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Abstract

This paper aims to explain the generalization of deep-
fake detectors from the novel perspective of multi-order in-
teractions among visual concepts. Specifically, we propose
three hypotheses: 1. Deepfake detectors encode multi-
order interactions among visual concepts, in which the
low-order interactions usually have substantially negative
contributions to deepfake detection. 2. Deepfake detec-
tors with better generalization abilities tend to encode low-
order interactions with fewer negative contributions. 3.
Generalized deepfake detectors usually weaken the nega-
tive contributions of low-order interactions by suppressing
their strength. Accordingly, we design several mathemat-
ical metrics to evaluate the effect of low-order interaction
for deepfake detectors. Extensive comparative experiments
are conducted, which verify the soundness of our hypothe-
ses. Based on the analyses, we further propose a generic
method, which directly reduces the toxic effects of low-order
interactions to improve the generalization of deepfake de-
tectors to some extent.

1. Introduction
Deepfake detection has attracted increasing attention in

recent years [39, 32, 13, 22, 41]. However, the generaliza-
tion of deepfake detectors is still a considerable challenge
in this field. Specifically, deepfake detectors with outstand-
ing performance on learned datasets usually do not gener-
alize well to unseen datasets. Previous studies on improv-
ing the generalization mainly focused on two perspectives.
Some studies [39, 29, 10, 9] proposed methods to synthesize
new face forgeries to mimic deepfakes, in order to enrich
the diversity of artifact features in images. Some studies
[36, 58, 4, 57, 20] empirically designed specific modules to
concentrate on more generalized forgery traces. However,
these works usually reflected human’s understanding of the
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Figure 1. An intuitive understanding of our motivation. Given
a manipulated image, the realism of the image usually can not be
identified faithfully when preserving a little information. In corre-
spondence, as the amount of information on the image increases,
the realism of the image can be concluded more confidently. In
this paper, we decompose such effects of the different amounts of
information on the image from a novel view of multi-order inter-
actions among visual concepts. To this end, three hypotheses are
proposed and verified, showing that deepfake detectors often fail
to learn reliable and generalized artifact representations from lim-
ited information.

generalized artifact features, which failed to diagnose and
explore the generalization mechanism of the learned repre-
sentations inside deepfake detectors.

Different from previous studies, we aim to explain the
generalization of deepfake detectors by diagnosing the
learned representations from a novel game-theoretical view.
Specifically, we aim to explore the relationship between the
generalization of deepfake detectors and the multi-order in-
teractions [54] among the learned visual concepts on forg-
eries.

In this paper, visual concepts represent meaningful im-
age regions, e.g., object parts like eyes, noses, or mouths of
genuine/fake human faces. Originally proposed by Zhang
et al. [54], the multi-order interaction among different vi-
sual concepts can be understood as follows. Deepfake de-
tectors usually do not indicate forgeries based on each vi-
sual concept individually. Instead, different visual concepts
may cooperate with each other to form a decisive interaction
pattern to distinguish fake images, such as the inconsistency

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2031



between the genuine and forged areas [59]. In particular, the
order of the interaction among these visual concepts repre-
sents the scale of the context when they collaborate with
each other. For example, as shown in Figure 1, given a cer-
tain coalition of visual concepts on an input image, the low-
order interaction represents the extra award caused by the
collaboration of these visual concepts with a simple context.
In correspondence, the high-order interaction represents the
extra award caused by the collaboration of these visual con-
cepts with a complex context.

Intuitively, different orders of interactions among visual
concepts may have different effects on the task of deepfake
detection. To this end, we propose three hypotheses and de-
sign several mathematical metrics to evaluate the impact of
multi-order interactions on the generalization performance
of deepfake detectors. Then, these evaluation results are
used to verify the proposed hypotheses.

Hypothesis 1: Deepfake detectors encode multi-order
interactions among visual concepts, in which the low-
order interactions usually have substantially negative
contributions to deepfake detection. As described above,
the low-order interaction reflects the simple collaboration
among a few visual concepts. Such learned knowledge may
not benefit the task of deepfake detection due to the limited
representations. For instance, as shown in Figure 1, when
only a small number of patches are available on images, it
is difficult to tell the differences between fake and genuine
images. In this scenario, deepfake detectors tend to easily
learn biased representations of artifact features.

