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Abstract

Anomaly detection in the video is an important research
area and a challenging task in real applications. Due to
the unavailability of large-scale annotated anomaly events,
most existing video anomaly detection (VAD) methods focus
on learning the distribution of normal samples to detect the
substantially deviated samples as anomalies. To well learn
the distribution of normal motion and appearance, many
auxiliary networks are employed to extract foreground ob-
ject or action information. These high-level semantic fea-
tures effectively filter the noise from the background to de-
crease its influence on detection models. However, the ca-
pability of these extra semantic models heavily affects the
performance of the VAD methods. Motivated by the impres-
sive generative and anti-noise capacity of diffusion model
(DM), in this work, we introduce a novel DM-based method
to predict the features of video frames for anomaly de-
tection. We aim to learn the distribution of normal sam-
ples without any extra high-level semantic feature extrac-
tion models involved. To this end, we build two denoising
diffusion implicit modules to predict and refine the features.
The first module concentrates on feature motion learning,
while the last focuses on feature appearance learning. To
the best of our knowledge, it is the first DM-based method
to predict frame features for VAD. The strong capacity of
DMs also enables our method to more accurately predict
the normal features than non-DM-based feature prediction-
based VAD methods. Extensive experiments show that the
proposed approach substantially outperforms state-of-the-
art competing methods. The code is available atFPDM.

1. Introduction

Video anomaly detection (VAD) aims at identifying the

unusual events that rarely appear and are different from nor-

mal behaviors in videos. Successfully detecting the anoma-

lies, such as traffic accidents, violence, and stampedes, is of

great importance in ubiquitous video surveillance for pub-
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Figure 1. Overview of three generative VAD approaches. Exist-

ing state-of-the-art GAN-based or auto-encoder-based approaches

heavily rely on foreground object or action information extracted

by auxiliary models, such as object detection, action recognition

or optical flow network, to generate features/images for effective

performance. By contrast, our proposed diffusion model-based ap-

proach does not have this reliance and can make accurate feature

prediction using only simple networks as encoder to extract basic

image features as input.

lic safety. However, VAD is a challenging task since the

anomaly events are unbounded in real-world applications

and it is difficult to collect large-scale labeled data.

There have been many VAD methods [9,10,14,19,23,33,

34,39,45,46,57,62,68,71] proposed over the years to handle

this issue, in which one-class learning-based methods are

preferred due to the relatively accessible normal training set

and their capacity to achieve better performance [44]. The

one-class VAD methods assume the availability of the train-

ing data in which all samples are normal, and build different

models to learn the distribution of normal data. Genera-

tive modeling is a widely-used technique in this line since

the normal samples can be better generated than anoma-

lies after training. Generative Adversarial Networks (GAN)

[22, 52, 71, 72] and Auto-Encoder (AE) [24, 29, 40, 46] are

two popular frameworks. Although these generative ap-

proaches achieve promising performance in VAD, there are

three main challenges: (1) the GAN/AE-based methods suf-

fer from the weak generative capacity, leading to more noise

from the low-quality generated image, which reduces the
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performance, (2) current SOTA methods often employ some

auxiliary models, e.g., object detection and action recogni-

tion models, to capture the features of the foreground ob-

ject or action information, and as a result, the performance

relies heavily on the representation capacity of these high-

level semantic models, and (3) the anomaly events are often

characterized by the novel appearance and/or abnormal mo-

tion, which increase the difficulty of the generative models

to capture the normality/abnormality in both aspects.

In very recent years, diffusion models (DMs) [26, 53],

have been attracting increasing attention due to their pow-

erful generative capacity and excellent performance in var-

ious tasks [5, 17, 49, 53]. Different from GAN and AE, the

diffusion models inject Gaussian noise into the training data

and then learn to recover the samples from those noisy data.

The DMs are featured by minor modifications and rectifica-

tion of the generated samples in each step, enabling a more

stable generation of more realistic samples. Therefore, the

DM-based approaches outperform the GAN/AE-based ap-

proaches in many generative tasks [6, 12, 50, 63].

