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Abstract

Large-scale pre-trained models have shown promising
open-world performance for both vision and language
tasks. However, their transferred capacity on 3D point
clouds is still limited and only constrained to the classifica-
tion task. In this paper, we first collaborate CLIP and GPT
to be a unified 3D open-world learner, named as Point-
CLIP V2, which fully unleashes their potential for zero-
shot 3D classification, segmentation, and detection. To
better align 3D data with the pre-trained language knowl-
edge, PointCLIP V2 contains two key designs. For the vi-
sual end, we prompt CLIP via a shape projection mod-
ule to generate more realistic depth maps, narrowing the
domain gap between projected point clouds with natural
images. For the textual end, we prompt the GPT model
to generate 3D-specific text as the input of CLIP’s tex-
tual encoder. Without any training in 3D domains, our
approach significantly surpasses PointCLIP by +42.90%,
+40.44%, and +28.75% accuracy on three datasets for zero-
shot 3D classification. On top of that, V2 can be extended to
few-shot 3D classification, zero-shot 3D part segmentation,
and 3D object detection in a simple manner, demonstrat-
ing our generalization ability for unified 3D open-world
learning. Code is available at https://github.com/
yangyangyang127/PointCLIP_V2.

1. Introduction
The advancement of spatial sensors has stimulated

widespread attention in recent years for both academia
and industry. To effectively understand point clouds, the
major data form in 3D, many related tasks are put for-
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Figure 1. Zero-shot Performance of PointCLIP V2. On different
3D datasets, our approach achieves significant accuracy enhance-
ment for zero-shot 3D classification over PointCLIP [62].

ward and gained great progress, including 3D classifica-
tion [35, 51, 66], segmentation [36, 54, 48, 52], detec-
tion [55, 29], and self-supervised learning [65, 17, 61, 11].
Importantly, for the complexity and diversity of open-world
circumstances, the collected 3D data normally contains a
large number of ‘unseen’ objects, namely, not ever defined
and trained by the already deployed 3D systems. Given
the human-laboring data annotations, how to recognize such
3D shapes of new categories has become a hot-spot issue,
which still remains to be fully explored.

Recently, large-scale pre-trained vision and language
models, e.g., CLIP [37] and GPT-3 [3], have obtained a
strong capacity to process data in both modalities. How-
ever, limited efforts have focused on their application in
the point cloud, and existing work only explores the pos-
sibility of CLIP on the 3D classification task, without con-
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Figure 2. Comparison of Visual Projection. PointCLIP V2 (Bot-
tom) generates more realistic depth maps with denser point distri-
bution and smoother depth values.

sidering other 3D open-world tasks. PointCLIP [62], for
the first time, indicates that CLIP can be adapted for zero-
shot point cloud classification without any 3D training. It
projects the ‘unseen’ 3D point cloud sparsely into 2D depth
maps, and leverages CLIP’s image-text alignment for depth
map recognition. However, as a preliminary work, the per-
formance of PointCLIP is far from satisfactory as shown in
Figure 1, which cannot be put into actual use. More im-
portantly, PointCLIP only draws support from pre-trained
CLIP, without considering the powerful large-scale lan-
guage model (LLM). Therefore, we ask the question: Can
we properly unify CLIP and LLM to fully unleash their po-
tentials for unified 3D open-world understanding?

We observe that PointCLIP mainly suffers from two fac-
tors concerning the 2D-3D domain gap. (1) Sparse Pro-
jection. PointCLIP simply projects 3D point clouds onto
depth maps as sparsely distributed points with depth val-
ues (Figure 2). Though simple, the scatter-style figures are
dramatically different from the real-world pre-training im-
ages for both appearances and semantics, which severely
confuses CLIP’s visual encoder. (2) Naive Text. Point-
CLIP mostly inherits CLIP’s 2D text input, “a photo
of a [CLASS].” and only appends simple 3D-related
words, “a depth map”. As visualized in Figure 3, the
textual features extracted by CLIP can hardly focus on the
target object with high similarity scores. Such naive text
cannot fully describe 3D shapes and harms the pre-trained
language-image alignment.

In this paper, we integrate the advantage of CLIP and
the GPT-3 [3] model and propose PointCLIP V2, a power-
ful framework for unified 3D open-world understanding, in-
cluding zero-shot/few-shot 3D classification, zero-shot part
segmentation, and zero-shot 3D object detection. Without
‘seeing’ any 3D training data, V2 can project point clouds
into realistic 2D figures and align them with 3D-aware text,
which fully unleashes CLIP’s pre-trained knowledge in the
3D domain.

