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Multi-sensor fusion has shown its great superiority in
autonomous driving system [31, 8, 22, 1, 27]. Different
sensors usually provide the complementary information for
each other. For instance, the camera captures information
in a perspective view and the image contains rich semantic
features while point clouds provide much more localization
and geometry information. Taking full advantage of differ-
ent sensors helps reduce the uncertainty and makes accurate
and robust prediction.

Sensor data of different modalities usually has large dis-
crepancy in distribution, making it hard to merge the multi-
modalities. State-of-the-art (S0TA) methods tend to fuse
the multi-modality by constructing unified bird’s-eye-view
(BEV) representation [31, 27, 22] or querying from to-
kens [1, &]. For example, BEVFusion [31] explores a uni-
fied representation by BEV transformation for BEV feature
fusion (see Fig. 1(a)). TransFusion [1] follows a two-stage
pipeline and the camera images in second stage provide
supplementary information for prediction refinement (see
Fig. 1(b)). However, exploring a truly end-to-end pipeline
for multi-sensor fusion remains to be a question.

& Corresponding author.

Figure 1: Comparison between BEVFusion, TransFusion,
and our proposed CMT. (a) In BEVFusion, the camera fea-
tures are transformed into BEV space by view transform.
Two modality features are concatenated in BEV space and
the BEV encoder is adopted for fusion. (b) TransFusion first
generates the queries from the high response regions of Li-
DAR features. After that, object queries interact with point
cloud features and image features separately. (c) In CMT,
the object queries directly interact with multi modality fea-
tures simultaneously. Position encoding (PE) is added to
the multi-modal features for alignment. VT is the view
transformation from image to 3D space.

Recently, the effectiveness of end-to-end object detec-
tion with transformer (DETR) [3, 60] has been proved in
many perception tasks, such as instance segmentation [13,

], multi-object tracking [55, 33] and visual 3D detec-
tion [47, 29, 30]. The DETR architecture is simple yet ef-
fective thanks to the object queries for representing different
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Figure 2: Left: Performance comparison between CMT and existing methods. All speed statistics are measured on a single
Tesla A100 GPU using the best model of official repositories. Right: Performance evaluation of CMT under sensor missing.
During inference, CMT achieves vision-based performance when LiDAR is missing, showing strong robustness.

instances and bipartite matching for one-to-one assignment.

Inspired by DETR, we aim to build an elegant end-to-
end pipeline for multi-modal fusion in 3D object detection.
In DETR, object queries directly interact with the image to-
kens through cross-attention in transformer decoder. For 3D
object detection, one intuitive way is to concatenate the im-
age and point cloud tokens together for further interaction
with object queries. However, the concatenated tokens are
disordered and unaware of their corresponding locations in
3D space. Therefore, it is necessary to provide the location
prior for multi-modal tokens and object queries.

In this paper, we propose Cross-Modal Transformer
(CMT), a simple yet effective end-to-end pipeline for ro-
bust 3D object detection (see Fig. 1(c)). First, we propose
the Coordinates Encoding Module (CEM), which produces
position-aware features, by encoding 3D points set implic-
itly into multi-modal tokens. Specifically, for camera im-
ages, 3D points sampled from frustum space are used to in-
dicate the probability of 3D positions for each pixel. While
for LiDAR, the BEV coordinates are simply encoded into
the point cloud tokens. Next, we introduce the position-
guided queries. Each query is initialized as a 3D reference
point following PETR [29]. We transform the 3D coordi-
nates of reference points to both image and LiDAR spaces,
to perform the relative coordinates encoding in each space.

