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Abstract

Instance segmentation on point clouds is crucially im-
portant for 3D scene understanding. Most SOTAs adopt
distance clustering, which is typically effective but does not
perform well in segmenting adjacent objects with the same
semantic label (especially when they share neighboring
points). Due to the uneven distribution of offset points, these
existing methods can hardly cluster all instance points. To
this end, we design a novel divide-and-conquer strategy
named PBNet that binarizes each point and clusters them
separately to segment instances. Our binary clustering di-
vides offset instance points into two categories: high and
low density points (HPs vs. LPs). Adjacent objects can
be clearly separated by removing LPs, and then be com-
pleted and refined by assigning LPs via a neighbor voting
method. To suppress potential over-segmentation, we pro-
pose to construct local scenes with the weight mask for each
instance. As a plug-in, the proposed binary clustering can
replace the traditional distance clustering and lead to con-
sistent performance gains on many mainstream baselines.
A series of experiments on ScanNetV2 and S3DIS datasets
indicate the superiority of our model. In particular, PBNet
ranks first on the ScanNetV?2 official benchmark challenge,
achieving the highest mAP. Code will be available pub-
liclyathttps://github.com/weiguangzhao/PBNet.

1. Introduction

In this paper, we consider instance segmentation for 3D
point clouds that aims to classify each point of 3D clouds
as well as separating objects from each class. While a large
body of successful algorithms have been developed for 2D
images [28, 13, 2, 29], most of these methods are not par-

*Corresponding author

Distance Clustering:

A
Ny

Point Cloud

&

Ground-Truth Semantic Label& Offset ° HPs @ LPs

Figure 1. Distance clustering vs. the proposed PBNet. Points
dropped in the distance clustering are called ignored points. Clus-
tering based on HPs can better segment adjacent instances ( high-
lighted in rectangular boxes), while the neighbor voting based on
LPs can complete the instance (highlighted in ellipses).

ticularly effective for 3D point clouds due to the inherent
irregularity and sparsity in 3D data [7, 11, 48].

In 3D point cloud segmentation, PointGroup [21] pro-
posed a distance clustering framework to generate prelim-
inary instance proposals. Although this framework is still
being adopted by most SOTAs [14, 27, 3, 41, 45], it may
usually have the following shortcomings: (1) distance clus-
tering is limited to segment the adjacent objects with the
same semantic label, especially when neighboring points
are sticking together; (2) distance clustering only consid-
ers points within a distance threshold, which may generate
incomplete instances.

To alleviate these drawbacks, we propose a novel pro-
posal generation framework to better segment adjacent ob-
jects and complete instances. Inspired by DBSCAN algo-
rithm [10], we divide foreground points into two categories:
high and low density points (HPs vs. LPs), depending on
the density of each point on the offset branch. As such,
neighbor points between adjacent objects are binarized to
LPs. Without the interference of neighbor points, group-
ing HPs can effectively separate adjacent objects. After
that, we combine semantic prediction and neighbor voting
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to assign LPs. In this way, PBNet completely clusters all
predicted instance points and works much more reasonable
than the traditional distance clustering. The advantages of
our methods are illustrated in Fig. 1 where PBNet offers
much better segmentation than the distance clustering. No-
tably, as shown in the experiments, by simply replacing the
traditional distance clustering component, the proposed bi-
nary clustering strategy could also lead to significant perfor-
mance gains on other mainstream baselines including Point-
Group [21] and HAIS [3].

Furthermore, taking into account the effects of offset er-
ror and density threshold, some larger objects such as sofas
and tables have a certain probability of being divided into
multiple instances. We further propose to search surround-
ing instances for each instance to construct the correspond-
ing local scene. By designing a concise strategy, we en-
code each instance in each local scene to generate the corre-
sponding weight mask, thus offering the network with prior
knowledge to better focus on the primary instance. Com-
bining the global features and the local features, the final
instance mask in the local scene will be predicted. Based
on point-wise binarization and local scene, PBNet attains
superior performance on both ScanNetV2 [5] and S3DIS [ 1]
dataset. The contributions of our work are as follows:

* By dividing and conquering, we propose a novel clus-
tering method based on binarized points to effectively
segment adjacent objects and cluster all predicted in-
stance points. It is appealing that by simply replacing
the traditional distance clustering, our proposed binary
clustering strategy can also lead to significant perfor-
mance gains on many mainstream baselines.