Firstly, we propose to Prompt CLIP with Realistic
Projection, which generates CLIP-preferred images from

Figure 3. Comparison of Textual Input. We visualize the simi-
larity score maps of the encoded textual and visual features, where
PointCLIP V2 (Bottom) shows better alignment.

3D point clouds. Specifically, we transform the irregu-
lar point cloud into grid-based voxels and then apply non-
parametric 3D local filtering on top. By this, the projected
3D shapes are composed of denser points with smoother
depth values. As shown in Figure 2, our generated fig-
ures are more visually similar to real-world images and
can highly unleash the representation capacity of CLIP’s
pre-trained visual encoder. Secondly, we Prompt GPT
with 3D Command to generate text with rich 3D seman-
tics as the input of CLIP’s textual encoder. By feeding
heuristic 3D-oriented command into GPT-3, e.g., “Give
a caption of a table depth map:”, we lever-
age its language-generative knowledge to obtain a series of
3D-specific text, e.g., “A height map of a table
with a top and several legs.”. A group of
language commands is customized to prompt GPT-3 to pro-
duce diverse text with 3D shape information. As shown
in Figure 3, the textual features of PointCLIP V2 exert
stronger matching properties to the projected maps, largely
boosting CLIP’s image-text alignment for 3D point clouds.

With our prompting schemes, PointCLIP V2 exhibits su-
perior performance for zero-shot 3D classification, surpass-
ing PointCLIP by +42.90%, +40.44%, and +28.75% accu-
racy, respectively on ModelNet10 [53], ModelNet40 [53],
and ScanObjectNN [44] datasets. Further, our approach
can be adapted for more no-trivial 3D open-world tasks by
marginal modifications, such as a learnable 3D smoothing
for 3D few-shot classification, a back-projection head for
zero-shot segmentation, and a 3D region proposal network
for zero-shot detection. This fully indicates the power of
V2 for general 3D open-world understanding.

Our contributions are summarized as follows:

• We propose PointCLIP V2, a powerful cross-modal
learner unifying CLIP and GPT-3 to transfer the pre-
trained vision-language knowledge into 3D domains.

• We introduce a realistic projection to prompt CLIP and
3D-oriented command to prompt GPT-3 to effectively
mitigate the domain gap among 2D, 3D, and language.
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Figure 4. Comparison of Open-world Settings. Existing meth-
ods still depend on prerequisite 3D training to recognize the ‘un-
seen’ point clouds. In contrast, we require no training in the 3D
domain and directly conduct 3D open-world understanding.

• As the first work for unified 3D open-world learning,
our PointCLIP V2 can be further extended for zero-
shot part segmentation and 3D object detection.

2. Related Works

3D Open-world Learning. Traditional methods for 3D
open-world learning still require 3D training data as a pre-
training stage. The series of work of Cheraghian et al. train
zero-shot classifiers on ‘seen’ 3D categories by maximiz-
ing inter-class divergence in latent space, and then test on
‘unseen’ ones [6, 8, 7]. Some recent works [30, 24, 32, 27]
also investigate open-world semantic segmentation and 3D
object detection for more complex 3D scenes. Inspired
by CLIP-based adaption methods [60, 13, 23], PointCLIP
[62] achieves zero-shot point cloud recognition without any
training on 3D datasets. By transferring the pre-trained
CLIP model [37], the 2D knowledge can be effectively uti-
lized for recognizing 3D data. CLIP2Point [19] further im-
proves the adaption performance of CLIP on point clouds
by an additional 3D pre-training. In this paper, we propose
PointCLIP V2 and follow the open-world setting of Point-
CLIP, which is more challenging than previous methods as
compared in Figure 4. We require no ‘seen’ 3D training
and, for the first time, simultaneously conduct zero-shot 3D
part segmentation and object detection, achieving unified
3D open-world understanding.