Hypothesis 2: Deepfake detectors with better gener-
alization abilities tend to encode low-order interactions
with fewer negative contributions. Under the premise that
learning low-order interactions among visual concepts is
detrimental to deepfake detection, such biased representa-
tions may cause unexpected results when facing new forg-
eries, leading to a performance drop on the cross-dataset
evaluation. To this end, we believe that when the general-
ization ability of deepfake detectors is improved, the nega-
tive contributions of low-order interactions tend to be less.

Hypothesis 3: Generalized deepfake detectors usu-
ally weaken the negative contributions of low-order in-
teractions by suppressing their strength. Based on the
understanding of hypothesis 2, directly suppressing the
strength of the learned low-order interactions seems to be an
effective way to weaken the negative contributions to deep-
fake detection. In other words, when deepfake detectors
barely learn low-order interactions among visual concepts,
they should encode more generalized artifact features to dis-
tinguish forgeries.

Methods: We propose several metrics to evaluate the
effect of multi-order interactions encoded in deepfake de-
tectors. For hypothesis 1, we design a metric to attribute
the contributions of different orders of interactions to the

task of deepfake detection. For hypothesis 2, the metric is
used to evaluate how low-order interactions contribute dif-
ferently to the task of deepfake detection among deepfake
detectors with different generalization abilities. For hypoth-
esis 3, we aim to measure the strength of different orders of
interactions learned by deepfake detectors. In this way, we
conduct extensive experiments to verify the above hypothe-
ses with the proposed metrics.

Furthermore, based on our understanding, we then pro-
pose a generic method to improve the generalization abil-
ities of deepfake detectors across different backbones.
Specifically, we directly remove the part of the output score
related to low-order interactions for each input image dur-
ing the inference process of deepfake detectors. In this way,
the toxic effects of low-order interactions can be reduced to
some extent, so as to improve the generalization abilities of
deepfake detectors without retraining them.

Contributions of this paper can be summarized as fol-
lows. 1) We propose to explore the generalization mech-
anism of the learned representations inside deepfake de-
tectors from a novel game-theoretical view. 2) We de-
sign several mathematical metrics to quantify the effect of
multi-order interaction among visual concepts for the task
of deepfake detection. 3) Three hypotheses are proposed
and verified, which reveal the toxic effect of low-order in-
teractions on the performance of deepfake detectors. 4) We
further propose a novel strategy to directly reduce the toxic
effects of low-order interactions in the inference process,
which improves the generalization abilities of various deep-
fake detectors to some extent.

2. Related Work
Deepfake Detection. The field of deepfake detection

has attracted increasing attention in recent years [39, 2, 7,
22, 24, 25]. The task of deepfake detection is usually re-
garded as a binary classification problem. Given an input
image/video, the general goal of a deepfake detector is to
indicate whether the input sample is genuine or fake. How-
ever, previous methods usually suffered from the problem
of poor generalization. When applied to the unseen forged
images/videos, the performance of these deepfake detectors
usually dropped significantly [23, 16, 8]. Many researchers
have noticed this phenomenon and devoted themselves to
improving the generalization abilities of deepfake detectors.
Previous studies can be roughly divided into two categories.

Several works [30, 59, 31, 19] proposed novel meth-
ods to manually synthesize diverse face forgeries similar
to deepfakes, which assisted deepfake detectors to learn
more generalized artifact representations. Chen et al. [5]
proposed to enrich the diversity of forgeries by adversar-
ial training, in order to enforce the robustness of deepfake
detectors in recognizing forgeries. Shiohara and Yamasaki
[43] proposed to train deepfake detectors based on self-
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blended images, which were synthesized from real images
through a set of data augmentation operations.

Besides, several works [57, 37, 27, 33] designed specific
modules to concentrate on more generalized forgery traces
in an ad-hoc manner. Luo et al. [36] devised three func-
tional modules to utilize high-frequency features and low-
level RGB features for improving generalization. Du et al.
[16] proposed an autoencoder-based method to enforce the
model to learn intrinsic features from forgeries. Sun et al.
[44] proposed a calibration module for learning geometric
features to make deepfake detectors more robust.

Unlike previous studies, we focus on explaining the gen-
eralization abilities of deepfake detectors by diagnosing the
learned representations encoded by deepfake detectors. To
this end, from the game-theoretical view, we verify that the
generalization abilities of deepfake detectors are closely re-
lated to the low-order interactions among visual concepts.