* We propose to construct local scenes combined with
global feature and weight mask to refine instances,
which can suppress over-segmentation and further
boost the performance substantially.

e Overall, we design a novel end-to-end 3D instance
segmentation framework which significantly outper-
forms current SOTAs for 3D instance segmentation:
our model ranks the first on m AP metric of the Scan-
NetV2 official benchmark challenge.

2. Related Work
2.1. Deep Learning on 3D Point Cloud

PointNet [34] pioneered the application of deep learn-
ing techniques to point cloud processing. Since then,
deep learning has advanced significantly in a variety of
3D tasks, including 3D target detection, 3D semantic seg-
mentation, 3D instance segmentation, 3D shape classifi-
cation, and 3D reconstruction. Existing methods can be
roughly divided into three categories: point-based, voxel-
based, and multiview-based methods [I1]. Point-based

methods [35, 43, 44, 36, 42] operate directly on the orig-
inal points of the 3D point clouds without projection and
volumetric operations. Volumetric-based methods [31, 37]
convert the 3D point clouds into a 3D volume representa-
tion and then extract features using a sparse convolution net-
work. Multiview-based methods [39, 6, 23, 17, 19] project
3D point clouds to multiple 2D planes in different directions
to form multiple 2D images and then extract the features of
these 2D images for feature fusion or analysis.

2.2. Instance Segmentation for 3D Point Cloud

Instance segmentation needs to separate each individ-
ual in the 3D scene, while semantic segmentation only
needs to segment objects in the same category. The meth-
ods of 3D instance segmentation can be roughly divided
into two categories: proposal-based and clustering-based.
Proposal-based methods [16, 33, 46] are top-down ap-
proaches, which regress 3D bounding boxes to segment in-
stances. GSPN [49] is an earlier proposal-based network.
It abandons the traditional anchor-based method, and ad-
vocates learning what the target looks like before choosing
the proposal region. 3D-BoNet [47] develops a novel multi-
criteria loss to constrain bounding boxes. 3D-MPA [9] com-
bines a sparse convolutional network with a graph convolu-
tional network to refine proposals.

Clustering-based methods dominate the benchmark chal-
lenge for this task, especially on ScanNetV2 [5] dataset.
These methods predict point-wise distance offsets from
instance center points and group points on this branch.
PointGroup [21] takes point offset and distance cluster-
ing as the core of the algorithm. Many subsequent meth-
ods [14, 27, 3, 41, 45] are all based on the distance clus-
tering algorithm. HAIS [3] aggregates instances according
to the number of points and designs the mask loss to re-
fine instances. SSTNet [26] utilizes superpoints to build
a tree and aggregate the tree nodes to generate instances.
SoftGroup [41] adopts soft semantic predictions to reduce
the impact of semantic error. DKNet [45] utilizes MLP to
predict point-wise confidence based on distance clustering.
DKNet can improve the segmentation of adjacent objects,
but it also introduces confidence error and still ignores some
foreground points. In contrast, PBNet binarizing points by
point-wise density is more concise and effective.

Most SOTAs adopt merging-based method to suppress
over-segmentation. HAIS [3] makes rules based on the av-
erage number of points contained in each category and av-
erage sizes of that to aggregate instances. MaskGroup [53]
sets an increasing distance threshold to merge instances
iteratively. DKNet [45] learns the direct fusion relation-
ship of each instance through the network to form a merg-
ing map, and utilize greedy algorithm to merge these in-
stances. These methods are prone to under-segmentation
while suppressing over-segmentation, and the instance edge
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Figure 2. Network Architecture.

cannot be refined by directly merging instances. Inspired
by Knet [52] and Mask-RCNN [13], we construct the local
scenes for each instance and generate the weight mask for
local scene to implied different instances. Different from
the existing SOTAS, our methods is soft and combine global
and local feature to refine instances.

