,
which presents a multi-scale matching challenge, and our
scale-invariant feature learning(Sec. 3.2) significantly alle-
viates this problem. As shown in Tab. 1, even the baseline
model with our scale-invariant feature learning still outper-
forms CGPS 11.2%/13.4% in mAP/top-1 and outperforms
R-SiamNet in 6.2%/8.0% in mAP/top-1.

Visualization Analysis. To evaluate the effectiveness

Methods
PRW CUHK-SYSU

mAP top-1 mAP top-1

Fu
lly

su
pe

rv
is

ed

OIM [39] 21.3 49.9 75.5 78.7
IAN [38] 23.0 61.9 76.3 80.1
NPSM [25] 24.2 53.1 77.9 81.2
CTXG [42] 33.4 73.6 84.1 86.5
MGTS [4] 32.6 72.1 83.0 83.7
QEEPS [28] 37.1 76.7 88.9 89.1
CLSA [19] 38.7 65.0 87.2 88.5
HOIM [3] 39.8 80.4 89.7 90.8
APNet [48] 41.9 81.4 88.9 89.3
RDLR [15] 42.9 70.2 93.0 94.2
NAE [5] 44.0 81.1 92.1 92.9
PGS [18] 44.2 85.2 92.3 94.7
BINet [9] 45.3 81.7 90.0 90.7
AlignPS [41] 45.9 81.9 93.1 93.4
SeqNet [23] 46.7 83.4 93.8 94.6
TCTS [34] 46.8 87.5 93.9 95.1
IGPN [10] 47.2 87.0 90.3 91.4
OIMNet++ [20] 47.7 84.8 93.1 94.1
PSTR [1] 49.5 87.8 93.5 95.0
AGWF [13] 53.3 87.7 93.3 94.2
COAT [45] 53.3 87.4 94.2 94.7

W
ea

kl
y CGPS [40] 16.2 68.0 80.0 82.3

R-SiamNet [14] 21.2 73.4 86.0 87.1
Ours 33.9 82.7 87.6 89.0

Table 4. Comparison with the state-of-the-art methods on the PRW
and CUHK-SYSU datasets. Weakly refers to the weakly super-
vised person search methods.
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Query Baseline Ours Query Baseline Ours

(a) CUHK-SYSU (b) PRW
Figure 5. Rank-1 search results for several representative samples on CUHK-SYSU [39] and PRW [47]. The green and red bounding boxes
correspond to the correct and wrong results, respectively.

of our method, we show several search results on CUHK-
SYSU and PRW in Fig. 5. Specifically, the first two rows
show that our method has stronger cross-scale retrieval ca-
pability than the baseline method. Additionally, the last two
rows show that our SSL can retrieve the target person cor-
rectly among the confusing samples.

Moreover, we visualize the feature distribution with t-
SNE [33] in Fig. 6. The circle denotes the small-scale per-
sons whose resolution is less than 3600 pixels, the square
denotes the large-scale persons whose resolution is larger
than 45300, and the cross denotes the medium-scale per-
sons whose resolution is between 3600 and 45300. Differ-
ent colors represent different identities. It illustrates that our
method generates more consistent features across different
scales. For more search results and visualizations, please
refer to the supplementary materials.

5. Conclusion

In this paper, we propose the Self-similarity driven
Scale-invariant Learning framework to solve the task of
weakly supervised person search. With a scale-invariant
loss, we can learn scale-invariant features which will ben-
efit the subsequent pseudo label prediction and person
matching. We also propose a dynamic multi-label learn-
ing method to generate pseudo labels and learn discrimi-
native features for re-id. Finally, we learn the aforemen-

Figure 6. t-SNE feature visualization on part of the PRW training
set. Colors denote different person identities and shapes denote
persons at different scales.

tioned parts in an end-to-end manner. Extensive experi-
ments demonstrate that our proposed SSL can achieve state-
of-the-art performance on two large-scale benchmarks.
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