Interactions. Recently, considerable literature has
grown up around the theme of interactions among input
units [55, 53, 51, 38, 50, 18], which are defined based on
the Shapley value [42]. Originally proposed in game the-
ory, the Shapley value [42] was designed to fairly distribute
the overall award obtained in the working coalition. The
Shapley value was proved to be the unique unbiased esti-
mation metric that satisfies certain properties, i.e., linearity,
dummy, symmetry, and efficiency properties [52]. Based on
the Shapley value, Grabisch and Roubens [18] extended this
metric to interactions among input variables in the cooper-
ative game. Interactions based on the Shapley value were
widely applied in various fields of DNNs subsequently.
Lundberg et al. [35] defined the Shapley Additive explana-
tion interaction values and gave the interpretation for pre-
dictions of tree ensemble methods, such as XGBoost and
LightGBM [34]. Tsang, Cheng, and Liu [49, 48] proposed
a statistical interaction detecting framework for interpret-
ing neural networks and provided explanations for recom-
mender models. Besides, some studies focused on further
completing the theoretical picture of interactions. Ancona
et al. [1] proposed a polynomial-time approximation of the
Shapley value to solve its intolerable computational cost.
Dhamdhere et al. [12] proposed the Shapley-Taylor index,
which decomposed the predictions of DNNs into interaction
effects of subsets of features. Zhang et al. [56, 54] defined
the multivariate interaction and the multi-order interaction
to explain DNNs. Deng et al. [11] employed the multi-
order interactions to explore the representation bottleneck
of DNNs.

In this paper, based on interactions among input units,
we further explore the relationship between the multi-order
interaction and the generalization abilities of deepfake de-
tectors. To point out, tackling this task for deepfake de-
tectors is non-trivial. Different from the traditional image
classification task, there is a lack of a widely convincing

and rigorous definition of artifact representations on im-
ages. Such an issue brings a significant challenge to diag-
nose whether deepfake detectors encode proper knowledge
of artifact representations. In this way, analyzing the effect
of the multi-order interaction among visual concepts on the
task of deepfake detection is still far more challenging.

3. Algorithm
In this section, given a well-trained deepfake detector,

we aim to explain its generalization ability by diagnosing
the learned representations from a game-theoretical view.
To this end, three hypotheses are proposed from the per-
spective of the multi-order interaction among the learned
visual concepts. In order to verify these hypotheses, we
propose several metrics to evaluate the impact of the multi-
order interaction on the generalization performance of deep-
fake detectors.

Notation: Let x ∈ Rn denote the input image, and f
denote the deepfake detector. We then divide the image x
into l×l grids to roughly represent different visual concepts.
Let V denote the set of all grids, where |V | = l × l = L.
vrc ∈ V indicates each gird, where 1 ≤ r, c ≤ l. In this
way, we aim to explore and compare how different orders
of interactions inside the set of visual concepts V affect the
performance of the deepfake detector f .

3.1. Preliminaries

For better understanding, we first briefly introduce the
Shapley value, interactions, and multi-order interactions as
the background.

The Shapley value. The Shapley value was first pro-
posed in game theory [42]. This metric can fairly distribute
cooperative benefits according to the contribution of each
player in the game. In this way, we can regard the inference
process of a deepfake detector as a coalitional game with
multiple players (e.g., a set of visual concepts) to pursue
a reward (e.g., the output score of the deepfake detector).
Let ϕ(vrc) denote the contribution of the visual concept
vrc ∈ V to the reward. Without ambiguity, we ignore the
subscript to simplify notations in the following paragraphs.
S ⊆ V denotes the coalition of some visual concepts. The
Shapley value ϕ(v|V ) is defined as follows:

ϕ(v|V ) =
∑

S⊆V \{v}

P (S|V \{v})[f(S ∪ v)− f(S)] (1)

where P (S|V \{v}) = (|V |−|S|−1)!|S|!
|V |! denotes the likeli-

hood of S being sampled.
Interactions. Interactions among visual concepts are

then defined based on the Shapley value [18]. Intuitively,
during the inference process, different visual concepts usu-
ally cooperate with others rather than working indepen-
dently. Thus, the interaction among different visual con-
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cepts usually brings additional contributions. Let us con-
sider that the visual concept i and the visual concept j
form a coalition Si,j = {i, j}. The additional contribu-
tion caused by the Si,j is measured as the interaction I(i, j)
between the visual concept i and j. According to [18], the
interaction between two visual concepts I(i, j) is defined as
follows:

I(i, j) = ϕ(Si,j |V ′)− ϕ(i|V \{j})− ϕ(j|V \{i}) (2)

V ′ = V \{i, j} ∪ Si,j denotes the set of (L − 1) play-
ers in the game, where Si,j participates as a whole. If
I(i, j) > 0, the coalition of Si,j achieves a positive con-
tribution. If I(i, j) < 0, the coalition of Si,j leads to a
negative contribution. However, I(i, j) measures the over-
all extra contributions of Si,j among all potential contextual
visual concepts. Such a mixed measurement may cause dif-
ficulty to quantify the additional contribution of a specific
type of coalition.