The proposed PBNet can be deemed as one voxel-based
and clustering-based method. Different from the existing
SOTAs, we divide the points into two categories in the offset
branch and process them separately. As shown in Fig. 1, the
adjacent objects with the same semantic label can be sepa-
rated based on HPs. Meanwhile, handling LPs can better
complete instances. Then PBNet construct the local scenes
for each instance to suppress over-segmentation softly. PB-
Net demonstrate its superiority to the other SOTAs.

3. Our Method
3.1. Architecture Overview

The overall network architecture of PBNet is depicted in
Fig. 2. It consists of four main parts: Backbone (a), Binary
Clustering (b), Instance Refine (c), and Scoring & NMS (d).
First, traditional normal vectors are calculated on the faces !
of the point cloud. We then feed the network with xyz,
rgb, and normal vector features. 3D UNet [25, 38] and
two FC layers are combined as a backbone to predict the
point-wise semantic label and distance offset from the in-
stance center. Then we calculate the density of each point
on offset branch, and classify these points into two cate-
gories (HPs/LPs) by setting the density threshold 6,;. Com-
bined with semantic prediction, HPs will be grouped to
form preliminary instances. We convert the grouped HPs
and ungrouped LPs in the offset coordinate system back to
the original coordinate system. Furthermore, LPs will be
assigned to the instances by neighbor voting algorithm. In
order to suppress over-segmentation, we search surround-

IThe face is one base attribute of 3D items, often adopted in previous
3D instance segmentation works [206, 45].

ing instances for each instance to construct the correspond-
ing local scene. The number of local scenes is the same as
that of instances. Integrated with feature F),, local scenes
are utilized to refine each instance mask. Finally, we adopt
ScoreNet [21] and Non-maximum suppression (NMS) to
achieve the instance prediction.

3.2. Backbone

Same as many SOTAs [21, 3, 26, 41, 45], 3D UNet [25,

] is used to extract features of each point in our imple-
mentation. The point cloud is converted into a voxel form
before it is fed into 3D UNet. When the features are ex-
tracted by 3D UNet, the voxel form point cloud is then
converted to the point format according to the index. The
semantic and offset branches composed of multi-layer per-
ceptrons (MLP) are utilized to predict semantic label and
offset for each point. At this stage, the background points
(wall, floor) in the offset branch are removed according to
the prediction of semantic results.
Semantic Branch. The features of each point are fed into a
3-layer MLP to predict its semantic score of each class. The
semantic scores are recorded as S € [0, 1]V *M | where N
and M are the number of point and class, respectively. The
class with the highest score will be the semantic label for
points. We utilize the cross-entropy loss L, to regularize
the semantic results.
Offset Branch. Similar to the semantic branch, we adopt
a 3-layer MLP to predict offset vector 0; = {0, 0!, 0%} of
each point, where i € {1,..., N}. Since & = {é,, ¢, ¢
is the centroid of the instance that point ¢ belongs to, L,
regression loss is taken to constrain points with the same
instance labels to learn offsets [33, 21]. The calculation
formula of L; regression loss is as follows:

Lo,dist = (1)

1 N
— > _lloi = (& —p)ll.
il =

where p; = {p,p,p.} describes the 3D coordinate of
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point ¢ in the original point clouds. The calculation formula
of ¢; is as follows:

t=r— Y py @

map(i) F€1ap()

where map(i) maps point ¢ to the index of its corresponding
ground-truth instance. N imp( 0 is the number of points in
instance I;;,qp(;)- In order to regress the precise offsets, we
follow [24,

] to adopt direction loss L,_ gi,:

N A
1 Z Ap; A &
SN 2 ap,l, e - pil,

3)

Lo,dir =

This loss reinforces each point to move towards the correct
direction by constraining the angle between the predicted
offset vector and the ground-truth vector.

3.3. Binary Clustering

% .

s .
¢ #, A 3 e i
ok 8 i §
R o

&

4

[
-

Center Offset ® HPs ® LPs

(a) Point Density. (b) Binarization.

Figure 3. Point-wise Binarization.