The proposed CMT framework brings many advantages
compared to existing methods. Firstly, our method is a sim-
ple and end-to-end pipeline and can be easily extended. The
3D positions are encoded into the multi-modal features im-
plicitly, which avoids introducing the bias caused by ex-
plicit cross-view feature alignment. Secondly, our method
only contains basic operations, without the feature sampling
or complex 2D-to-3D view transformation on multi-modal
features. It achieves state-of-the-art performance and shows
obvious superiority compared to existing approaches, as
shown in the left graph of Fig. 2. Thirdly, the robustness of

our CMT is much stronger than other existing approaches.
Extremely, under the condition of LiDAR miss, our CMT
with only image tokens can achieve similar performance
compared to those vision-based 3D object detectors [29, 26]
(see the right graph of Fig. 2).

To summarize, our contributions are:

* we propose a fast and robust 3D detector, which is a
truly end-to-end framework without any post-process.
It overcomes the sensor missing problem.

* The 3D positions are encoded into the multi-modal to-
kens, without any complex operations, like grid sam-
pling and voxel-pooling.

* CMT achieves state-of-the-art 3D detection perfor-
mance on nuScenes dataset. It provides a simple base-
line for future research.

2. Related Work
2.1. Camera Based 3D Object Detection

Camera-based 3D object detection is one of the basic
tasks in computer vision. Early works [45, 44] mainly fol-
low the dense prediction pipeline. They first localize the
objects on image plane and then predict their relevant 3D at-
tributes, such as depth, size and orientation. However, with
the surrounding cameras, the perspective-view based design
requires elaborate post-processes to eliminate the redundant
predictions of the overlapping regions. Recently, 3D ob-
ject detection under the BEV has attracted increasing atten-
tion. The BEV representation provides a unified coordinate
to fuse information from multiple camera views. LSS [35],
BEVDet [17] and BEVDepth [24] predict the depth distri-
bution to lift the image features to 3D frustum meshgrid.
Besides, inspired by DETR [4], DETR3D [47] and BEV-
Former [26] project the predefined BEV queries onto im-
ages and then employ the transformer attention to model
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the relation of multi-view features. The above methods ex-
plicitly project the local image feature from 2D perspective
view to BEV. Different from them, PETR [29, 30] and Spa-
tialDETR [12] adopt the positional embedding that depends
on the camera poses, allowing the transformer to implicitly
learn the projection from image views to 3D space.

2.2. LiDAR Based 3D Object Detection

LiDAR-based 3D object detection aims to predict 3D ob-
ject bounding boxes using the point clouds captured from
LiDAR. Existing methods process the point cloud into dif-
ferent representations. Point-based methods [36, 37, 38, 39,

, 53] directly extract features from raw point clouds and
predict 3D bounding boxes. PointNet [37] is the first ar-
chitecture to process the point cloud in an end-to-end man-
ner, which preserves the spatial characteristics of the point
cloud. Other methods project the unordered, irregular Li-
DAR point clouds onto a regular feature space such as 3D
voxels [58, 51, 9, 10], feature pillars [19, 46, 54] and range
images [ 14, 41]. Then the features are extracted in the BEV
plane using a standard 2D backbone. VoxelNet [58] first di-
vides the raw point clouds into regular voxel grids, and then
uses PointNet network to extract features from the points in
each voxel grid.

2.3. Multi-modal 3D Object Detection

Multi-sensor fusion in 3D detection has gained great at-
tention in recent years. State-of-the-art (SOTA) methods
tend to find a unified representation for both modalities, or
define object queries to fuse the features for further predic-
tion. For example, BEVFusion[31, 27] applies a lift-splat-
shoot (LSS) operation to project image feature onto BEV
space and concatenates it with LiDAR feature. UVTR[22]
generates a unified representation in the 3D voxel space by
deformable attention[60]. While for query-based methods,
FUTR3D[§8] defines the 3D reference points as queries and
directly samples the features from the coordinates of pro-
jected planes. TransFusion[1] follows a two-stage pipeline.
The proposals are generated by LiDAR features and further
refined by querying the image features.