Multi-order interactions. The previous overall interac-
tion I(i, j) can be further decomposed into different orders
of interactions [54], i.e., I(i, j) = 1

L−1

∑L−2
m=0 I

m(i, j).
Here m represents the number of visual concepts in the con-
text S. Im(i, j) measures the average interaction between
the visual concept i and j based on m contextual visual con-
cepts. When m is small (e.g., m ≤ 0.2L), we regard such
interactions as low-order interactions. Meanwhile, when m
is large (e.g. m ≥ 0.8L), we regard such interactions as
high-order interactions. Specifically, the multi-order inter-
action Im(i, j) is defined as follows:

Im(i, j) = ES∈V \{i,j},|S|=m[△f(i, j, S)] (3)

where △f(i, j, S) = f(S ∪ {i, j}) − f(S ∪ {i}) − f(S ∪
{j})+f(S). f(S) denotes the output of the deepfake detec-
tor when only keeping visual concepts in S ⊆ V unchanged
but masking visual concepts in V \S with the baseline value.

3.2. Diagnosing Deepfake Detectors via Multi-order
Interactions

Hypothesis 1: Deepfake detectors encode multi-
order interactions among visual concepts, in which the
low-order interactions usually have substantially nega-
tive contributions to deepfake detection.

In this section, given a well-trained deepfake detector,
we aim to quantify the contributions of different orders of
interactions among visual concepts to the task of deepfake
detection, so as to verify the above hypothesis. Specif-
ically, since the general task of deepfake detectors is to
learn artifact-relevant representations on images, our goal
can be rephrased as follows: we expect to quantify the con-
tributions of different orders of interactions on the learned
artifact-relevant representations inside deepfake detectors.

To accomplish the above goal, there are two main issues to
deal with.

• What representations on images are considered as
artifact-relevant for deepfake detectors?

• How can we disentangle the effect of different orders
of interactions on the learned artifact-relevant repre-
sentations inside deepfake detectors?

For the first issue, recently, Dong et al. [15] made the first
step to explore the essence of artifact representations with
the help of the Shapley value [42]. To this end, they exper-
imentally verified that deepfake detectors mainly consider
source/target-irrelevant representations as artifact-relevant,
which provide us with methods to approximately locate
artifact-relevant representations for deepfake detectors, i.e.,
artifact-relevant image regions.

For the second issue, with the knowledge of artifact-
relevant image regions, we propose to design a metric,
which measures how different orders of interactions help
the deepfake detector f learn artifact-relevant representa-
tions to different degrees. For the m-th order interac-
tion, this metric measures the difference between its aver-
age contributions to the learned artifact-relevant representa-
tions and its average contributions to the learned artifact-
irrelevant representations respectively. Specifically, the
metric is defined as follows:

Dm =
(1− T ) · Im

||1− T ||1
− T · Im

||T ||1
(4)

where · denotes the inner product and || · || denote the
L1-norm. 1 ∈ Rl×l denotes the vector of ones. T ∈
{0, 1}l×l is a mask generated by the method proposed in
[15], which denotes the artifact-irrelevant image regions
(i.e. source/target-relevant image regions). Accordingly,
(1 − T ) ∈ {0, 1}l×l denotes the artifact-relevant image
regions. Im ∈ Rl×l denotes the m-th order interaction
among visual concepts. The first term measures the average
contributions of the m-th order interaction to the learned
artifact-relevant representations. The second term measures
the average contributions of the m-th order interaction to the
artifact-irrelevant representations. When Dm > 0, it is con-
sidered that m-th order interactions encode more artifact-
relevant representations than artifact-irrelevant representa-
tions, having positive contributions to the task of deepfake
detection overall. In contrast, when Dm < 0, m-th order
interactions then learn more artifact-irrelevant representa-
tions than artifact-relevant representations, having negative
contributions to the task of deepfake detection overall. In
this way, with the help of the metric Dm, we can quantify
the contributions of different orders of interactions among
visual concepts to the task of deepfake detection separately.
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Hypothesis 2: Deepfake detectors with better gen-
eralization abilities tend to encode low-order interac-
tions with fewer negative contributions.