3.3.1 Point-wise Binarization

We deploy point-wise density to conduct binarization. Its
calculation process is shown in Fig. 3(a). For each point,
we draw a sphere of radius 4. The number of points in the
ball is used to reflect the density. Exactly, the density of the
point p; can be defined as the quantity of points within a
sphere centred on the point p; with radius r4. For example,
in Fig. 3(a), the value reflecting the density of the red points
is given as 7. According to this method, we calculate the
density value of every instance point on the offset branch.
With the density of points, these points can be divided into
two categories: HPs and LPs. If the densities of points are
greater than the threshold 64, these points are classified as
HPs, while the remaining points will be classified as LPs.

3.3.2 Grouping HPs

We utilize semantic prediction and develop one modified
variant of DBSCAN [10] to group HPs. Specifically, we
extend the traditional unsupervised DBSCAN to a weakly-
supervised version by feeding semantic labels to guide clus-
tering. With the weakly supervised information, PBNet can
lead to much accurate clustering. Meanwhile, considering

that the number of HPs is often huge, we further take binary
search, and CUDA to speed up the clustering process. As
a result, the time complexity can be substantially reduced
from O (N?) to O (Nplog(Ny)/(K. +T)), where Ny, is
the number of HPs, K is semantic category number, T is
thread number of CUDA. Overall, our HP grouping method
is both accurate and fast.

3.3.3 Voting LPs

LPs are also critical to instance segmentation, which can
lead to more complete and refined instances. We combine
LPs and grouped HPs, and change them back to the origi-
nal shape according to the index. As shown in Fig. 4, we
find that all LPs are almost edge points. To this end, we
develop neighbor voting [51] to determine which instance
these LPs belong to. Different from the previous algorithm,
we introduce the mean size of each category r,,, (which can
be estimated from training data) and predict the semantic
label to assist judgment. For each noise point, we select the
HPs which share the same semantic label as LPs in the r,,
range. Then we count which instance these HPs belong to,
and take the instance that contains the most HPs as the attri-
bution of this noise point. There might be also an extreme
case, i.e., there are no HPs with the same semantics around
the noise. In this case, we put aside the semantic label and
directly exploit the nearest neighbor voting method [40] to
determine the attribution of the noise point. We repeat this
operation until each noise point is classified. The time com-
plexity of voting LPs is O (N}, * N /(K. = T)), where N,
is the number of LPs.
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Figure 4. Combination and Recovery

3.4. Instance Refining
3.4.1 Local Scene Construction

Some objects with larger sizes and asymmetric shapes are
easily over-segmented, such as the class of sofa as seen in
Fig. 5(a). In the 2D domain, KNet [52] proposes that an
object corresponds to an image mask. Due to the sheer size
of the 3D scene, this method is difficult to be applied di-
rectly. Inspired by KNet, we propose to search the nearest
K instances (secondary instances) for each instance (pri-
mary instance). One local scene corresponds to one pri-
mary instance. To differentiate the primary and secondary
instances in each scene, we define a concise formula to gen-
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Figure 5. Instance Prediction.

erate the weight mask. The calculation formula of weight
masks W is as follows:

W, = (Min(K,Ks—1) —i)/(Min(K, K, — 1)), (4)

where W, is the weight mask of the ith closest secondary
instance to the primary instance. Min(-) is the function that
takes the minimum value. K is the number of instances
contained in the current semantic scene.

3.4.2 Instance Mask Prediction

Each local scene is fed to the 3D UNet to refine the mask of
primary instances. Weight mask, semantic score and feature
I, are concatenated to be the input feature. Weight masks
can provide prior knowledge to direct the network to focus
more on the primary instance. The semantic score has been
verified in the literature as one effective idea for instance
segmentation [26]. Feature F), is extracted by the backbone
while the whole 3D scene is given as the input. The ground-
truth mask of the local scene is defined as a binary mask,
where ground-truth primary instance mask is 1 and others
are 0. Then we adopt the binary cross-entropy to calculate
the mask prediction loss Ls_nask:

N Ny
" Zz:: y; log (45) )

ZNL N; =1
+ (1= yj) log (1= 45)),

where N is the number of local scenes. Z\Afi denotes the
number of points within the 7, local scene and y; describes
the ground-truth score of the j, points of the 4., local
scene. Moreover dice loss Ly, is also applied, following
DKNet [45]. The calculation formula of L 4;.. is as follows:

Ls,mask:

Nl
1 MP . MY
Lgice = = 1-2—— "1 6
e = 7 2 (-2 i) ©
where M! and M are predicted mask and ground-truth
masks for the iy, local scene, respectively.