Projection for Point Clouds. Concurrent to point-based
methods [35, 36, 28], projection-based point cloud analy-
sis aims to utilize plentiful 2D networks for 3D domains by
projecting point clouds into 2D images [42, 41, 58, 47, 50,
1]. Therein, PointCLIP [62] follows SimpleView [14] to
conduct perspective transformation as 3D-to-2D projection,
which achieves high efficiency but limited classification ac-
curacy. Under 3D open-world settings, we are motivated
to develop more efficient and realistic projection methods
for prompting CLIP on point cloud data. In Table 1, we
compare our approach with existing advanced projection
methods for latency and accuracy. For a fair comparison,
we implement all prior works under the pipeline of our V2,
namely, with our GPT prompting approach to fully reveal

Method Latency ModelNet40 ScanObjectNN

Phong Shading [42] 107.2 57.30 29.33
Height Map [43] 87.7 54.73 26.25
Silhouette Map [43] 87.9 48.40 20.91
PointCLIP [62] 11.3 42.53 26.37
PointCLIP V2 16.7 64.22 35.36

Table 1. Comparison of Different Projection Methods. We re-
port zero-shot classification results (%) on two datasets [53, 44],
and compare the inference latency (ms) by projecting 10-view im-
ages from an input point cloud.

their effectiveness. As shown, our realistic projection ex-
hibits faster inference speed than other approaches and at-
tains higher zero-shot performance than PointCLIP.

Prompt Learning in Vision. Prompt engineering first
derives from natural language processing, where a tex-
tual template, termed as prompt, is generated to narrow
the domain gap between the pre-training pre-text task
and downstream scenarios [25, 22, 46, 22]. Inspired
by this, CoOp [69] firstly introduces learnable prompt-
ing into 2D vision-language classification, and the follow-
up CoCoOp [68] extends it for 2D domain generaliza-
tion. CuPL [34] and CaFo [63] leverage GPT-3 [3] to
enhance the downstream performance of CLIP on various
2D datasets. From another perspective, visual prompting
methods propose to append input images with learnable vi-
sual pixels [21, 2, 5, 12] or embeddings [21, 16, 64], and
improve pre-trained vision backbones without downstream
fine-tuning. In this paper, we seek to prompt both CLIP’s
visual encoder by realistic projection and textual encoder by
GPT-3 to improve its zero-shot prediction.

GPT-3 Model. The Generative Pre-trained Transformer
(GPT) models [38, 39, 3] have achieved a progressive
improvement in processing natural languages. Among
them, GPT-3 demonstrates a remarkable proficiency in
both language comprehension and generation, compared to
its predecessors [38, 39, 26, 56, 40]. GPT-3 is a large-
scale autoregressive language model of 175 billion train-
able parameters. Although not open-sourced, some efforts
have explored its application to downstream tasks, such as
PICa [57] for visual question-answering, CuPL [34] for 2D
zero-shot recognition, and CaFo [63] for 2D few-shot learn-
ing. In this work, we, for the first time, prompt GPT-3 [3]
to boost open-world 3D tasks via 3D-related command.

3. Methods
The overall framework of PointCLIP V2 is shown in Fig-

ure 7. Inheriting from CLIP [37], our framework consists
of two pre-trained visual and textual encoders. To bridge
the modal gap, we introduce a realistic projection (Sec. 3.1)
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Figure 5. Prompting CLIP with Realistic Projection. We
present the projection pipeline for one of the views. The switch
selects zero- or few-shot classification with learnable smoothing.

from 3D to depth maps, and GPT-generated 3D-specific text
(Sec. 3.2) to align depth maps with languages. PointCLIP
V2 can also be extended to various 3D tasks for unified 3D
open-world learning (Sec. 3.3).

3.1. Prompting CLIP with Realistic Projection

To generate more realistic 2D input from 3D data for
CLIP and also achieve time efficiency, we project 3D point
clouds into depth maps by four steps: Quantize, Densify,
Smooth, and Squeeze, as shown in Figure 5.

Quantize. For different M views to be projected, we re-
spectively create a zero-initialized 3D grid G ∈ RH×W×D,
where H,W,D denote its spatial resolutions and D spe-
cially represents the depth dimension vertical to the view
plane. Taking one view as an example, we normalize the 3D
coordinates of the input point cloud into [0, 1] and project a
point p = (x, y, z) into a voxel in the grid by

G(⌈sHx⌉ , ⌈sWy⌉ , ⌈Dz⌉) = z, (1)

where the voxels are assigned with different depth values,
and s ∈ (0, 1] denotes a scale factor to adjust the projected
shape size. For multiple points projected into the same
voxel, we simply assign the minimum depth value. This
is because, from the perspective of the target image plane,
the points with a smaller depth value z would occlude the
larger ones. Then, we obtain a 3D grid G containing sparse
depth values, most voxels of which are empty due to the
sparsity of point clouds.