In this section, in order to verify the above hypothe-
sis, we aim to evaluate the contributions of low-order in-
teractions inside deepfake detectors with respect to poor
and strong generalization abilities respectively. To make a
fair comparison, we evaluate deepfake detectors with the
same structure but perform differently on unseen forgeries.
To this end, we train two models with the same structure
with/without the commonly used data augmentations for
deepfake detection, such as Color Jittering, Random Crop,
Gaussian Blur/Noise, and JPEG Compression. Such data
augmentations are widely used to enhance the generaliza-
tion abilities of deepfake detectors [30, 59]. We then com-
pare the contributions of low-order interactions encoded in-
side these two well-trained deepfake detectors based on the
proposed metric Dm. In this way, we can explore how low-
order interactions among visual concepts affect the general-
ization abilities of deepfake detectors.

Hypothesis 3: Generalized deepfake detectors usu-
ally weaken the negative contributions of low-order in-
teractions by suppressing their strength.

In this section, based on previous hypotheses, we aim
to further discuss the internal mechanism of how low-order
interactions affect the generalization ability of deepfake de-
tectors. To this end, we propose to explore the correlation
between the strength of low-order interactions and the gen-
eralization abilities of deepfake detectors. Specifically, we
exploit the absolute values of low-order interactions to rep-
resent the strength of interactions. Then, we define a metric
to measure the average strength of m-th orders interactions
encoded in the deepfake detectors for each sample x as fol-
lows.

ρmx = Ei,j |Imx (i, j)| (5)

A large value of ρmx ≥ 0 represents that the average strength
of m-th order interactions among different visual concepts
is of great significance; and vice versa. In this way, we
can measure and compare the strength of low-order interac-
tions between deepfake detectors with different generaliza-
tion abilities, so as to verify the above hypothesis.

3.3. A Strategy for Reducing Toxic Effects of Low-
order Interactions

Based on the evaluation results of previous hypotheses,
in this section, we aim to further propose a novel method
to reduce the toxic effect of low-order interactions, so as
to further boost the generalization abilities of deepfake de-
tectors to some extent. Specifically, given an input image
x ∈ Rn and its original output score of deepfake detector
f(V ), we aim to specifically reduce the part of the output

score obtained from the learned low-order interactions. To
this end, the Shapley value ϕ satisfies the Efficiency prop-
erty, i.e., f(V ) − f(∅) =

∑
v∈V ϕ(v), which provides us

with,
f(V ) = f(∅) +

∑
v∈V

ϕ(v). (6)

In this way, the Shapley value ϕ(v) of grid v can be decom-
posed into the multi-order Shapley order values [38], i.e.,
ϕ(v) = 1

L

∑L−1
m=0 ϕ

m(v), which further gives us,

f(V ) = f(∅) + 1

L

∑
v∈V

L−1∑
m=0

ϕm(v). (7)

Meanwhile, we have ϕm =
∑m−1

k=0 Ik + ϕ0, which can
roughly reflect the accumulated effects of low-order inter-
actions to deepfake detection when m is small. Therefore,
we propose to recalculate the output score of the input im-
age as follows.

f ′(V ) = f(V )− 1

L

∑
v∈V

ϕm(v). (8)

where m is a small positive number, e.g., m < 0.3L.
Specifically, during the inference process of a deepfake de-
tector, we no longer take the original output score (i.e.,
f(V )) of the input image as its final score, but subtract it
with the part of the score specifically caused by the learned
low-order interactions of the image (i.e., 1

L

∑
v∈V ϕm(v)).

In this way, the toxic effect of low-order interactions on
input images will be less reflected from the final obtained
score f ′(V ), so as to better indicate the realism of input
images. Note that our proposed method does not require
retraining deepfake detectors, but only modifies the infer-
ence process of deepfake detectors, which ensures its wide
applicability.

3.4. Efficient Calculations

Calculating the m-th order interaction Im for verify-
ing hypotheses. In order to obtain Im in an efficient man-
ner, we resort to the multi-order Shapley value ϕm(v|V )
proposed in [38] to calculate the m-th order interactions
Im. Specifically, the m-th order Shapley value is de-
fined as ϕm(v|V ) =

∑
S⊆V \{v},|S|=m P (S|V \{v})[f(S∪

v) − f(S)], which can be approximated efficiently via a
sampling-based method [3]. The m-th order interactions
then can be obtained following Im = ϕm+1 − ϕm, which
has been proved in [38].

