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This document provides additional details about our method
and experiments. In particular, we evaluate our synthetic data
approach on a recently proposed diffusion model [2] (Sec-
tion A), elaborate on our GPT-based body-part annotation
method (Section B), our synthetic data creation pipeline
(Section C), and our proposed TEMOS score (Section D). We
also provide additional quantitative evaluations (Section E).

Supplementary video. Along with this document, we provide
a video, available on the project page, which includes visual-
izations of a sample of generated motions; these are difficult
to convey in a static document. (i) We first briefly describe our
goal, motivation, and method. (ii) We then introduce baselines
and illustrate their failure modes. (iii) We provide qualitative
comparisons against baselines, while highlighting limitations of
the coordinate-based APE metric. (iv) Finally, we demonstrate
the ability of our model to generalize to out-of-distribution
input combinations, as well as combinations beyond pairs.

A. Additional experiment with diffusion models
To complement our study with the TEMOS model [6],

here, we provide an additional experiment by training a more
recent state-of-the-art architecture for text-conditioned motion
generation. Specifically, we implement Motion Latent Diffusion
(MLD) [2] with the same text input pipeline as our method (see
Section 3.2). Since MLD applies the diffusion on the latent
space, we extract a single latent vector per motion (using the
TEMOS model trained on Real-singles as a feature extractor).
We train the diffusion model for 1000 epochs on 2 GPUs, with
a batch size of 16, and learning rate of 1e-4. Instead of the
coordinate-based representation of Guo et al. [4], we directly
train on 6D rotation representation (as is done for TEMOS, see
Section 3.3). Apart from those adaptations, we use the same
architectural choices as in the original paper [2]. In Table A.1,
we report the results with and without synthetic data, as we
did for TEMOS in the main paper with the rows 10 and 2 of

*Equal contribution

Model Synthetic training TEMOS Score

MLD [2] ✗ 0.612
MLD [2] ✓ 0.638

TEMOS [6] ✗ 0.640
TEMOS [6] ✓ 0.644

Table A.1. Additional results with a diffusion model: We report the
performance of MLD [2] with and without adding the synthetic training
data. We observe that synthetic data helps for both MLD and TEMOS.

Table 3, respectively. The same conclusion holds for MLD: the
model trained on additional synthetic data demonstrates better
performance than the one trained only on real data (Real-Pairs
and Real-Singles).

B. Body Part Labeling with GPT-3

BABEL includes 6518 unique language labels for
training and validation. We use these raw labels as in-
put in the GPT-3 query. We prompt the public API
https://openai.com/api/ for each of the BABEL
action labels and automatically retrieve the body parts that are
involved in the motion. We experimented with various prompts
before deciding on our final prompt template. We observed that
GPT-3 outputs are easier to parse and map to our predefined
list of body parts if we provide this list, as well as few-shot
examples consisting of question-answer pairs. We use the
following prompt, to extract the body part annotations for our
synthetic data creation, as described in Section 3.1:

1 The instructions for this task are to choose
2 your answers from the list below:
3
4 left arm
5 right arm
6 left leg
7 buttocks
8 waist
9 right leg

10 torso

1



11 neck
12
13 Here are some examples of the question and answer
14 pairs for this task:
15
16 Question: What are the body parts involved in the
17 action of: walk forwards?
18 Answer: right leg
19 left leg
20 buttocks
21
22 Question: What are the body parts involved in the
23 action of: face to the left?
24 Answer: torso
25 neck
26
27 Question: What are the body parts involved in the
28 action of: put headphones over ears?
29 Answer: right arm
30 left arm
31 neck
32
33 Question: What are the body parts involved in the
34 action of: sit down?
35 Answer: right leg
36 left leg
37 buttocks
38 waist
39
40 Question: What are the body parts involved in the
41 action of: [ACTION]?