Textual

Describe a depth map 
of a [CLASS]: 

Make a sentence with words:
depth map, [CLASS], obscure.

What is a [CLASS] 
depth map looks like?

D

Generate a synonym: 
A depth map of a [CLASS].

Caption Generation Question Answering

Words to SentenceParaphrase Generation

A grayscale map shows 
an airplane with wings.

The obscure depth map shows 
a shallow bathtub.

A side view depth map of 
a cone like a pyramid.

A depth map of a chair and each 
pixel shows distance.

Language Command

3D-specific

Figure 6. Prompting GPT with 3D Command. We feed four
types of language command into the pre-trained GPT-3, which
generates a series of 3D-specific text for CLIP’s textual encoder.

Densify. To tackle such unreal scattering, we densify the
grid via a local mini-value pooling operation to guarantee
visual continuity. We reassign every voxel in G by the min-
imum voxel value within a local spatial window. Likewise,
compared to the average and max pooling, preserving the
minimum depth values accords with the occluded visual ap-
pearances on the projected maps. In this way, the originally
vacant voxels between the sparse points can be effectively
filled with reasonable depth values, while the background
voxels still remain empty, which derives dense and solid
spatial shape representations.

Smooth. As the local pooling operation might introduce
artifacts on some 3D surfaces, we adopt a non-parametric
Gaussian kernel for shape smoothing and noise filtering.
With a proper kernel size and variance, the filtering can not
only remove the spatial noises caused by densification but
also preserve the sharpness of edges and corners in the orig-
inal 3D shapes. By this, we acquire a more compact and
smooth shape represented by the 3D grid.

Squeeze. As the final step, we simply squeeze the depth
dimension of G to acquire the projected depth map V ∈
RH×W . We extract the minima of every depth channel as
the value for each pixel location and repeat it for three times
as the RGB intensity. Our grid-based projection can be sim-
ply achieved by a minimum pooling along the depth channel
of G, more friendly for hardware implementation.
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Figure 7. The Unified Framework of PointCLIP V2 for 3D Open-world Learning. We first generate high-quality depth maps via a
realistic projection to prompt CLIP’s [37] visual encoder. Then, we design 3D language command to prompt GPT-3 [3] for 3D-specific
text into CLIP’s textual encoder. V2 can also be extended to 3D segmentation and detection by simple modifications.

3.2. Prompting GPT with 3D Command

To better activate CLIP’s textual encoder to align with
our depth maps, we aim to utilize 3D-specific description
with category-wise shape characteristics as the textual in-
put of CLIP, instead of using the general “a photo of
a [CLASS]:”. Considering the powerful descriptive ca-
pacity of LLMs, we leverage GPT-3 [3] to generate 3D-
specific text with sufficient 3D semantics for CLIP’s textual
encoder as shown in Figure 6. Normally, GPT-3 receives a
language command and outputs a response via pre-trained
knowledge. To fully adapt GPT-3 to 3D domains, we pro-
pose the following four series of heuristic command:

Caption Generation. Given a descriptive command,
GPT-3 synthesizes general captions for the target pro-
jected 3D shape, e.g., Input: “Describe a depth map
of a [window]:”; GPT-3: “It depicts the
[window] as a dark pane.”.

Question Answering. GPT-3 produces descriptive an-
swers to the 3D-related question, e.g., Input: “How to
describe a depth map of a [table]?”; GPT-
3: “The [table] may have a rectangular or
circular flat top and legs.”.

Paraphrase Generation. For a depth map description,
GPT-3 is expected to generate a synonymous sentence.
e.g., Input: “Generate a synonym for the
sentence: A grayscale depth map of an
inclined [bed].”; GPT-3: “An monochrome
depth map of an oblique [bed].”.

Words to Sentence. Based on a group of keywords, GPT-
3 is requested to organize them into a complete sentence

and enrich additional shape-related contents, e.g., Input:
“Make a sentence using these words: a
[table], depth map, smooth.”; GPT-3: “This
smooth depth map shows a [table] at the
corner.”. The adjective “smooth” here depicts the
natural appearance caused by the smoothing operation.

For a K-category 3D dataset, we place K category
names at the “[CLASS]” position of each command and
feed them into GPT-3, which generates 3D-specific descrip-
tions with rich category-wise semantics. Finally, we inte-
grate the descriptions of each category and regard them as
the input for CLIP’s textual encoder.