Motivated by the powerful generative capacity of these

diffusion models, we propose a novel DM-based approach

for anomaly detection. For the second and third challenges

mentioned above, as shown in Fig. 1, we devise two com-

plementary denoising DM modules to learn the distribution

of normal samples. One module emphasizes learning the

distribution of motion, while another module focuses on ap-

pearance learning. We employ a simple neural network as

the encoder for extracting basic 2D features. Many previous

studies [21, 49] have shown that many simple pre-trained

networks can effectively extract basic texture information

of images even if there are novel classes beyond the train-

ing data. Therefore, we adopt a basic 2D feature extractor,

which is different from many existing generative methods

that utilize high-level semantic models for 3D feature ex-

traction. Based on this, our goal is to learn the distribution

of normal features and predict the features of samples for

anomaly detection.

In summary, there are three main contributions:

• We introduce a novel diffusion model-based method

to predict the features of each sample for VAD. To the

best of our knowledge, it is the first work in utilizing

DMs for VAD.

• We design two types of DDIM module for respective

motion and appearance learning from the normal sam-

ples to guarantee the generative quality of predicted

features.

• The proposed model takes 2D images as input with no

auxiliary semantic networks, while achieving a highly

comparable performance to the methods utilizing high-

level 3D semantic features.

Experimental results on four publicly available video

anomaly detection datasets demonstrate that our method

substantially outperforms the image feature-based VAD

counterparts and performs comparably well to methods us-

ing 3D semantic features.

2. Related work
For different application scenarios, the video anomaly

detection methods can be generally classified into three

categories, semi-supervised, one-class, and unsupervised

VAD, according to the annotation of training samples. Since

our method belongs to the one-class type, we only review

one-class VAD methods.

The early one-class VAD methods are two-step ap-

proaches in which feature extraction and learning are sep-

arated. They first use hand-crafted feature descriptors to

present each frame, such as 3D gradients features [38],

histogram of gradient (HOG) [16], histogram optical flow

(HOF) [16], bag of words (BOW) etc., then build a shallow

model to learn the normal distribution, such as dictionary-

based models [75], probabilistic models [13, 41], and re-

construction models [16, 38, 75]. These traditional methods

suffer from the poor performance of hand-crafted features.

With the development of deep learning [35,36,64–67], con-

volutional neural network-based methods followed close on

another. The CNN integrates feature extraction and learning

into an end-to-end frame [42, 43, 70]. The majority of these

CNN-based methods belong to the generative approach, in

which the model applies feature learning on normality and

detects anomalies according to the difference between the

generated and original samples. The generative adversar-

ial network (GAN) [20,51,73] and auto-encoder-based net-

work (AE) [25,27,56] are widely used for such normal fea-

ture learning. Based on these frameworks, memory mod-

ule [24], and feature prediction module [33] are proposed

to enhance the capacity of feature learning. To further im-

prove performance, some high-level feature extraction mod-

els, e.g., object detection [23, 37], action recognition [62],

and optical flow [33], are employed to obtain foreground or

motion information for the learning of normality. The aux-

iliary models bring the benefit to these VAD methods while

increasing the dependency on semantic presentations.

Recently, diffusion models have achieved state-of-the-

art performance on many generative tasks and become a

hot research topic [5, 17, 26, 49, 53]. Many applications

have already emerged in computer vision, such as image in-

painting [7, 15, 54], image manipulation [47], image super-

resolution [7, 18], and image-to-image translation [50, 76].