Calculating the sum of m-th order Shapley values
1
L

∑
v∈V ϕm(v) for the inference strategy. Directly calcu-

lating the m-th order Shapley value for each gird v and then
adding them all together can be time-consuming. There-
fore, we propose an efficient method to directly calculate
1
L

∑
v∈V ϕm(v). Specifically, we proved that the sum of

m-th order Shapley values 1
L

∑
v∈V ϕm(v) can be written
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Figure 2. Verification of hypothesis 1. For each sub-figure, the x-axis and y-axis represent different intervals of orders of interactions and
the corresponding Dm for each interaction interval. In general, when m < 0.2L, Dm is less than zero among various backbones and
different manipulation algorithms. Such results demonstrate that deepfake detectors encode multi-order interactions, in which low-order
interactions have substantially negative contributions to the task of deepfake detection.
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Face2Face

FaceShifter

FaceSwap 

NeuralTextures
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L-1Figure 3. Visualizing different orders of the Shapley values ϕm.
Results show that as the order increases, ϕm encodes more and
more meaningful image regions related to artifact representations.

as follows (Please see supplementary materials for details.).

1

L

∑
v∈V

ϕm(v) =
1

m+ 1
ES⊆V,|S|=m+1[f(S)−

∑
v∈S

f(S\{v})]

(9)
Since we mainly focused on calculating low-order Shap-
ley values, e.g., |S| < 0.3L, the computational cost for the
sampling-based method in [3] can be significantly reduced.

4. Experiments
Models and datasets. In order to verify the above

hypotheses, we conduct extensive experiments on various
models. Specifically, we used ResNet-18 [21], ResNet-34
[21], Xception [6], Efficient-b3 [45] as the backbones of
deepfake detectors. We then trained these models on the
widely-used dataset FaceForensics++ (FF++) [39], which
currently contains 5000 videos (i.e. 1000 genuine videos
and 4000 fake videos). The fake videos in FF++ are manip-
ulated using different methods, including Deepfakes [17],
Face2Face [47], FaceShifter [28], FaceSwap [26] and Neu-
raltextures [46]. To evaluate the generalization abilities of
the well-trained models on FF++ [39], we then tested our
models on Celeb-DF (v1) and Celeb-DF (v2) for cross-

dataset evaluations.
Implementation details. As a common protocol [30,

59], all models were pretrained on the ImageNet dataset
[40] and later finetuned on FF++ [39]. The performance
of deepfake detectors was evaluated based on the metrics of
Frame-level AUC (F-AUC) and Video-level AUC (V-AUC),
following [39, 30]. As for calculating Im, we evaluated
the interactions among visual concepts of one frame per
video in FF++ [39], in order to reduce the computation cost.
We used the final output scalar corresponding to the ground
truth label of the input as the output score of deepfake de-
tectors. l was set as 16 and the baseline value for calculating
Im was set as the average pixel value over all input samples,
following the same setting in [11, 1].

4.1. Verification of Hypotheses

Verification of Hypothesis 1. Hypothesis 1 assumes
that deepfake detectors encode multi-order interactions,
in which low-order interactions have substantially neg-
ative contributions to deepfake detection. To verify
the above hypothesis, we evaluated and compared the
proposed metric Dm of various orders. Specifically, we
divided the orders of interactions into multiple intervals, i.e.
{[0, 0.05L), [0, 05L, 0.1L), [0, 1L, 0.2L), ..., [0.9L, 0.95L),
[0.95L,L − 1)} and calculated the accumulative effects of
different orders of interactions inside each interval. Take
the calculation of D[0,1L,0.2L) as an example. We have
D[0,1L,0.2L) = (1−T )·I[0,1L,0.2L)

||1−T ||1 − T ·I[0,1L,0.2L)

||T ||1 , where

I [0,1L,0.2L) = ϕ0.2L − ϕ0.1L. As shown in Figure 2, low-
order interactions have significantly negative contributions
to the task of deepfake detection (e.g. Dm < 0 when
m ∈ [0, 0.2L)), compared with other orders of interactions
among visual concepts. This phenomenon was consistent
among different backbones and different manipulation
algorithms, which verifies our hypothesis. Note that
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backbone, models with better generalization abilities have larger values of Dm among most forged images, which indicates fewer negative
contributions to the task of deepfake detection.
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Resnet18
Poor 0.049