3.3. Unified Open-world Learning

By introducing the realistic projection and 3D-specific
text, PointCLIP V2 exhibits strong generalization capacity
and can be adapted for different 3D open-world tasks.

3D Zero-shot Classification. For all M views in the vi-
sual branch, we feed the projected depth maps {Vi}Mi=1 into
CLIP’s visual encoder and obtain the multi-view features
{fi}Mi=1, where fi ∈ R1×C . For the textual branch, we
leverage CLIP’s textual encoder to extract the category fea-
ture Wt ∈ RK×C , which serves as the zero-shot classifica-
tion weights. Then, the final zero-shot classification logits
are calculated by aggregating the multi-view alignment be-
tween {fi}Mi=1 and Wt, formulated as

logits =
∑M

i=1
αi · fiWT

t ∈ R1×K , (2)

where αi denotes a hyper-parameter weighing the impor-
tance of view i.
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Method 2D Pre-train 3D Pre-train ModelNet10 ModelNet40 S-OBJ ONLY S-OBJ BG S-PB T50 RS

CLIP2Point [19] ✓ ✓ 66.63 49.38 35.46 30.46 23.32
Cheraghian [7] - ✓ 68.50 - - - -

PointCLIP [62] ✓ - 30.23 23.78 21.34 19.28 15.38

PointCLIP V2 ✓ - 73.13 64.22 50.09 41.22 35.36

Improvement +42.90 +40.44 +28.75 +21.94 +19.98

Table 2. Zero-shot 3D Classification (%) ModelNet10 [53], ModelNet40 [53] and ScanObjectNN [44]. We report the performance of
other methods with their best-performing settings, e.g., visual encoder, projected view number, and textual input. “2D Pre-train” denotes
the pre-training of CLIP on image-language pairs, and “3D Pre-train” denotes the training on 3D datasets.

3D Few-shot Classification. Given a small set of 3D
training data, we can modify our smoothing operation of
the realistic shape projection to be learnable, as shown in
Figure 5. Specifically, as the irregular point clouds have
been converted into grid-based voxels, we adopt two 3D
convolutional layers after the Gaussian filter. Such learn-
able modules can summarize the 3D geometric knowledge
from the few-shot dataset, and further adapt the 3D shape to
be more CLIP-friendly. During training, we freeze the two
encoders of CLIP to preserve the pre-trained knowledge and
avoid over-fitting on small-scale few-shot data.

3D Zero-shot Part Segmentation. Besides shape clas-
sification, we propose a zero-shot segmentation pipeline
for our framework, which can also work for the existing
PointCLIP. Instead of the global features {fi}Mi=1, we adopt
CLIP’s visual encoder to extract dense features {Fi}Mi=1

from {Vi}Mi=1, where Fi ∈ RH×W×C . Specifically, we
output the feature maps from the visual encoder before
its final pooling operation and upsample the features into
the original depth map size. For our 3D-specific text,
we utilize GPT-3 to generate the descriptions for differ-
ent part categories. As an example, for a part category
“[PART]” within object “[CLASS]”, we construct the
command as “Describe the [PART] part of a
[CLASS] in a depth map:”. Then, for view i, we
conduct dense alignment between each pixel and the tex-
tual feature Wt, i.e., segmenting different parts of the shape
on multi-view depth maps, formulated as

logitsi = FiW
T
t ∈ RH×W×K . (3)

Each element in logitsi denotes the pixel-wise classifica-
tion logits. After this, we back-project the logits of different
views into the 3D space according to the 2D-3D correspon-
dence. As one view can only depict a partial point cloud
due to occlusion, we average the prediction across differ-
ent views for each point, where we acquire the final part
segmentation logits in 3D space. Via the geometric back
projection, the segmentation task in 3D can be tackled in a
zero-shot manner.

Zero-shot 3D Object Detection. For 3D object detection,
we follow the settings of 2D open-world detection [15, 67]
to equip our V2 as a zero-shot classification head on top of
pre-trained region proposal networks (RPN). We first utilize
3DETR [31] as the 3D RPN to generate class-agnostic 3D
box candidates. Then, we extract the raw points within each
3D box and feed them into V2 for zero-shot classification.
By this, the V2-based 3DETR can detect ‘unseen’ objects
in a zero-shot manner.