Listing 1. GPT prompt template

Listing 1 shows the full prompt used to extract the annotations
using GPT-3 for composing actions spatially. In Table 1, of
the main paper, we quantitatively evaluated the body part
labeling performance of this prompt, along with alternative
prompts. Here, in Table A.2, we provide qualitative examples to
illustrate the behavior of GPT-3 to each of the prompt types. (a)
“Free-form” prompt type contains only L40-41 from Listing 1.
(b) “Choosing from a list” contains both L1-11, L40-41. (c)
“Choosing from a list + Few-shot examples” refers to the full
prompt. As shown in Table A.2, using “Free-form” prompting
requires a tedious post-processing of GPT-3 responses, since
one needs a comprehensive mapping from all possible body
part namings to our list. Moreover, the level of details is not
consistent across actions (e.g., ‘left leg and hips’ versus ‘deltoid
and triceps muscles’). We extract the associated body parts by
detecting keywords from a manually constructed lookup table;
however, the labeling accuracy based on Table 1 of the main
paper is still lower than instructing GPT-3 to choose from a
list. We obtain further gains by including few-shot examples
in the prompt. This is demonstrated qualitatively in Table A.2
for the label ‘rotate shoulders’ which GPT-3 includes neck in
addition to torso or ‘walk backwards with arms attach to the
waist’ for which arms are mistakenly omitted for the “Choose
from a list” prompt. Our final prompt that provides both the
list and few-shot examples perform best, while also requiring
significantly less post-processing.

We explain the reasoning behind replacing ‘global orien-
tation’ with ‘waist’ and ‘buttocks’ in the list of body parts. In
our initial prompts we used ‘global orientation’ as part of the
list. However, we observed that the model frequently returned
‘waist’ and ‘buttocks’ even when they were not in the list.

Figure A.1. Body parts: Each color indicates a different body part.
Vertices (left) and the skeleton (right) are extracted from the SMPL
body model.

Figure A.2. Testing incompatible simultaneous actions: We apply
our model SINC on the input{‘walk’, ‘kick with the right leg’} which
represents an example of two incompatible actions due to involving the
same body part ‘right leg’. We display two random generations from
our model, once with 2-second duration (left), and once with 4 seconds
(right). We observe that SINC generates one of the two actions in each
sample (‘kick’ on the left, ‘walk’ on the right).

Furthermore, GPT-3 responses included ‘global orientation’
even in cases when it was not necessary e.g., ‘lift arm’, ‘raise
leg’. Consequently, we chose to remove ‘global orientation’,
and add ‘waist’ and ‘buttocks’ instead.

Finally, we include the label ‘neck’ in addition to ‘torso‘,
since GPT-3 tends to include ‘neck’ in its responses, especially
when we prompt for the actions: ‘look left’ / ‘look right’.

We use 6 body part labels based on common body
segmentation maps [5], which we show in Figure A.1. Since
most of the AMASS dataset does not contain fine-grained
hand motions, we do not include hands as a separate body part.
Furthermore, we observe that GPT-3 behavior may become
inconsistent if we provide a long list of fine-grained parts
instead of few coarse labels. The main body parts include the
right/left extremities, the torso-neck part and the pelvis denoted
as global. Global, except for the pelvis rotation, includes global
translation of the body and it is used when either the waist or
buttocks are included in GPT-3’s response.



Action Prompt Type GPT-3 Response

move right arm in circular motion
Free-form The person’s right arm, shoulder, and possibly the upper part of their body.
Choosing from a list right arm
Choosing from a list + Few-shot examples right arm

make large circles with left leg in front of body
Free-form The left leg and the hips
Choosing from a list left leg
Choosing from a list + Few-shot examples left leg

overhead throw
Free-form The deltoid muscle in the shoulder and the triceps muscle in the arm are moving when someone is doing an overhead throw.
Choosing from a list left arm right arm
Choosing from a list + Few-shot examples left arm right arm torso

walk backwards with arms attach to the waist
Free-form The body parts involved in the action of walking backwards with arms attached to the waist are the legs, arms, back, and abdomen.
Choosing from a list right leg left leg buttocks
Choosing from a list + Few-shot examples left arm right arm left leg right leg waist

put down bottle with left hand
Free-form Left arm Left hand Fingers
Choosing from a list left arm
Choosing from a list + Few-shot examples left arm torso

rotate shoulders
Free-form The body parts involved in the action of rotating the shoulders are the neck, shoulders, arms, and back.
Choosing from a list left arm right arm arm torso neck
Choosing from a list + Few-shot examples left arm right arm arm torso

Table A.2. GPT response examples for different prompt types: We show the responses of GPT-3 on some examples that demonstrate the
differences between different prompt types (see Table 1 of the main paper). The output of the free-form prompt is non-trivial to parse and map to our
list of body parts. On the other hand, providing the list and few-shot examples encourages GPT-3 to follow a more strict format, and to describe the
body parts with the same words as in our list.