The state-of-the-art performance of these applications con-

firms that the DM-based models have remarkable generative

capacity. To further expand DMs to mainstream computer

vision tasks, some DM-based latent representation learning

methods have been proposed, such as DiffusionDet for ob-

5528



Feature Prediction Diffusion Module

U-net

Encoder

Diffusion process

Diffusion process

CA CA CA CA

U-net

SA SA SA SA

Feature Refinement Diffusion Module

Denoising steps

Self-attention

Cross-attention

Conditioning

SA

CA

Feature Extraction

Figure 2. The framework of the proposed method. It contains a frame-level 2D encoder and two DM-based modules, including a feature

prediction diffusion module and a feature refinement diffusion module. The feature prediction diffusion module adopts consecutive k
features as input, in which only the last one accept the diffusion process. With the temporal information from the consecutive frames,

this module emphasizes learning the distribution of normal motion. The feature refinement diffusion module takes the sampling output of

previous module as input and the k−th original features as a condition for training, which focuses on the appearance learning.

ject detection [12], SegDiff for segmentation [2], and SBG

classifier for classification [77]. These discriminative tasks

usually require more powerful models that are not easy

to be disturbed by background. Therefore the success of

these methods on different tasks verifies the anti-noise abil-

ity of DM. The early diffusion models, such as the denois-

ing diffusion probabilistic model (DDPM), have quite a few

denoising steps required in the sampling stage due to the

Markov process converting data distribution via tiny mod-

ification. To accelerate the sampling process, many speed-

up diffusion methods have been proposed [30, 53, 74]. The

denoising diffusion implicit model (DDIM) is widely used

due to its training-free property. The DDIM requires no ex-

tra training and can directly apply the advanced sampling

algorithms with fewer steps and higher fidelity. Therefore

DDIM-based methods are more likely to be adopted in real

applications.

3. Method

Our key motivation is to design a diffusion model-based

approach to well learn the distribution of normal motion and

appearance without the help of 3D feature extraction net-

works. In the inference stage, the feature of a normal sam-

ple is more easily predicted by the optimized model than

that of the abnormal one.

As shown in Fig. 2, our framework contains three parts,

i.e. a frame encoder, a feature prediction diffusion module,

and a feature refinement diffusion module. First, we employ

an encoder to extract the feature of each frame. Any pre-

trained CNN can be used as the encoder. Here we adopt a

slight encoder from [48] since (1) the size of output feature

map is 64 times spatially smaller than that of the original

image and contains only four channels, which significantly

reduces the computation of the following diffusion mod-

ules, and (2) the pretraining of this encoder is unsupervised,

which is more accessible. To predict the feature, we design

two DDIM-based modules to predict and refine the feature

of each frame. Notice that DDIM has the same training pro-

cedure as DDPM but is more efficient in the sampling stage

since it adopts a jump-step implicit sampler rather than ex-

tracting noise information step by step. The feature predic-

tion diffusion module emphasizes learning the distribution

of motion, and the feature refinement diffusion module fo-

cuses on appearance distribution learning.

3.1. Problem Formulation

The problem aims to address is to generate a feature

by giving several continuous video frames and then esti-

mate whether this feature belongs to the learned distribu-

tion. Formally, given a video clip with k consecutive frames

X = {x1,x2, · · · ,xk}, our goal is to predict the feature of

k-th frame denoted as f̈(xk) and f̈k for short. We use ḟk
and f̈k to denote the output of the feature prediction and re-
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finement diffusion module. Since the time step is involved,

we use f t
k to denote the feature of k-the frame at time step

t. To this end, f0
k refers to the k-th feature at time step 0,

which is equivalent to fk. Compared with the original fea-

ture denoted as fk, the anomaly score of the k-th frame can

be calculated by Mean Square Error between fk and f̈k.

3.2. Feature prediction diffusion module

Different the previous work [33] that adopts k sam-

ples to predict the (k+1)-th sample, we take the features

{f0
1 , f

0
2 , · · · , f0

k−1} of 1 to k-1 frames and the noisy fea-

ture f t
k of the k-th frame together as the input, to predict the

feature ḟ0
k . To this end, we build a feature prediction dif-

fusion module to progressively remove the noise of f t
k by

using implicit sampling [53] to generate ḟ0
k .