2.4. Transformer-based Object Detection

The pioneering work DETR [3] proposes a transformer-
based detector paradigm without any hand-craft compo-
nents, and has achieved state-of-the-arts in both 2D and
3D detection [57, 6, 26, 30]. However, DETR-like meth-
ods usually suffer from the slow convergence. To this end,
many works [60, 56, 28, 21, 57, 5, 18] are proposed to im-
prove the training efficiency from various aspects. Other
improvements in 2D detection mainly focus on modifying
the transformer layers[60, 56], designing informative ob-
ject queries[28, 21, 57], or exploring the label assignment
mechanism[5, |8]. Deformable DETR[60] proposes the de-

formable attention, which only attends to sampling points of
local regions. SAM-DETR[56] presents a semantic aligner
between object queries and encoded features to accelerate
the matching process. To alleviate the instability of bipartite
matching, DAB-DETR[28] formulates the object queries as
dynamic anchor boxes, while DN-DETR[2 1] auxillarily re-
constructs the ground-truths from the noisy ones. Based
on them, DINO[57] further improves the denoising anchor
boxes via a contrastive way.

3. Method

The overall architecture of the proposed CMT is illus-
trated in Fig. 3. Multi-view images and LiDAR points are
fed into two individual backbones to extract multi-modal to-
kens. The 3D coordinates are encoded into the multi-modal
tokens by the coordinates encoding. The queries from the
position-guided query generator are used to interact with
the multi-modal tokens in transformer decoder and then pre-
dict the object class as well as the 3D bounding boxes. The
whole framework is learned in a fully end-to-end manner
and the LiDAR backbone is trained from scratch without
pretraining.

3.1. Coordinates Encoding Module

The coordinates encoding module (CEM) is used to en-
code the 3D position information into multi-modal tokens.
It generates both the camera and BEV position encodings
(PEs), which are added to image tokens and point cloud
tokens respectively. With the help of CEM, multi-modal
tokens can be implicitly aligned in 3D space.

Let P(u,v) be the 3D points set corresponding to the
feature map F'(u, v) of different modalities. Here (u,v) in-
dicates the coordinate in the feature map. Specifically, F' is
the image feature for camera while BEV feature for LIDAR.
Suppose the output position embedding of CEM is I'(u, v),
its calculation can be formulated as:

I'(u,v) = Y(P(u,v)) (1)

where 1 is a multi-layer perception (MLP) layer.

CE for Images. Since the image is captured from a per-
spective view, each pixel can be seen as an epipolar line
in 3D space. Inspired by PETR [29], for each image, we
encode a set of points in camera frustum space to per-
form the coordinates encoding. Given the image feature
Fi., each pixel can be formulated as a series of points
{pe(u,v) = (u* dg,v * dy,d,, )T,k =1,2,...,d} in the
camera frustum coordinates. Here, d is the number of points
sampled along the depth axis. The corresponding 3D points
can be calculated by:

p};m(u,v) = Tclinlpk(u,v) 2)

where Tcli € R**4 is the transformation matrix from the -
th camera coordinate to the LiDAR coordinate. K; € 4 x 4

18270



kﬁ][ﬁ][ﬁ][ﬁ][ﬁ][ﬁ] N 3pBoxes [

iIm Tokens PC Tokens
—————————————————————————————————————————————————————— | FEN
------------------- . .
Image Lidar E Transformer
Backbone Backbone E Decoder

CoIIIIIIIopIooIIzoooooIInloooInnIIs
ImPE | PCPE Queries T

I

v e
! Coordinates Position-guided
i Encoding Module | | Query Generator

______________________________________________________________________________________________

Figure 3: The architecture of Cross-Modal Transformer (CMT) paradigm. The multi-view images and point clouds are input
to two backbone networks to extract feature tokens. In coordinates encoding module, coordinates of camera rays and BEV
positions are transformed into the image position encoding (Im PE) and point cloud position encoding (PC PE), respectively.
The queries are generated by the position-guided query generator. In query generator, 3D anchor points are projected to
different modalities and the relative coordinates are encoded (see the right part). Multi-modal tokens further interact with

queries in the transformer decoder. The updated queries are further used to predict the 3D bounding boxes.