C. Synthetic Data Creation

We use GPT-3-guided spatial compositions in two parts of
this work. First, we use GPT-3 to benchmark how well a single-
action baseline can perform, by applying composition as post-
processing on independently generated motions (Figure A.3
bottom). Secondly, we use GPT-3 to create synthetic data to
train our model. In both cases, we employ the method described
in Section 3.1 of the main paper. We use the heuristic of stitching
the motion with less body parts (motion B) on top of the other
motion (motion A), because the body parts of motion B are more
likely to be local (as in “waving the right hand”) and important
for keeping the semantic of the motion. On the other hand,
motion A is more likely to be a global motion (as in “walking” or
“sitting”) and grafting motion B onto motion A usually produces
a realistic motion and preserves the semantics of both motions.
Note that these heuristics were determined based on visual
inspection over several examples, and may not be optimal.

The difference in the case of synthetic data creation
is the compatibility test, which makes sure that no body
part is involved in both of the motions being composited.
Moreover, synthetic data combines existing real motions, and
the single-action baseline combines generated motions.

We only apply the compatibility check for the synthetic data
generation to avoid composing invalid motions, since a human
can physically not perform two actions with the same body part
in most cases. This choice was simply to ensure better synthetic
data quality, as without it, the composition may be reduced
down to one action (e.g., ‘walking’ would overwrite ‘kicking’
as the leg cannot do both). At test time, when we query ‘walk’
and ‘kick with the right leg’ with two different durations, SINC
randomly generates one of the two actions, as seen in Figure A.2.

Single-action: 

 
Single-action GPT-compositing: 

walk forwards while raising arms

raise arms

walk forwards
GPT-

compositing

TEMOS

TEMOS

TEMOS

Figure A.3. Single-action baselines: For both baselines, TEMOS is
trained on Real-Singles of BABEL. On the top, we concatenate the
textual inputs by adding the word “while” in between actions. On the
bottom, we generate the two actions independently and combine them
with the body part guidance from GPT-3.

RealSingles
89.4%

RealPairs
9.28%

RealPairs >2
1.31%

RealSingles
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Figure A.4. Distribution of the training set: The simultaneous Real-
Pairs are the vast minority of the data, highlighting the importance
of automatically enriching training data through our synthetic spatial
compositions.

D. TEMOS Score

The position-based metrics typically used in prior
work [1, 3, 6] compare generated motions with the ground-truth



Conjuction Word Seen during Model TEMOS ↑ Average Positional Error ↓ Average Variance Error ↓
training score root joint global traj. mean local mean global root joint global traj. mean local mean global

while ✓
Single-action 0.601 0.592 0.551 0.286 0.712 0.076 0.075 0.013 0.083
SINC 0.644 0.493 0.463 0.266 0.616 0.066 0.065 0.012 0.072

during ✓
Single-action 0.598 0.629 0.587 0.284 0.752 0.085 0.084 0.013 0.093
SINC 0.642 0.497 0.471 0.261 0.622 0.065 0.063 0.012 0.071

and ... at the same time ✓
Single-action 0.599 0.607 0.568 0.283 0.722 0.084 0.083 0.014 0.092
SINC 0.643 0.495 0.468 0.264 0.620 0.065 0.064 0.012 0.072

in parallel ✗
Single-action 0.600 0.611 0.570 0.294 0.736 0.081 0.081 0.012 0.089
SINC 0.643 0.583 0.555 0.266 0.704 0.074 0.072 0.012 0.080

whilst ✗
Single-action 0.599 0.551 0.511 0.288 0.670 0.073 0.072 0.012 0.080
SINC 0.644 0.491 0.461 0.262 0.614 0.066 0.065 0.012 0.072

synchronously ✗
Single-action 0.596 0.520 0.476 0.294 0.644 0.074 0.072 0.013 0.081
SINC 0.637 0.520 0.492 0.261 0.644 0.0644 0.0632 0.011 0.070

Table A.3. Evaluation using different conjunction words: In Table 2 of the main paper, we evaluated the models with the conjunction word
while. Here, we report performance when joining the two actions using other conjunction words, for both seen and unseen conjunction words
during training. We observe similar trends for the TEMOS scores and the positional metrics as for using while to join the actions. Overall,
performance of Single-action methods remains significantly inferior, especially for the TEMOS score. Note that SINC refers to our best model
which is trained on both Real Singles, Real Pairs and Synthetic Pairs.

motion in the coordinate space local to the body: they measure
differences of positions and do not take into account semantics.
Here are four types of examples where the metrics can fail:
1) with a cyclic motion such as “walking”, the generation can
be out of phase with the ground truth and still be semantically
valid; 2) even for a non-cyclic motion such as “throwing
an object”, the timing can be different and can lead to bad
scores on common metrics; 3) if the input text description
is ambiguous such as “kick” (where the motion can be done
from one leg or the other), the metrics may not reflect the
quality of the generated motion; 4) if the motion demonstrates
severe foot sliding or body translation artifacts, the error may
be dominated by the translation error, effectively ignoring the
overall implausibility of the limb motion e.g., feet not moving.