For training, the goal of our diffusion models is to

learn a distribution pθ(f
0) that approximates the original

data distribution q(f0). In forward process, the posterior

q(f1:T |f0) is fixed to a Markov chain:

q(f1:T |f0) :=

T∏
t=1

q(f t|f t−1), (1)

where t ∈ [1, T ] is the time step, and:

q(f t|f t−1) := N(f t;
√
αtf

t−1, (1− αt)I), (2)

where αt ∈ {αt}Tt=1 is a schedule to control the percentage

of f t−1, (1-αt) controls the percentage of noise. With time

step t increase, αt decrease. Based on these properties, the

f t can be presented by the linear combination of f0 and

standard Gaussian noise ε as following:

f t =
√
αtf

0 +
√
1− αtε. (3)

To learn the distribution pθ(f
0), we build a U-net diffu-

sion network εθ(·) based on the LDM [49]. To well pre-

dict the features, we modify two parts of the LDM: (1) we

discard the latent condition part and modify all the cross-

attention layers to traditional attention layers, and (2) each

input sample contains k features {f0
1 , f

0
2 , · · · , f t

k} where

only the k-th feature is applied diffusion forward process.

There are two reasons for such modification: (1) we expect

to learn the distribution of features from normal samples

without any other latent condition involved, and (2) com-

bined with the consecutive features of previous frames, we

can provide the motion information to the εθ(·), making this

diffusion module focus on feature motion learning.

Following [26,53], the simplified version of the objective

is used for training defined as:

Lθ = E
[||εθ(f0

1 , f
0
2 , · · · , f t

k, t)− ε||22
]
, (4)

where t is the time step, εθ(·, t) is the prediction noise at

time t. Substituting f t of Eq. (3) into Eq. (4), the parameter

θ can be optimized by given sufficient feature samples and

random time step t ∈ [1, T ].
For the reverse process, the features of the k-th sample

at time t-1 can be generate once given {f0
1 , f

0
2 , · · · , f t

k} by

the following formula:

f t−1
k =

√
αt−1(

f t
k −√

1− αtεθ(f
0
1 , f

0
2 , · · · , f t

k, t)√
αt

)

+
√
1− αt−1 − σ2

t εθ(f
0
1 , f

0
2 , · · · , f t

k, t) + σtε

(5)

where σt ∈ {σt}Tt=1 is a schedule to control the added noise

for each step. At sampling stage, the (t-1)-th step takes the

features {f0
1 , f

0
2 , · · · , f t

k} as input to predict f t−1
k .

The consecutive supervision on the reverse process can

effectively guarantee the motion prediction while it may

miss some appearance details since the non-noisy k-1 fea-

tures are helpful for motion learning while having an ef-

fect on appearance learning. To this end, we create another

DDIM module to refine the appearance information.

3.3. Feature refinement diffusion module

We build a feature refinement diffusion module next to

the prediction module. This refinement model places em-

phasis on learning the appearance distribution of features.

Similarly, we adopt the LDM-based U-net as the diffusion

network for refining, in which the condition part is main-

tained. We take the output of the previous prediction mod-

ule, i.e. the denoised feature ḟ0
k as input, and use the origi-

nal feature f0
k of the k-th frame as condition, to generate the

refined features denoted as f̈0
k . The condition f0

k is used for

cross-attention to guarantee the feature appearance learn-

ing. The goal of the feature refinement diffusion module is

to learn a distribution pϕ(ḟ
0) that approximates q(f0).

Same with the previous feature prediction module, the

posterior q(ḟ1:T |ḟ0) is fixed to a Markov chain, and the

input ḟ t at time step t can be calculated according to Eq.