is the intrinsic matrix of ¢-th camera. The position encoding
of pixel (u,v) for image is formulated as:

Fim(uvv) = wim({pzm(uvv)v ad}) 3)

CE for Point Clouds. We choose VoxelNet[51, 58] or
PointPillar[19] as backbone to encode the point cloud to-
kens F.. Intuitively, the point set P in Eq. (1) can be
sampled along the Z-axis. Suppose (u,v) is the coordi-
nates in BEV feature map, the sampled point set is then
pr(u,v) = (u,v, hy,1)T, where hy, indicates the height of
k-th points and hg = 0 as default. The corresponding 3D
points of BEV feature map can be calculated by:

k=1,2,..

pic(u, v) =(u * ug, v x vg, hg, 1) (@)
where (ugq,vq) is the size of each BEV feature grid. To
simplify, we only sample one point along the height axis. It
is equivalent to the 2D coordinate encoding in BEV space.
The position embedding of point cloud can be obtained by:

Lpe(u,v) = Ype({ph (u,v), k=1,2,..,h}) (5
3.2. Position-guided Query Generator
Following Anchor-DETR [48] and PETR [29], we firstly

initialize the queries with n anchor points A = {a; =
(Ggisayisaz,:),% = 1,2,...,n} sampled from uniform dis-
tribution between [0, 1]. Then these anchor points are trans-
formed into 3D world space by linear transformation:

Qg i = am,i*(xmaz - xmzn) + Tmin
Ay = ay,i*(ymaa: - ymin) + Ymin (6)
Ay = a/z,i*(zmaw - Zmin) + Zmin

where [Znin, Ymin, Zmin, Tmazs Ymazs Zmaz] 1S the region
of interest (Rol) of 3D world space. After that, we project
the 3D anchor points A to different modalities and encode
the corresponding point sets by CEM. Then the positional
embedding I'; of object queries can be generated by:

ry= ¢pC(APC) + Yim (Aim) @)

where A,. and A;,, are the point set projected on BEV
plane and image plane, respectively. The positional embed-
ding Iy are further added with the query content embedding
to generate the initial position-guided queries Q.

3.3. Decoder and Loss

As for the decoder, we follow the original transformer
decoder in DETR [48] and use L decoder layers. For each
decoder layer, the position-guided queries interact with the
multi-modal tokens and update their representations. Two
feed-forward networks (FFNs) are used to predict the 3D
bounding boxes and the classes using updated queries. We
formulate the prediction process of each decoder layer as
follows:

by = U9(Qy), & = U(Q,), ¥

where W7¢9 and We!* respectively represent the FFN for
regression and classification. @); is the the updated object
queries of the i-th decoder layer.

For set prediction, the bipartite matching is applied for
one-to-one assignment between predictions and ground-
truths. We adopt the focal loss for classification and L1
loss for 3D bounding box regression:

L(y7 g) = wchls(C7 é) + W2Lreg(ba b) (9)
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Table 1: Performance comparison on the nuScenes test set. “L” is LIDAR and “C” is camera.