3.5. Scoring & NMS

Due to the over-segmentation, the primary instances may
correspond to the same ground-truth instance after refine-
ment. NMS is introduced to filter refined primary instances.
Following [3], we adopt ScoreNet [18, 20, 25] to evalu-
ate all instances and score them. ScoreNet consists of a
lightweight 3D UNet and fully connected layers. For in-
stance scores, we exploit a soft label SC' to supervise the
predicted instance score SC. Same as [21], the binary
cross-entropy is used to calculate the instance score loss:

Nins

Nm ; (SC; log (sa-)

+(1—8C;)log (1 - Sbi)),

Ls_ins =
(7

where N;, s is the number of the predicted instances. We
take the score as the confidence for each instance and utilize
NMS to get the final instance result.

3.6. Multi-Task Training

Our model can be trained in an end-to-end manner, even
if it has multiple different tasks. The total loss of our net-
work can be written as:

Lall :Lsem + Lo,dist + Lo,dir

)]
+ Ls_mask + Ldice + Ls_ins
All loss weights are set to 1.0, which works well as em-
pirically verified in the experiments. Since Ls_mask, Ldice
and L,_,;,s are affected by semantic and offset results, we
do not add these losses until 128 epochs.

4. Experiments
4.1. Experiment Setting

Datasets. ScanNetV2 [5], one most challenging 3D dataset,
includes 1,201 training samples, 312 validation samples,
and 100 test samples where 20 semantic classes and 18 in-
stance classes are labeled. Following most similar work in
instance segmentation, classes including wall and floor are
removed. The color for instance segmentation is random
because the number of instances for each sample is flexible.
We compare the results on the validation as well as test set,
which come from the official evaluation website.

S3DIS [1] dataset includes 271 scenes within 6 areas.
In these scenes, a total of 13 semantic classes are labeled.
We utilize all the classes for instance evaluation and report
the results on area 5, while the remaining areas are used
for training. As points of the S3DIS scene is much more
than ScanNetV2, we randomly sample points before each
cropping by following the previous methods [21, 26].
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SGPN [42] 4.9 23 134 3.1 1.3 144 0.6 0.8 0.0 2.8 1.7 0.3 0.9 0.0 2.1 122 95 17.5 5.4
GSPN [49] 158 | 356 173 113 140 359 1.2 23 39 134 123 0.8 8.9 149 11.7 221 12.8 563 9.4
3D-Bonet [47] 253 | 519 324 25.1 13.7 345 3.1 41.9 6.9 16.2 13.1 5.2 20.2 33.8 147 30.1 303 65.1 17.8
3D-MPA [9] 355 | 457 484 299 277 59.1 4.7 332 212 217 278 193 413 41.0 195 574 352 849 213
PointGroup [21] 40.7 | 63.9 49.6 415 243 645 2.1 570 114 21.1 359 21.7 428 660 256 562 341 86.0 29.1
OCCuSeg [12] 48.6 | 80.2 536 428 369 702 205 33.1 30.1 379 474 327 437 862 485 60.1 394 846 273
Dyco3d [14] 395 | 642 518 447 259 666 50 251 166 23.1 362 232 331 535 229 587 438 850 31.7
PE [50] 396 | 667 467 446 243 624 22 577 106 219 340 239 487 475 225 541 350 81.8 273
SSTNet [26] 506 | 73.8 549 497 31.6 693 178 377 198 330 463 57.6 51.5 857 494 637 457 943 29.0
HAIS [3] 457 | 704 56.1 457 364 673 46 547 194 30.8 426 288 454 71.1 262 563 434 889 344
MaskGroup [53] | 434 | 77.8 51.6 47.1 330 65.8 29 526 249 256 400 309 384 296 368 575 425 877 362
SoftGroup [41] 504 | 66.7 579 372 381 694 72 677 303 387 531 319 582 754 318 643 492 90.7 38.8
RPGN [8] 428 | 63.0 50.8 36.7 249 658 1.6 673 13.1 234 383 270 434 748 274 609 40.6 842 26.7
PointInst3D [15] | 43.8 | 81.5 50.7 33.8 355 703 8.9 390 208 313 373 288 40.1 66.6 242 553 442 913 293
DKNet [45] 532 | 81.5 624 517 377 1749 107 509 304 437 475 581 539 775 339 640 50.6 90.1 38.5
Ours 573 | 92.6 575 619 472 736 239 487 383 459 506 533 585 767 404 71.7 559 969 38.1

Table 1. m AP on ScanNetV2 Hidden Test Set.