(3) by given ḟ0 and a Gaussian noise ε.
To make this refinement network εϕ(·) focus on appear-

ance learning, we augment the underlying UNet backbone

with cross-attention mechanism and take the original fea-

ture f0
k as the condition into the cross-attention layers. We

flatten the feature f0
k , then use a linear transform to obtain

a d-dimensional vector, which is defined as f̂0
k . The cross-

attention is implemented according to:

softmax(
QKT

√
d

)V, (6)

Q = Wq · f̂0
k ,K = Wk · φ(ḟ t

k), V = Wv · φ(ḟ t
k), (7)

where Wk, Wq , Wv are learnable projection matrices and

φ(ḟ t
k) is the input feature map of each cross-attention layer.
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The f̂0
k is changeless for different cross-attention layer that

provides a consistent appearance supervision on feature

learning. The loss function is also the simplified version

of DDIM, defined as:

Lϕ = E

[
||εϕ(ḟ t

k, f̂
0
k , t)− ε||22

]
. (8)

For reverse process, we can obtain the feature at t-1 time

step by:

ḟ t−1
k =

√
αt−1(

ḟ t
k −√

1− αtεϕ(ḟ
t
k, f̂

0
k , t)√

αt
)

+
√

1− αt−1 − σ2
t εϕ(ḟ

t
k, f̂

0
k , t) + σtε,

(9)

where the parameters α and σ are same as that of Eq. (5).

With a certain time step t, the refined feature f̈0
k can be

obtained through Eq. (9).

For testing, we use MSE to calculate the anomaly score

between f̈0
k and the original feature f0

k , defined as:

Score = MSE(f̈0
k , f

0
k ). (10)

In the training stage, we train the two diffusion modules

separately, i.e. train the refinement module after the predic-

tion module reaching convergence. It is because the input

of the refinement module is the sampling output of the pre-

diction module, which is of low quality at the beginning of

training. Joint learning has a negative impact on the perfor-

mance of the refinement module (see the results of Table.

3). Therefore, we adopt separate training. The pseudo-code

for training and inference is shown in Algorithm. 1.

4. Experiments and discussions
4.1. Datasets

Empirical evaluations are carried out on four video

anomaly detection datasets, CUHK Avenue [38], Shang-

haiTech [39], UCF-Crime datasets [31] and UBnormal [1].

The ShanghaiTech and UCF-Crime are large-scale real-

world VAD datasets, and UBnormal is a generated dataset.

The details are as follows:

• The CUHK Avenue (Ave) Dataset contains 16 train-

ing and 21 testing video clips. The videos are captured

in CUHK campus avenue with over 30k frames. This

dataset is proposed for one-class video anomaly de-

tection with anomaly annotations provided only in the

testing set, while the training split contains only nor-

mal samples.

• The ShanghaiTech (ShT) dataset is collected from

ShanghaiTech campus in different monitoring angles

and lighting conditions. It contains 13 scenes with over

Algorithm 1: The pseudocode for training and in-

ference

Training:
for S Epochs do

Random choose t from [1, T ]
Calculate f t at time t by Eq. (3)

Update εθ by Minimizing Eq. (4)
end
for S Epochs do

Random choose t from [1, T ]
Calculate f t by at time t Eq. (3)

Sample ḟ0 through Eq. (5)

Update εϕ by Minimizing Eq. (8)

end
Inference:
foreach Sample in X do

Choose a certain t
Calculate f t

k at time t by Eq. (3)

Sample ḟ0
k through Eq. (5)

Calculate ḟ t
k at time t by Eq. (3)

Sample f̈0
k through Eq. (9)

Calculate anomaly score by Eq. (10)
end

270k frames in 330 training videos and 130 abnormal

events covered in 13 testing videos. This dataset is also

for one-class video anomaly detection with anomaly

annotations provided only in the testing set.

• The UCF-Crime (UCF) dataset is collected from real-

world surveillance. It is a large-scale dataset con-

taining over 128 hours of 1,900 long and untrimmed

videos with more than 10m frames. The real anoma-

lies consist of 13 events that have a significant impact

on public safety. In one-class VAD setting, the video-

level annotations are discarded.