Methods |Modality[NDST mAPT|mATE] mASE| mAOE| mAVE| mAAE]
BEVDet [17] C 10488 0.424] 0.524 0.242 0373 0.950 0.148
DETR3D [47] C 0479 0.412| 0.641 0255 0394 0845 0.133
PETR [29] C 0504 0.441| 0593 0249 0383 0.808 0.132
CenterPoint [54] L [0.673 0.603| 0.262 0.239 0361 0.288 0.136
UVTR [27] L [0.697 0.639| 0302 0.246 0.350 0.207 0.123
TransFusion [1] L [0.702 0.655| 0.256 0.240 0.351 0.278 0.129
PointPainting[4] LC [0.610 0.541| 0.380 0.260 0.541 0293 0.131
PointAugmenting[43] | LC [0.711 0.668 | 0.253 0.235 0.354 0.266 0.123
MVP[7] LC [0.705 0.664 | 0.263 0.238 0321 0.313 0.134
FusionPainting[50] LC [0.716 0.681| 0.256 0.236 0346 0.274 0.132
UVTR [22] LC |0.711 0.671| 0.306 0245 0351 0225 0.124
TransFusion [1] LC [0.717 0.689| 0.259 0.243 0359 0288 0.127
BEVFusion [31] LC [0.729 0.702| 0.261 0.239 0329 0.260 0.134
Deeplnteration [52] LC [0.734 0.708 | 0.257 0.240 0.325 0.245 0.128
CMT-C C 0481 0.429| 0.616 0248 0415 0904 0.147
CMT-L L (0701 0.653| 0.286 0.243 0.356 0.238 0.125
CMT LC [0.741 0.720| 0.279 0.235 0308 0.259 0.112

Table 2: Performance comparison on the nuScenes val set.
“L” is LiDAR and “C” is camera.

Methods ‘ modality ‘ NDST mAPT
FUTR3D [8] L 0.655 0.593
UVTR [22] L 0.676  0.608
TransFusion [1] L 0.701  0.651
FUTR3D [§] LC 0.683  0.645
UVTR [22] LC 0.702 0.654
TransFusion [1] LC 0.713  0.675
BEVFusion [31] LC 0.714  0.685
Deeplnteration [52] LC 0.726  0.699
CMT-C C 0.460 0.406
CMT-L L 0.686 0.624
CMT LC 0.729  0.703

where w; and wy are the hyper-parameter to balance the two
loss terms. Note that for positive and negative queries in
query denoising, the loss is calculated in the same way.

3.4. Masked-Modal Training for Robustness

Security is the most important concern for autonomous
driving systems. An ideal system requires solid perfor-
mance even if part of them fails, as well as not relying on
any input of a specific modality. Recently, BEVFusion [27]
has explored the robustness of LiDAR sensor failure. How-
ever, the exploration is limited to restricted scan range and
model need be retrained. In this paper, we try more extreme

failures, including single camera miss, camera miss and Li-
DAR miss, as shown in Fig. 4. It is consistent with the
actual scene and ensures the safety of autonomous driving.

v ¢ v <
m§ $ m§ m
A

(@ (b) ©

Figure 4: We analyze the system robustness of CMT at test
period under three simulated sensor errors: (a) single cam-
era miss, (b) all camera miss and (¢) LiIDAR miss.

To improve the robustness of the model, we propose a
training strategy, called masked-modal training. In training
process, we randomly use only a single modality for train-
ing, such as camera or LiDAR, with the ratio of 7; and 7.
This strategy ensures that the model are fully trained with
both single modal and multi-modal. Then the model can be
tested with single modal or multi-modal, without modify-
ing the model weight. The experimental results show that
masked-modal training will not affect the performance of
our fusion model. Even if LiDAR is damaged, it can still
achieve similar performance compared to the SoTA vision-
based 3D detectors [29, 17] (see Tab. 3-4).
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Table 3: Quantitative results on the nuScenes val with LiDAR or camera miss. With the masked-modal training, the efficiency
and robustness of our CMT is significantly improved, especially when the LiDAR camera is missed.

Vanilla training

Masked-modal training

Metric CMT only LIDAR only Cams CMT only LiDAR only Cams
NDS 1 | 0.726 0.603 0.073 0.729 (10.3%) 0.681 (17.8%) 0.447 (137.4%)
mAP 1 | 0.691 0.487 0.000 0.703 (11.2%) 0.617 (113.0%) 0.383 (138.3%)

Table 4: NDS/mAP comparison on nuScenes val with sen-
sor miss. BEVFusion is trained with mask-modal strategy.
* means our reproduced result.

Table 5: CDS/AP comparison on Argoverse2 val set. “L”
is LiDAR and “C” is camera.