4. Experiments

In this section, we first illustrate the detailed network
configurations of PointCLIP V2, and then present our open-
world performance on different 3D tasks.

4.1. Implementation Details

CLIP Prompting. We follow PointCLIP [62] to project a
point cloud into depth maps of 10 views. We set the size of
grid G as H ×W ×D = 112× 112× 8, and the projected
depth map is upsampled to 224 × 224. The point cloud is
placed at the center of the grid, and the scale factor s is set
to 0.7 for better visual appearances. The window size of
the minimum pooling for densifying is (6, 6, 2). The kernel
size of the Gaussian filter is set as (3, 3, 1). We randomly
sample 1024 points as input and adopt Vision Transformer
[10] with patch size 16×16 as default, denoted as ViT-B/16.

GPT Prompting. We design 50 different 3D language
commands, containing 13 for caption generation, 13 for
question answering, 12 for paraphrase generation, and 12
for words-to-sentence. Each command triggers GPT-3 to
produce 20 3D-specific descriptions, and we finally obtain
around 250 descriptions for each command type and 1000
descriptions in total for one category. We use “text-davinci-
002” GPT-3 engine and set the temperature constant to 0.7.
The largest length of a 3D-specific description is set to
40. For the textual encoder, a 12-layer transformer [45] is
adopted to encode our generated text.
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Figure 8. Few-shot 3D Classification on ModelNet40 [53] and ScanOb-
jectNN [44]. We adopt the PB T50 RS split of ScanObjectNN for comparison.

Learnable
Smooth

View
Weighing

GPT
Prompting 16-shot

- - - 85.52
✓ - - 86.22
✓ ✓ - 87.11
✓ - ✓ 89.55
✓ ✓ ✓ 89.55

Table 3. Ablation Study of Few-shot Learn-
ing on ModelNet40 [53]. We report the 16-
shot classification accuracy (%).

Quantize Densify Smooth Squeeze Zero-shot

- Min ✓ - 57.35
✓ - - ✓ 44.50
✓ Min - ✓ 59.64
✓ - ✓ ✓ 50.20
✓ Max ✓ ✓ 57.35
✓ Avg ✓ ✓ 60.71
✓ Min ✓ ✓ 64.22

Table 4. Ablation Study of Realistic Shape Projection on Mod-
elNet40 [53] zero-shot classification (%). We compare the four
steps in our projection module.

4.2. Zero-shot Classification

Settings. The zero-shot classification performance is
evaluated on three widely-used benchmarks: Model-
Net10 [53], ModelNet40 [53] and ScanObjectNN [44].
Three splits of the ScanObjectNN dataset are investigated:
OBJ ONLY, OBJ BG, and PB T50 RS. Following the zero-
shot principle, we directly test the classification perfor-
mance on the full test set without learning from the train-
ing set. We compare existing methods under their best set-
tings. Specifically, ViT-B/16 is adopted for both our model
and CLIP2Point [19]. For PointCLIP, we utilize ResNet-
101 [18], ResNet-50×4 [37], and ViT-B/16, respectively
for ModelNet10, ModelNet40, and ScanObjectNN datasets,
which is to fully achieve its best performance.

Main Results. In Table 2, we compare the zero-shot clas-
sification performance with existing approaches. Some
models require extra pre-training on 3D point cloud
datasets. CLIP2Point trains a depth map encoder on
ShapeNet dataset [4], and then uses it for a 3D zero-shot
classification task. Cheraghian et al. [7] directly extracts
point cloud features with a 3D encoder. They sample ‘seen’
categories in the dataset to pre-train the model, and vali-
date on the ‘unseen’ categories. In contrast, PointCLIP and
our V2 discard any 3D training and can directly test on 3D
datasets. For all three benchmarks, our approach outper-
forms existing works by significant margins. V2 achieves
73.13% and 64.22% accuracy on ModelNet10 and Model-

Caption Question Paraphrase Words Zero-shot

- - - - 39.11
✓ - - - 61.67
✓ ✓ - - 60.86
✓ - ✓ - 61.12
✓ ✓ ✓ - 63.29
✓ ✓ - ✓ 61.26
✓ ✓ ✓ ✓ 64.22

Table 5. Ablation Study of GPT Prompting on ModelNet40 [53]
zero-shot classification (%). We compare four types of language
command to generate the 3D-specific text.