• The UBnormal (UB) benchmark is a supervised open-

set dataset composed of multiple virtual scenes for

video anomaly detection. It is generated by using the

Cinema4D software, containing a total of 29 scenes

with over 236k frames. We use the default training and

testing sets for one-class VAD to evaluate our method.

4.2. Performance evaluation metrics

Following previous works [23, 34, 45, 46, 57], the Area

Under the ROC Curve (AUC) is used as the evaluation met-

rics. The AUC is calculated by using ground truth and the

frame-level anomaly scores. In our model, the anomaly

scores are defined as the mean squared error (MSE) of each

frame as in Eq. (10).
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Table 1. AUC of different one-class VAD methods. OD refers to the foreground bounding box from the object detection method, while

I3D, R3D and A3D refer to the 3D features from ConvNet3D, ResNext3D and action recognition networks, respectively. ‘(FPM)’ indicates

that the model also takes a Frame Prediction-based Method for VAD.

Method Venue Feature Framework Ave ShT UCF UB
sRNN [39] ICCV-17 Image Encoder 81.7% 68.0% - -

AnoPCN [68] ACMMM-19 Image AE (FPM) 86.2% 73.6% - -

MemAE [24] ICCV-19 Image AE 83.3% 71.2% - -

Bman [32] TIP-20 Image AE (FPM) 90.0% 76.2% - -

STC [55] ACMMM-20 Image AE 80.9% 74.7% 72.7% -

CDAE [10] ECCV-20 Image AE (FPM) 86.0% 73.3% - -

RUVAD [61] TNNLS-21 Image AE (FPM) 88.3% 76.6% - -

MemG [46] CVPR-20 Image AE 88.5% 70.5% - -

ITAE [14] CVPR-20 Image AE 88.0% 74.8% - -

OGNet [71] CVPR-20 Image GAN - 70.5% - -

AMMC [8] AAAI-21 Image AE (FPM) 86.6% 73.7% - -

FFP [40] TPAMI-21 Image AE (FPM) 85.1% 72.8% - -

LNTR [3] CVPR-21 Image AE 84.9% 75.9% - -

NGOF [59] CVPR-21 Image AE (FPM) 88.4% 75.3% - -

CT-D2GAN [22] ACMMM-21 Image GAN (FPM) 85.9% 77.7% - -

PB-S [4] NC-23 Image GAN (FPM) 87.1% 73.7% - -

FPDM (Ours) - Image DDIM 90.1% 78.6% 74.7% 62.7%

BODS [60] CVPR-19 I3D AE - - 68.2% -

GODS [60] CVPR-19 I3D AE - - 69.4% -

VEC [69] ACMMM-20 OD AE (FPM) 90.2% 74.8% - -

CAC [62] ACMMM-20 A3D Encoder 87.0% 79.3% - -

HF2 [37] ICCV-21 OD AE (FPM) 91.1% 76.2% - -

BAF [23] TPAMI-21 OD AE 92.3% 82.7% - 59.3 %

BDPN [11] AAAI-22 OD AE (FPM) 90.0% 78.1% - -

GCL [72] CVPR-22 R3D GAN - 79.6% 74.2% -

SSL [58] ECCV-22 OD Encoder 92.2% 84.3% - -

FPDM (Ours) - Image DDIM 90.1% 78.6% 74.7% 62.7%

4.3. Implementation details

Following many previous works [24, 34, 45], the input

size of images is set to 256×256. Since the encoder has

four 2× downsampling layers, the size of the final feature

map is 32×32×4 for each sample. We use four consecutive

neighbor frames to predict the fifth according to the setting

of the first prediction framework in video anomaly detec-

tion [33]. Specifically, we create a cube with four original

features and a noised feature from the fifth feature as input

for training and testing. We use the recommended settings

of α and σ in DDIM [53]. In the training stage, the num-

ber of training epochs S is set to 60, including 12 warm-up

epochs at the beginning, and the time step T and learning

rate are set to 1k and 10−5 respectively. In the inference

stage, we adopt a 200 steps sampling schedule T
′

according

to [53], i.e. each step in T
′

equals five steps in T . More-

over, we set t=0.25T
′

for sampling because this was found

to be the best in [28, 63]. Therefore, the sampling stage is

20× speed-up compared with DDPM.