Model | Modality AP CDS
Model Test modal
Both only LIDAR  only Cams VoxelNeXt[11] L 0.307 .
FSF[23] LC 0.332  0.255
TransFusion[1] | 0.71/0.67 0.70/0.65 None CMT LC 0.361 0.278
BEVFusion[31]* | 0.72/0.68 0.68/0.63 0.40/0.32
CMT 0.73/0.70  0.68/0.62 0.45/0.38

3.5. Discussion

CMT shares similar motivation with FUTR3D [&] on the
end-to-end modeling. However, both the method and its
effectiveness are totally different. FUTR3D repeatly sam-
ples the corresponding features from each modal and then
performs the cross-modal fusion. CMT conducts the posi-
tion encoding for both multi-view images and point clouds,
which are simply added with corresponding modal tokens,
removing the repeated projection and sampling processes.
It keeps more end-to-end spirits in original DETR frame-
work. Moreover, CMT achieves much better performance
compared to the FUTR3D (see comparison in Tab. 1), show-
ing its superior effectiveness. We think CMT provides a
better end-to-end solution for multi-modal object detection.

4. Experiments
4.1. Datasets and Metrics

We evaluate our method on open datasets, including
nuScenes [2] and Argoverse 2 [49].

NuScenes [2] is a large-scale multi-modal dataset, which
is composed of data from 6 cameras, 1 LiDAR and 5
radars. The dataset has 1000 scenes totally and is divided
into 700/150/150 scenes as train/validation/test sets, respec-
tively. Each scene has 20s video frames with 12 FPS. 3D
bounding boxes are annotated every 0.5s. We only use these
key frames. In each frame, nuScenes provides images from
six cameras. NuScenes provides a 32-beam LiDAR with
20 FPS. The key frames are also annotated every 0.5s, the
same as cameras. We follow the common practice to trans-
form the points from the past 9 frames to the current frame
for training and evaluation. We follow the nuScenes official
metrics.

We report the nuScenes Detection Score (NDS), mean
Average Precision (mAP), mean Average Translation Error
(mATE), mean Average Scale Error (mASE), mean Aver-
age Orientation Error(mAOE), mean Average Velocity Er-
ror (MAVE) and mean Average Attribute Error (mnAAE).

Argoverse 2(AV2) [49] contains 1000 sequences in total,
700/150/150 for train/validation/test similar as nuScenes.
AV?2 privides a long perceptron range up to 200 meters, cov-
ering an area of 400m x 400m, which is much larger than
nuScenes. We report mean Average Precision(mAP), Com-
posite Detection Score(CDS).

4.2. Implementation Details

We use ResNet[ 1 6] or VoVNet[20] as image backbone to
extract the 2D image features. The C5 feature is upsampled
and fused with C4 feature to produce P4 feature. We use
VoxelNet [58] or PointPillars [19] as the backbone to extract
the point-cloud features. All the feature dimension is set to
256, including the LiDAR feature, image feature and query
embedding. Six decoder layers are adopted in transformer
decoder.

Our model is trained with the batch size of 16 on 8 A100
GPUs. It is trained for total 20 epochs with CBGS[59]. We
adopt the AdamW/[32] optimizer for optimization. The ini-
tial learning rate is 1.0x 10~* and we follow the cycle learn-
ing rate policy[40]. The mask ratios n; and 79 are both set
to 0.25 for masked-modal training. The GT sample aug-
mentation is employed for the first 15 epochs and closed
for the rest epochs. As for the loss weights, we follow the
default setting in DETR3D [47] and set the w; and wy to
2.0 and 0.25, respectively. For fast convergence, we intro-
duce the point-based query denoising strategy based on DN-
DETR [21]. Different from it, we generate the noisy anchor
points by center shifting since the box scale is not that im-
portant in 3D object detection.
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Figure 6: Visualization of attention maps on multi-view im-
ages. The blue points (e) are initial anchor points while red
points (e) are the centers of box predictions. It shows that
high response regions of attention maps mainly focus on the
foreground objects, which are close to the anchor points.