Evaluation Metric. Following the ScanNetV2 official
benchmark challenge, we report the mean average pre-
cision AP (mAP) at overlap 0.25 (APs5), overlap 0.5
(APsp), and over overlaps in the range [0.5:0.95:0.05] (AP)
for ScanNetV2 dataset. Moreover, SoftGroup [41] and
DKNet [45] also report the Box AP5p and AP,5 results,
which are commonly used in 3D object detection. For fair
comparison, we follow them to report these metrics. Fi-
nally, we take the performance of mAP, APsg, mean pre-
cision (mPrecsp) and mean recall (mRecsg) as the metric
for S3DIS dataset, same as SOTAs.

Implementation Details. We conduct training with two
RTX3090 cards for 512 epochs. The batch size of train-
ing is set to 4. We adopt Adam [22] as the optimizer. The
initial learning rate is set to 0.001 which decays with the
cosine anneal schedule [30]. We set the voxel size to 0.02
by following pioneer methods [21, 3, 14]. For hyperpa-
rameters of density clustering, we tune r4, 6; empirically
as 0.04, 30 respectively. The secondary instance number
K is empirically set to 7. The 3D UNet of backbone is
MinkowskiNet34C [4], while the 3D UNet in mask predic-
tion and ScoreNet are both MinkowskiNet14A [4]. Data
enhancements such as rotation, elastic distortion [38], color
jittering, mixing [32] are adopted following the previous
work [21, 32, 41]. Following SOTAs [45, 12, 26], a graph-
based post-processing is utilized to smooth labels.

4.2. Comparison to SOTAs

Result on ScanNetV2. Tab. 1 shows the mAP results of
PBNet and SOTAs on the hidden test set of ScanNetV2
benchmark. PBNet ranks the first on m AP metric of Scan-
NetV2 3D instance segmentation challenge, on January
2023. Specifically, PBNet achieves the best performance
in 10 out of 18 classes. Following previous work [45, 417,
we also report the mask segmentation and the detection box

results on ScanNetV2 validation set in Tab. 2. For the mask
segmentation, PBNet again shows relative 5.4%, and 4.3%
improvements on mAP and AP, respectively. On the
other hand, our method also gets the best results on Box
APsq for the detection task.

Result on S3DIS. Following SOTAs, we report the results
of Area 5 and 6-fold cross-validation on the S3DIS dataset
in Tab. 3. For the 6-fold cross-validation, we report the av-
erage results. As observed, our approach is still ahead of the
other methods on the major metrics mAP and APsy. When
evaluated on Area 5, our method shows the best result on
three over four metrics, i.e., mAP, APsy, and mPresg.
As for the metric of mRecsg, our method is inferior to
Softgroup [41] but still competitive, which ranks the sec-
ond among all the methods. In the results of 6-fold cross-
validation, our model attains the best m AP and APs, and
it ranks the second and third respectively on mRecsg and
mPresg. In short, our model demonstrates the overall best
performance on both Area 5 and 6-fold cross-validation.
Qualitative Comparison. We also provide qualitative
comparisons based on ScanNetV2 (see Fig. 6). Clearly, our
method exhibits visually better performance than the other
SOTAs. More visualization results on both ScanNetV2 and
S3DIS are provided in the supplementary.