4.4. Competing methods

We examine the performance of the proposed FPDM on

all four datasets. We compare our method with 15 state-of-

the-art one-class VAD methods that use images as input, as

well as another 7 methods that employ different high-level

semantic features for training, e.g., foreground bounding

box from object detection, 3D features from action recogni-

tion models et. al..

On all four datasets, FPDM outperforms all the compet-

ing image-based one-class methods, verifying the advanced

performance of our method. Compared with the methods

with 3D features, we still have the best AUC results on

UCF-Crime and UBnormal datasets. Notice that the VEC,
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Figure 3. The visualization results. We use the frozen decoder from [48] to visualize the features of each module. The top and bottom

lines are two examples of normal and abnormal samples. The first column is the original input, and the next four columns named Noised,

Predicted, Refined and Output are the decoded images of noised feature, predicted feature, refined feature and original feature respectively.

The column named FFP is the predicted frames of FFP approach [40].

HF2, and DBPN employ object detection methods to ex-

tract the foreground, which can greatly reduce the influence

of various noises from the background. While our method

still beats these methods, illustrating the anti-noise capabil-

ity of the diffusion model.

4.5. Visualization results

To give a more intuitive presentation of the outputs from

each proposed module, we present two series of visualiza-

tion results from normal and abnormal samples. Here we

employ the decoder from [48] that matches our encoder to

recover an auto-encoder for feature map decoding.

The results are shown in Fig. 3, where the first column is

the original input. The next four columns show the output

of the decoder with four different features, including noised

features after the diffusion process in the feature prediction

module, the predicted features from the reverse process of

the prediction module, the refined features from the reverse

process of refinement module, and the features from the en-

coder respectively. For a more intuitive comparison, we

present the predicted frames of FFP [40] in the last column.

From the results of normality one shown in the top line,

we can see that the predicted features well capture the mo-

tion information and predict the position of each foreground

object, but missing some detail information, such as legs

and head of the person dressed in a white T-shirt, the head

of the person in black clothing et. al.. These missing details

are restored by the refinement module, as shown in the re-

fined column. Comparing the last three, the quality of the

refined one is significantly higher than that of the FFP and

very close to that of the decoded output from the original

feature. This example demonstrates that our model can ac-

curately predict normal features.

The bottom line shows a visual example of the anomaly

detection process. According to the results, the predicted

feature in the third column also captures the global infor-

mation of the foreground person but missing some details

around this person. With the help of Refined module, the

details of the bicycle, e.g., the two wheels are still blurred,

illustrating the lack of refinement capacity for the bicycle.

The quality of the person/bicycle in the refined column is

much better/worse than that of the FFP, verifying our re-

finement module has greater discriminate capacity than the

frame prediction auto-encoder approach The Visualization

results verify that the distribution of appearance is so well

learned by our model that the anomaly bicycle can’t be re-

stored.

4.6. Ablation study

We evaluate the importance of two key diffusion mod-

ules with six variations on ShT and UCF datasets.

First, we employ the decoder from [48] and discard the

two diffusion modules. This setting is to present the perfor-

mance of the feature extractor. We show the results of the

original AE as well as the trained AE using our training data

for auto-encoder training. As shown on the top two rows in

Table. 2, the results of both original AE and trained AE

are far behind the proposed FPDM, demonstrating that the
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improvement of our FPDM model is based on the two de-

signed diffusion modules. We also train the AE using train-

ing data before optimizing FPDM and present the result in

the third row. Comparing the result of directly optimizing

FPDM, it has almost the same performance, which confirms

the unnecessary process of training AE before FPDM.