Resnet18
Poor 0.048

Resnet18
Poor 0.048

Resnet18
Poor 0.047

Resnet18
Poor 0.049

Strong 0.044 Strong 0.045 Strong 0.045 Strong 0.045 Strong 0.045

Resnet34
Poor 0.102

Resnet34
Poor 0.102

Resnet34
Poor 0.102

Resnet34
Poor 0.103

Resnet34
Poor 0.102

Strong 0.068 Strong 0.068 Strong 0.068 Strong 0.069 Strong 0.069

Efficient-b3
Poor 0.050

Efficient-b3
Poor 0.068

Efficient-b3
Poor 0.060

Efficient-b3
Poor 0.056

Efficient-b3
Poor 0.059

Strong 0.052 Strong 0.053 Strong 0.053 Strong 0.054 Strong 0.056

Xception
Poor 0.094

Xception
Poor 0.094

Xception
Poor 0.094

Xception
Poor 0.094

Xception
Poor 0.094

Strong 0.052 Strong 0.050 Strong 0.053 Strong 0.054 Strong 0.053

Table 1. Verification of hypothesis 3. For each backbone of deepfake detectors, the poor/strong generalization represents models trained
without/with data augmentations. Results show that deepfake detectors with better generalization abilities have smaller values of ρm among
most backbones and manipulation algorithms, which indicate less strength of the learned low-order interactions.

high-order interactions (e.g. m > 0.8L) also demonstrate
a few negative contributions to deepfake detection, which
may reveal the overfitting issue of deepfake detectors
when given overly sufficient information on images [14].
However, since it is of less significance than low-order in-
teractions, we mainly focus on how low-order interactions
affect the task of deepfake detection in this paper.

Moreover, in order to have a further semantic under-
standing, we also visualized the multi-order Shapley val-
ues [38] to demonstrate the effects of different orders of
interactions qualitatively. Here, we used ResNet-18 [21]
as our backbone. The m-th order Shapley value can be
seen as the accumulative effects of lower orders of inter-
actions, i.e. orders less than m [38]. In this way, we have
ϕm =

∑m−1
k=0 Ik+ϕ0, which can reflect the added-up influ-

ence of multi-order interactions to the task of deepfake de-
tection. As shown in Figure 3, ϕm encodes more and more
meaningful image regions as the order m increases. Such
image regions are highly related to the task of deepfake de-
tection, indicating artifact-relevant visual concepts. In con-
trast, when m = 0.1L, ϕm barely indicates any artifact-
relevant visual concepts, which qualitatively demonstrates
the negative effect of low-order interactions.

Verification of Hypothesis 2. Hypothesis 2 assumes

that deepfake detectors with better generalization abilities
tend to learn low-order interactions with fewer negative
contributions. To verify the above hypothesis, we aim to
evaluate the effect of low-order interaction on deepfake
detectors with different generalization abilities. To elim-
inate the influence of different architectures of models,
we compared deepfake detectors with the same backbone.
To this end, two deepfake detectors with the same back-
bone were trained with/without data augmentations, such
as Color Jittering, Random Crop, Gaussian Blur/Noise, and
JPEG Compression. These augmentation methods have
been widely used to improve the generalization of deepfake
detectors [30, 59]. The performance of these models is re-
ported in Table 2.

In this way, we compared the contributions of low-
order interactions encoded in each pair of deepfake detec-
tors via the proposed metric Dm, where m < 0.3L. Re-
sults in Figure 4 show that models with higher performance
on cross-dataset evaluations learned low-order interactions
with fewer negative contributions. Such results are widely
shown among various backbones and different manipula-
tion algorithms, which verify our hypothesis.

Verification of Hypothesis 3. Based on the previous
hypotheses, hypothesis 3 is further proposed to explore
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Backbones

Method Training data Testing data

DA Eq. 8 FF++ Celeb-DF (v1) Celeb-DF (v2)

F-AUC(%) V-AUC(%) F-AUC(%) V-AUC(%) F-AUC(%) V-AUC(%)

ResNet-18

✗ ✗ 99.61 99.93 56.76 57.60 59.89 64.63
✗ ✓ 99.60 99.93 57.56 58.32 60.00 64.71
✓ ✗ 99.55 99.80 70.55 77.93 69.22 77.56
✓ ✓ 99.55 99.80 70.52 77.97 69.21 77.53