Net40, respectively, surpassing PointCLIP by +42.90% and
+40.44%. V2 also achieves 35.36% on PB T50 RS split of
the ScanObjectNN dataset, demonstrating our effectiveness
under noisy real-world scenes.

Ablation Study. In Table 4, we conduct an ablation study
of PointCLIP V2 concerning four steps of the realistic pro-
jection module. When we directly project the point cloud
into 2D images via orthogonal projection, the zero-shot ac-
curacy performs 57.35%, reduced by −6.87%. If the quan-
tizing step is adopted, the densifying and smoothing oper-
ation can improve zero-shot performance by +15.14% and
+5.7%, respectively, indicating the importance of these two
steps. We also compare alternative pooling operations for
the densifying step, including maximum, minimum, and
average pooling. We observe that the minimum pooling
achieves the best performance, which is consistent with the
occlusion effect in the real world. In Table 5, we show the
effect of four command types in the GPT prompting mod-
ule. Under different command combinations, the zero-shot
performance is improved with various degrees. If using all
four types, the 3D-specific text improves the zero-shot per-
formance by +25.11%, indicating the great significance of
better language-image alignment.

4.3. Few-shot Classification

Settings. We test k-shot classification performance on
ModelNet40 [53] and ScanObjectNN [44] datasets, where
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mIoUI Airplane Bag Cap Chair Earphone Guitar Knife Laptop Mug Rocket Skate Table

# Shapes 2874 341 14 11 704 14 159 80 83 38 12 31 848

PointCLIP∗ 31.0 22.0 44.8 13.4 18.7 28.3 22.7 24.8 22.9 48.6 22.7 42.7 45.5
PointCLIP V2 49.5 33.5 60.4 52.8 51.5 56.5 71.5 66.7 61.6 48.0 49.6 43.9 61.1

Table 6. Zero-shot Part Segmentation (%) on ShapeNetPart [59]. We implement PointCLIP by our proposed segmentation pipeline.

Method Mean Cabinet Bed Chair Sofa Table Door Window Counter Desk Sink Bathtub

AP25
PointCLIP* 6.00 3.99 4.82 45.16 4.82 7.36 4.62 2.19 1.02 4.00 13.40 6.46
PointCLIP V2 18.97 19.32 20.98 61.89 15.55 23.78 13.22 17.42 12.43 21.43 14.54 16.77

AP50
PointCLIP∗ 4.76 1.67 4.33 39.53 3.65 5.97 2.61 0.52 0.42 2.45 5.27 1.31
PointCLIP V2 11.53 10.43 13.54 41.23 6.60 15.21 6.23 11.35 6.23 10.84 11.43 10.14

Table 7. Zero-shot 3D Object Detection (%) on ScanNet V2 [9]. We implement PointCLIP by our proposed detection pipeline.

Figure 9. Visualization of Zero-shot Part Segmentation on
ShapeNetPart [59]. Our V2 exhibits better fine-grained segmen-
tation than PointCLIP.

k ∈ {1, 2, 4, 8, 16}. We adopt the same 3D-specific text
used in the zero-shot task as textual input and jointly
train the learnable smoothing (Figure 5) and inter-view
adapter [62]. The 3D convolution layers adopt a 5 × 5 × 3
kernel size and are followed by a batch normalization [20]
with a ReLU non-linear activation [33].

Main Results. In Figure 8, we show the few-shot classi-
fication results of V2, comparing with PointCLIP and other
four representative 3D networks: PointNet [35], Point-
Net++ [36], SimpleView [14], and CurveNet [54]. As
shown, V2 outperforms all other methods by few-shot train-
ing and shows a more significant improvement on 1-shot
classification. V2 surpasses PointCLIP’s 1-shot accuracy by
+12% on ModelNet40 and +7% on ScanObjectNN. In ad-
dition, our approach achieves a 16-shot accuracy of 89.55%
on ModelNet40 dataset, even approaching the fully super-
vised PointNet[35].

Ablation Study. In Table 3, we report the impact of dif-
ferent modules on few-shot V2 with 16-shot results, includ-
ing the learnable smoothing, the view weighing following
PointCLIP, and 3D-specific text from GPT prompting. We
find that the learnable 3D projection module improves 16-
shot accuracy by +0.7% than the fixed one, and adopting
3D-specific text improves accuracy by +3.33%.