Table 2. AUC of our model FPDM and its variants. PM and RM re-

fer to our prediction module and refinement module, respectively.

FPDM and its Variants ShT UCF
AE without training 67.5% 50.8%

AE with training 69.1% 53.1%

FPDM with trained AE 78.6% 74.5%

FPDM with only PM 77.3% 74.2%

FPDM with only RM 76.8% 72.5%

FPDM with decoder 78.3% 74.1%

FPDM default 78.6% 74.7%

Then we keep the prediction/refinement diffusion mod-

ule with the other one discarded to test the capacity of each

module. From the results on the fourth and fifth rows, we

can see that the performance decreases when only one mod-

ule is utilized. The feature prediction module learns the

motion information as well as some appearance informa-

tion, helping achieve better performance than the refinement

module.

Finally, we present the results of FPDM with the de-

coder. We also use the decoder from [48] to decode the f̈0
k

and calculate the MSE between the input and the decoded

one. The declining result of FPDM with decoder shows that

the information could be lost through the decoder, e.g., the

details of the background (also see the fence and curb on

the last column in Fig. 3), which leads to the decrease of

performance. Since the specific information of background

is usually not relevant to VAD, discarding the decoder is a

better choice.

4.7. Analysis of training settings

Table 3. The results of FPDM with different training mode set-

tings. PM, RM, J(.), S(.) refer to prediction module, refinement

module, joint training, and separated training respectively.

Training Mode ShT UCF
FPDM J(PM & RM) 70.8% 68.1%

FPDM S(PM&RM) → J(PM&RM) 78.2% 74.5%

FPDM default 78.6% 74.8%

We first evaluate the performance of FPDM with differ-

ent training mode settings. For the proposed two modules,

we present the results of joint learning for the whole train-

ing, joint learning after separated learning, and the default

setting of FPDM in Table. 3. We can see that the perfor-

mance of joint learning for the whole training, i.e. J(PM

& RM), is far behind that of the default setting. It may be

due to the low quality of predicted features at the begin-

ning of training, negatively impacting refinement learning.

The performance of joint learning after separated learning,

i.e. S(PM&RM)→J(PM&RM), falls slightly behind the de-

fault setting. The reason may be that the distribution of ḟ0
k

changes in the training process of the prediction module,

leading to the instability of refinement learning.

Table 4. The results of FPDM with different number of neighbors

on the ShanghaiTech dataset. ShT-3, ShT-11 and ShT-all refer to

the 3-rd, 11-th and all scenes of ShanghaiTech dataset.

# Neighbors ShT-3 ShT-11 ShT-all
FPDM 12 81.7 96.6 79.0

FPDM 8 80.3 96.4 78.9

FPDM 4 79.2 96.5 78.6

FPDM 0 73.8 96.3 76.2

Then we evaluate the performance of FPDM with dif-

ferent numbers of neighbors in the prediction module. We

present the results of 0, 4, 8, and 12 neighbors on two

representative scenes, i.e., scene-3 and scene-11 of Shang-

haiTech dataset. These two scenes are chosen because the

anomalies are all action/appearance-based abnormal events.

From the results, we can see that the performance increases

observably on the action anomaly test set with more neigh-

bors for training. When the number of neighbors is set to

zero, the prediction module degrades to a prediction refine-

ment module with no condition, leading to the decline of the

motion learning capacity. While for the appearance-based

anomalies, the number of neighbors has little influence on

the performance.

5. Conclusions

This paper introduces the first feature prediction diffu-

sion model for video anomaly detection. We further devise

two DDIM modules, namely the feature prediction diffu-

sion module and feature refinement diffusion module, for

motion and appearance learning from the normal samples.

It is impressive that although our model takes images as

input to predict features for anomaly detection, it achieves

a competing performance compared with the methods uti-

lizing high-level 3D semantic features. Extensive empiri-

cal results also demonstrate the superiority of our approach

against the SOTA 2D image feature-based VAD models.
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