Segmentation Detection
mAP AP50 APQS Box AP50 Box AP25

VoteNet [33] - - - 335 58.6
3D-MPA [9] 353 59.1 72.4 49.2 64.2
PointGroup [21] | 34.8 569 713 489 61.5
Dyco3D [14] 406  61.0 - 39.5 64.1
HAIS [3] 435 64.1 756 53.1 64.3
SSTNet [26] 500 647 739 527 62.5
SoftGroup [41] 460 676 789 59.4 71.6

PointInst3D [15] | 456  63.7 - 51.0 -
DKNet [45] 51.5 67.0 770 59.0 67.4
Ours 543 705 789 60.1 69.3

Table 2. Quantitative Comparison on ScanNetV2 Validation Set.
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Figure 6. Qualitative Comparison with SOTAs on ScanNetV2.

mAP AP50 mP7'€C50 7ILRBC50
SGPNT [42] - - 36.0 28.7
Dyco3DT [14] - - 64.3 64.2
PointGroup‘L [21] - 57.8 61.9 62.1
HAIST [3] - - 71.1 65.0
SSTNet' [26] 427 593 65.5 64.2
MaskGroupT [53] - 65.0 62.9 64.7
SoftGroup' [41] | 51.6  66.1 73.6 66.6
RPGNT [8] - - 64.0 63.0
PointInst3DT [15] - - 73.1 652
DKNet' [45] - - 70.8 65.3
Ours’ 535 664 74.9 65.4
SGPNT [42] - - 38.2 31.2
PointGroup* [21] - 64.0 69.6 69.2
HAIS? [3] - - 73.2 69.4
SSTNet* [26] 541  67.8 73.5 73.4
MaskGroup* [53] - 69.9 66.6 69.6
SoftGroup? [41] | 544  68.9 75.3 69.8
RPGNT [8] - - 84.5 70.5
PointInst3D¥ [15] - - 76.4 74.0
DKNet! [45] - - 75.3 71.1
Ours? 595  70.6 80.1 72.9

Table 3. Quantitative Comparison on S3DIS. { and I indicate re-
spectively the results on Area 5 and 6-fold cross-validation.

4.3. Ablation Study and Analysis

To verify the effectiveness of our method, in this section,
we conduct ablation experiments and parameter sensitivity
analysis on the ScanNetV2 validation set. First, we verify
two main modules in the network architecture (see Fig. 2):
Binary Clustering (b) and Instance Refine (c). As shown in

Tab. 4, PBNet achieves significant improvements compared
to the baseline. Comparing distance clustering, our binary
clustering attains improvements on all three metric:m AP,
APs5q and AP»5. Meanwhile, our refinement method based
on local scenes also plays a vital role in improving per-
formance. Remarkably, it manages to improve 4.1% w.r.t.
mAP when the refinement is applied on top of binary clus-
tering, which clearly demonstrates its effectiveness.
Ablation on Binary Clustering. We conduct further analy-
sis on the effectiveness of binary clustering. Specifically, bi-
nary clustering includes Group HPs and Voting LPs. Tab. 5
analyzes the effectiveness of each part. In the part without
LPs, we take LPs as background points. Evidently, a com-
bination of both parts could lead to the best results. Qualita-
tive comparison between with(w) and without(w/o0) voting
LPs in Fig. 7 also validates this point.

In addition, we examine if our binary clustering idea
could work as a plug-in to improve other mainstream base-
lines. To this end, we take the baselines PointGroup [21]
and HAIS [3] as two typical examples where we simply

Distance Binary Instance | mAP APy AP»s
Clustering  Clustering  Refine

V 489 669 779

Vv 504 683 78.6

v V 543 705 789

Table 4. Ablation Study on Network Module.
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Group HPs  Vote LPs | mAP  APsy AP»;
v 529 687 784
V V 543 705 789

Table 5. Ablation Study on Binary Clustering.

¢ oF
d=r &
) f‘g 2]

Input Instance GT w/o Voting  w Voting
Figure 7. Ablation Study on Voting LPs. Red boxes highlight the

difference between results with (w) and without (w /o) voting LPs.

replace the traditional distance clustering with our binary
clustering. To be fair, we directly use their published pre-
trained model for validation. We report the results in Tab. 6.
As clearly observed, our binary clustering leads to substan-
tial improvements as opposed to distance clustering, verify-
ing the advantages of our proposed method.