ResNet-34

✗ ✗ 99.68 99.88 47.81 48.98 58.70 64.05
✗ ✓ 99.68 99.88 47.83 48.98 58.70 64.06
✓ ✗ 99.62 99.75 81.01 89.43 71.45 80.07
✓ ✓ 99.62 99.75 81.01 89.47 71.47 80.04

Xception

✗ ✗ 99.63 99.77 57.39 56.28 56.96 58.47
✗ ✓ 99.63 99.77 57.47 56.32 56.97 58.48
✓ ✗ 99.58 99.81 75.97 83.74 71.98 81.53
✓ ✓ 99.57 99.81 76.02 83.79 71.99 81.54

Efficient-b3

✗ ✗ 99.39 99.79 43.36 42.32 57.49 59.97
✗ ✓ 99.39 99.79 43.42 42.44 57.50 60.05
✓ ✗ 99.60 99.82 76.21 84.21 73.39 84.24
✓ ✓ 99.60 99.82 76.19 84.21 73.39 84.26

SBI [43] ✓ ✗ 98.49 99.32 85.21 93.17 82.54 91.92
✓ ✓ 98.48 99.31 85.23 93.25 82.53 91.90

FST-Matching [15] ✓ ✗ 99.76 99.90 85.80 92.32 81.50 89.39
✓ ✓ 99.72 99.90 85.81 92.36 81.49 89.39

CADDM [14] ✓ ✗ 99.56 99.81 80.24 90.75 89.07 76.73
✓ ✓ 99.50 99.81 80.27 90.96 89.10 76.75

Table 2. Employing the stategy in Eq. 8 for the inference process of deepfake detectors. DA denotes data augmentations for training
models. In general, when added our strategy (denoted as Eq. 8 in the table), deepfake detectors of various backbones achieved performance
improvements to some extent on the cross-dataset evaluations while maintaining the performance on the in-dataset evaluations.

the internal mechanism of how deepfake detectors encode
low-order interactions to achieve better generalization abil-
ities. It assumes that generalized deepfake detectors usually
weaken the negative contributions of low-order interaction
by suppressing their strength. We then used the proposed
metric ρm (m < 0.3L) to measure the strength of low-order
interactions on deepfake detectors with different generaliza-
tion abilities, which were trained during the verification of
hypothesis 2. Results in Table 1 show that deepfake detec-
tors with better generalization abilities tend to encode less
strength of low-order interactions. Such results are widely
shared among most backbones of deepfake detectors and
manipulation algorithms, which verify our hypothesis.

Discussion about the SOTA. To further validate our
findings, we provided analyses about the SOTA in [14] w.r.t.
our proposed hypotheses in supplementary materials.

4.2. Verification of the Proposed Strategy

Based on above evaluation results, we found the toxic ef-
fects of low-order interactions on the performance of deep-
fake detectors. To this end, we proposed to directly re-
duce the part of the output score caused by the low-order
interactions for each input image during the inference pro-
cess via Eq. 8, in order to improve generalization abili-
ties of deepfake detectors to some extent. Results in Tab.
2 show that when employing our strategy for inference
(m < 0.3L), deepfake detectors of various backbones
achieved better performance on the cross-dataset evalua-
tions in general, w.r.t models without employing our pro-
posed strategy. These results also demonstrate the negative
influence of low-order interactions on the task of deepfake

detection. Moreover, we further explored the utility of our
strategy to current state-of-the-art deepfake detection detec-
tors [43, 14, 43]. Results in Tab. 2 show that using our strat-
egy (m < 0.3L) for inference could further improve the
performance on the cross-dataset evaluations in the main,
which indicates the potential applicability of our method.

5. Conclusion

In this paper, we have explained the generalization of
deepfake detectors from a novel game-theoretical view, i.e.,
the multi-order interaction among visual concepts. Several
metrics, i.e., Dm and ρm, have been proposed to verify three
hypotheses in terms of the role of interaction. In this way,
we have discovered the toxic effect of low-order interac-
tions on the performance of deepfake detectors. Based on
the analyses, we have proposed a new strategy for the in-
ference process of deepfake detectors to boost their perfor-
mance to some extent, which can be considered as the first
step to exploit our explanations for applications. Neverthe-
less, beyond the potential applicability our proposed strat-
egy, the proposed metrics in this paper are also of great use.
Last but not least, since our focus in this paper was primarily
on explaining and analyzing the generalization of deepfake
detectors, we believe that more effective methods could be
further inspired based on our study in the future.
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