On AV2, our model is trained 6 epochs, following com-
mon practice[l |, 23].

4.3. State-of-the-Art Comparison

As shown in Tab. 1, CMT achieves state-of-the-art per-
formance compared to existing methods on nuScenes test
set. Our LiDAR-only baseline, named CMT-L, achieves
70.1% NDS, which is a nearly SoTA performance among
all existing LiDAR-only methods. Our multi-modal CMT
achieves 74.1% NDS and 72.0% mAP, outperforming all
existing SoTA approaches, such as BEVFusion [31] and
Deeplnteration [52]. We also compare the performance
with other SoTA methods on nuScenes val set (see Tab. 2).
It shows that our proposed CMT with multi-modal fu-
sion outperforms the BEVFusion by 1.8% mAP. CMT
introduces large performance improvements compared to
our LiDAR-only CMT-L by 4.0%/6.7% and 4.3%/7.9%
NDS/mAP on test and validation set, respectively. In com-
parison, TransFusion only brings 1.5%/3.4% NDS/mAP on
test set, compared to the LIDAR-only TransFusion. It shows

Figure 5: Some qualitative detection results on the surrounding views and BEV space in the nuScenes test set. Bounding
boxes with different colors represent vehicles(e), pedestrians(e), Bus(e) and Truck(e).

that the multi-view images bring much more complemen-
tary information to the point clouds in CMT framework.
We think the end-to-end modeling of CMT relatively im-
proves the importance of image tokens. Fig. 5 shows some
qualitative detection results on the nuScenes test set.

On AV2 dataset, CMT also outperforms existing SoTA
methods, including VoxelNeXt[ | 1] and FSF[23], as shown

in428trong Robustness

We evaluate the robustness of our framework under var-
ious harsh environments, including LiDAR miss and cam-
era miss. Tab. 3 shows the results when the sensor miss
occurs, by simulating the scenarios of any modality totally
broken. The performance is compared between the vanilla
training and masked-modal training. It validates the effect
of masked-modal training. Note that the model are only
trained with multi-modality and evaluated without any fine-
tune process. With vanilla training, the model fails to pre-
dict anything meaningful (only Cams with mAP=0) when
LiDAR is missing. With masked-modal training, the ab-
sence of LiDAR or camera modalities lead to 4.8% and
28.2% NDS drop compared to CMT, respectively. It is
observed that losing one modality still remains similar re-
sults compared to single-modal training settings. It over-
comes the drawback that multi-modal method usually rely
on one major modality and performance would degrade sig-
nificantly if losing the major modality. Especially, for the
case of LiDAR missing, the performance is still compara-
ble to the SOTA camera-only method PETR [29], validat-
ing the strong robustness of our method. We further eval-
uate the performance of TransFusion and BEVFusion un-
der sensor miss (see Tab. 4). TransFusion fails to work
when LiDAR is missing due to the two-stage design. With
the masked-modal training, BEVFusion achieves the decent
performance (40% NDS and 32% mAP), while showing
large inferiority compared to CMT.

Moreover, we also investigate the case when any one
of cameras fails. Experimental result shows slight perfor-
mance drop, indicating the tolerable to single camera miss
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Table 6: The ablation studies of different components in the proposed CMT.

Im PC‘ NDS mAP mATE mASE mAOE

v 0.595 0.554 0.515 0.258 0.429
v’ 10.665 0.626 0.372 0.255 0.347
v v' 10.669 0.641 0.377 0.254 0.375

(a) Position encoding for query.

Voxel size ‘NDS mAP mATE mASE mAOE

0.075 0.669 0.641 0.377 0.254 0.375
0.1 0.671 0.638 0.378 0.252 0.334
0.125 0.655 0.624 0.396 0.255 0.397

(c) Voxel size of LiDAR backbone.