Baseline Model mAP APs5o APy
PointGroup [21] | 35.5(+2.0%) 58.4(+2.6%) 72.3(+1.4%)
HAIS [3] 44.7(+2.8%) 65.7(+2.5%) 76.0(+0.5%)

Table 6. Our binary clustering leads to consistent improvement by
simply replacing distance clustering on various baselines.

Ablation on Instance Refine. In Tab. 7, we report the abla-
tion experiment results of instance refine. Notably, the pro-
posed mask loss boosts both the mAP and APsy metric.
Combined with the local scene mechanism, instance refine
increases the performance w.r.t. all three metrics. Particu-
larly, it improves by a relative 7.7% and 3.2% on m AP and
APsq against the baseline respectively.

Baseline Local Scene  Mask Loss | mAP  APsy APy
v 504 683 78.6

v 53.0 688 785

v v 543 705 789

Table 7. Ablation Study on Instance Refine.

4.4. Efficiency

We examine the efficiency of our PBNet in this section.
A single RTX 3090 is adopted to conduct this experiment
on the ScanNetV2 validation set. In detail, we report the
average inference time for each component of our network
architecture in Tab. 8. The baseline includes backbone, 3D
convolution, MLP, and data conversion.

Baseline Group HPs  Vote LPs  Local Scene  Post-process | Infer. Time(ms)
v 190.8
v Vv 3229
v v v 339.5
Vv Vv v Vv 402.0
v v v v Vv 420.8

Table 8. Average Inference Time(per scene).

As shown in Tab. 9, our PBNet takes an average of
420ms for each 3D scene inference on a single RTX 3090,
which is still efficient in practice. Furthermore, HAIS [3] is
currently the fastest inference method for 3D instance seg-
mentation. In contrast, our PBNet only introduces limited
latency (150-250 ms) but achieves a significant mAP im-
provement. Compared with another fast model DKNet [45],
our method is slightly slower with a limited latency (about
63 ms). Overall, our algorithm is still reasonably efficient
though it is slower than HAIS and DKNet. Given the sig-
nificant mAP improvement, we believe it is a worthwhile
trade-off and we will leave the exploration of speeding up
our algorithm as future work.

Methods mAP APsy AP5 | Infer. Time(ms)
HAIS [3] 435 641 756 206.0
DKNet [45] 51.5 67.0 77.0 357.5
Ours 543 705 789 420.8

Table 9. Average Inference Time Comparison (per scene).

Parameter Analysis. The clustering-based methods all
contain fine-tuning parameters. For example, DKNet [45]
includes three parameters: r4, o, and Ty, where « is the
formula coefficient and T} is the normalized centroid score
threshold; RPGN [8] has five parameters. In comparison,
our method needs three parameters: rq4, dg, K, where rg
and dy are used in binary clustering, and K is for construct-
ing local scenes. In Fig. 8, we conduct parameter sensitivity
analysis on the ScanNetV?2 validation set.

10 20 30 40 50 60 0 2 4 6 8 10

Figure 8. Parameter Sensitivity Analysis.

Specifically, we plot mAP by setting 4 to 0.02, 0.04
and 0.06, and continuously increasing the density thresh-
old dy. Obviously, when r; is 0.04, mAP appears stable
especially when dy is greater than 20. In our experiments,
we thus set r4 and dy to 0.04 and 30 respectively. We also
evaluate mAP vs. K. When K is greater than 6, mAP
stabilizes and does not change. Hence, we set K to 6. Over-
all, the number of hyperparameters is three in our method,
which is parred to or fewer than that of SOTAs. All these
parameters appear less sensitive as observed empirically.

5. Conclusion

We propose a novel divide and conquer strategy for
3D point cloud instance segmentation with point-wise
binarization. Termed as PBNet, our end-to-end network
makes a first attempt to divide offset instance points into
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two categories: high and low density points (HPs vs. LPs).
While HPs can be leveraged to separate adjacent objects
confidently, LPs can help complete and refine instances
via a novel neighbor voting scheme. We have developed
a local scene mechanism to refine instances and suppress
over-segmentation. Extensive experiments on benchmark
ScanNetV2 and S3DIS datasets have shown that our model
can overall beat the existing best models. In the future, we
will explore how to speed up our algorithm.
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