4.4. Zero-shot Part Segmentation

Settings. We evaluate the zero-shot segmentation perfor-
mance on the ShapeNetPart dataset [59], which includes 16
categories and 50 annotated parts. Following prior methods
[36, 48, 28], we sample 2048 points from each point cloud,
and test on the official test split. For comparison, we imple-
ment PointCLIP via our proposed zero-shot segmentation
pipeline and report the best-performing results.

Main Results. We show the mean intersection of union
score across instances (mIoUI ) in Table 6. Our method
surpasses PointCLIP by +17.4% for overall mIoUI and
performs consistently better on different object categories.
We also visualize the segmentation results in Figure 9,
which further demonstrates our effectiveness to capture
fine-grained 3D patterns in a zero-shot manner.

4.5. Zero-shot 3D Object Detection.

Settings. ScanNet V2 dataset [9] is utilized to evaluate the
detection performance, which contains 18 object categories.
We adopt the pre-trained 3DETR-m [31] model as the re-
gion proposal network and extract 1024 points within each
3D box. We report the zero-shot detection performance on
the validation set using mean Average Precision (mAP) at
two different IoU thresholds of 0.25 and 0.5, denoted as
AP25 and AP50. Also, PointCLIP is implemented by our
efforts for zero-shot 3D detection and we report the best-
performing results.
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Method PointCLIP CLIP2Point PointCLIP V2

GFLOPs 16.46 16.46 16.51
Memory (GB) 2901 3006 2967
Accuracy (%) 16.94 49.38 55.92

Table 8. Comparison of Accuracy and Computation Overhead
with other approaches on ModelNet40 [53].

Main Results. Table 7 shows our zero-shot 3D detec-
tion results compared with PointCLIP. We observe that
PointCLIP V2 achieves mAP25 and mAP50 of 18.97%
and 11.53%, outperforming PointCLIP by +12.97% and
+6.77%, respectively. This verifies that V2 is superior to
recognize 3D open-world objects in real-world scenes and
obtains great potential for general 3D open-world learning.

4.6. Other Experiments

Computation Burden. We have compared the latency of
inference in Table 1. Additionally, we compare the compu-
tation complexity to PointCLIP [62] and CLIP2Point [19]
in Table 8. We test the computation overhead of each in-
ference on 1 RTX A6000 with ViT-B/32 backbone. From
the table, V2 causes a similar overhead to PointCLIP and
achieves superior zero-shot accuracy on ModelNet40. Thus
we achieve a better accuracy-efficiency trade-off.

More Ablations for Zero-shot Classification. In Table 9
and 10, we additionally investigate 2 factors that influence
the zero-shot classification performance: the visual encoder
backbone and the number of sampled points. 1) Different
Backbones. In Table 9, we examine the results with differ-
ent backbones on ModelNet40 [53] and ScanObjectNN [44]
datasets. We observe that the default ViT-B/16 backbone
achieves the best overall performance. 2) Sample Rate of
Points. Table 10 presents the effect of different numbers
of sampled points. Note that the officially released Mod-
elNet40 dataset contains only 2048 points per point cloud,
so we adopt a resampled version of ModelNet40 from [49],
which contains 8192 points per point cloud. We observe
improvements when increasing the sampling rate of points.

5. Conclusion
We propose PointCLIP V2, a powerful and unified 3D

open-world learner, which surpasses the existing PointCLIP
with significant margins. We propose to prompt CLIP with
a realistic projection module for producing high-quality
depth maps from 3D, and prompt GPT-3 model to gener-
ate 3D-specific descriptions. The visual and language rep-
resentations achieve better alignment via prompting. Be-
sides classification, V2 can generalize to various challeng-
ing tasks with promising performance, including 3D few-
shot classification, 3D zero-shot part segmentation, and ob-

Datasets RN50 RN101 ViT-B/32 ViT-B/16 RN.×4

ModelNet40 46.45 49.34 60.00 64.22 56.28
ScanObjectNN 33.21 31.47 35.36 34.91 34.98

Table 9. Ablation Study on Visual Encoders for Zero-shot Clas-
sification (%) on ModelNet40 [53] and ScanObjectNN [44].

Point Number 1024 2048 3072 4096 8192

ModelNet40 64.22 65.28 66.17 66.45 68.56
ScanObjectNN 34.91 36.05 36.26 37.27 38.90

Table 10. Ablation Study on Point Number for Zero-shot Clas-
sification (%).

ject detection. For future work, we will further explore how
to adapt CLIP to wider open-world applications, e.g., out-
door 3D detection and visual grounding.
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