Image size ‘NDS mAP mATE mASE mAOE

800 x 320 [0.654 0.609 0.374 0.256 0.389
1600 x 640(0.669 0.641 0.377 0.254 0.375

(e) Input size of image backbone.

of our method. Six sensors brings an average decrease of
0.7% NDS, no more than 1% performance of the oracle ver-
sion. The front and back sensor relatively play the important
role among camera sensors, with 1.1% and 0.8% decrease
respectively, due to their distant or large field of view. Com-
pared to the camera-only setting, our multi-modal frame-
work facilitate the compensation between LiDAR and im-
age domains, thus presenting a robust performance.

4.5. Ablation Study

We present ablation studies in Tab. 6. All experiments
are conducted for 20 epochs without CBGS[34]. We first
ablate the effect of Im PE and PC PE on the generation
of position-guided queries. It shows that removing PC
PE introduces a 7.4%/8.70% NDS/mAP performance drop,
which is much larger than the drop of removing Im PE
0.4%/1.5%. Next, we explore the effectiveness of point-
based query denoising (PQD) introduced in Sec. 4.2. We
can easily find that PQD can greatly improve the over-
all performance by 4.3%/5.7% NDS/mAP. With PQD, the
training convergence can be boosted, which is similar to
the practice in DN-DETR [21]. Further, we also illus-
trate the effect of scaling up the CMT model as well as
the input size. Overall, CMT can benefit from the scal-
ing model size. Interestingly, we find increasing the voxel
number (smaller voxel size) and image size achieves simi-
lar improvements = 1.5% in NDS. While scaling the image
size increases more mAP than the voxel number(+3.2% vs.
+1.7%). When increasing the image size from 800 x 320
to 1600 x 640, we find the performance improvements are
mainly from these small objects, such as pedestrian and mo-
torcycle. We also conduct experiments on replacing image

PQD ‘NDS mAP mATE mASE mAOE

0.626 0.584 0.429 0.259 0.420
v 10.669 0.641 0.377 0.254 0.375

(b) Point-based query denoising.

Backbone ‘NDS mAP mATE mASE mAOE

ResNet-50 {0.658 0.623 0.376 0.253 0.399
ResNet-101{0.664 0.629 0.383 0.254 0.363
VoV-99 0.669 0.641 0.377 0.254 0.375

(d) Image backbone.

Backbone ‘NDS mAP mATE mASE mAOE

PointPillars [0.628 0.598 0.430 0.252 0.455
VoxelNet (0.669 0.641 0.377 0.254 0.375

(f) Lidar backbone

and LiDAR backbones, we use VoV-99[20] and ResNet[16]
as our image backbones. Experiments show that our pro-
posed CMT can benefit from larger backbones. For image,
VoV-99 backbone achieves the best result and outperforms
the ResNet-50 by 1.1%/1.8% in NDS/mAP. While for Li-
DAR, VoxelNet outperforms the PointPillar by 4.1%/4.3%
in NDS/mAP.

4.6. Analysis

For better understanding on querying from multi-modal
tokens, we visualize the attention map of cross-attention on
the multi-view images (see Fig. 6). We can clearly find that
the attention maps have higher response on the regions that
includes foreground objects. It shows that our method can
implicitly achieve the cross-modal interaction. We visual-
ize the initial anchor points and the center points of predic-
tions. Most anchor points focus on the closest foreground
objects. After the interaction with multi-modal tokens in the
transformer decoder, anchor points are updated and gradu-
ally access the accurate center points.

5. Conclusions

In this paper, we propose a fully end-to-end framework
for multi-modal 3D object detection. It implicitly encodes
the 3D coordinates into the tokens of images and point
clouds. With the coordinates encoding, the simple yet effec-
tive DETR pipeline can be adopted for multi-modal fusion
and end-to-end learning. With masked-modal training, our
multi-modal detector can be learned with strong robustness,
even if one of multi-modalities are missed. We hope such
a simple pipeline design could provide more insights on the
end-to-end 3D object detection.
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