To avoid these issues, we introduce another performance
measure called TEMOS score. We train a TEMOS model on
BABEL Real-Singles for 1000 epochs, freeze its weights, and
use its motion encoder component. Then, we extract features by
feeding a motion B to the motion encoder, and use the mean of
the distribution as the feature vector f . This feature captures the
semantics of the motion as the motion space has been trained
to explicitly model motion-text matching, i.e., cross-modal
embedding space.

To calculate the TEMOS score, we feed the ground truth and
the generated motions to the motion encoder, and extract the fea-
ture vectors fGT and fmotion, respectively. Then we compute
the score based on their cosine similarity as follows:

TEMOS score(fGT ,fmotion)=
1

2

(
1+

fGT ·fmotion

||fGT ||· ||fmotion||

)
.

The range of this score is between 0 and 1, with a maximum
at 1, which occurs when the two motions are identical.

Model used for TEMOS score
Single-action SINC

Single-action 0.601 0.594
SINC 0.644 0.637

Table A.4. TEMOS score with various TEMOS models: We report
performance using different trained models to compute the TEMOS
score. While the absolute score slightly differs when measured with
a different model (e.g., 0.644 vs 0.637), the relative ranking of the
models we compare remains the same.

Div. → Multimod. ↑
SINC 1.10 1.13
Real 1.34 -

Table A.5. Diversity evaluation: We report the diversity and multi-
modality metrics of [4] for our SINC model.

E. Additional Quantitative Evaluation

We report quantitative results when evaluating with various
conjunction words (Section E.1), when using various TEMOS
models to compute the TEMOS score (Section E.2), when
evaluating the diversity and multimodality metrics (Section E.3),
and, when evaluating on the full validation set for completeness
(Section E.4).

E.1. More conjunction words

In our main paper experiments, we used while as our
conjunction word. For completeness, in Table A.3 we evaluate
the Single-action method and our best model with other
conjunction words at test time. We observe that the differences
are minimal and the methods perform similarly across different
conjunctions. This is true for all conjunctions both seen and
unseen during training. The performance is similar, likely due to



Model Tr. Data TEMOS ↑ Average Positional Error ↓ Average Variance Error ↓
Real-P Real-S score root joint global traj. mean local mean global root joint global traj. mean local mean global

Single-action ✗ ✓ 0.607 0.516 0.483 0.262 0.626 0.067 0.066 0.012 0.073
Single-action GPT-compositing ✗ ✓ 0.626 0.458 0.431 0.244 0.569 0.068 0.067 0.011 0.074

SINC-STE ✓ ✗ 0.630 0.502 0.477 0.249 0.616 0.074 0.074 0.010 0.08
SINC ✓ ✗ 0.634 0.602 0.586 0.243 0.704 0.084 0.083 0.011 0.091
SINC ✓ ✓ 0.645 0.519 0.495 0.248 0.632 0.078 0.077 0.010 0.084

Table A.6. Baseline comparison on the full validation set of BABEL: We observe similar trends with the filtered validation set reported in Table 2
of the main paper.

Synthetic data Training Data TEMOS ↑ Average Positional Error ↓ Average Variance Error ↓
Real-P Real-S % Synth-P % score root joint global traj. mean local mean global root joint global traj. mean local mean global

N/A ✓ 0 0 0.634 0.602 0.586 0.243 0.704 0.084 0.083 0.011 0.091
✓ 100 0 0.645 0.519 0.495 0.248 0.632 0.078 0.077 0.010 0.084

Random composition ✗ 50 50 0.551 0.575 0.534 0.259 0.664 0.072 0.071 0.011 0.078
✗ 0 100 0.552 0.454 0.411 0.263 0.551 0.068 0.067 0.011 0.074
✓ 50 50 0.619 0.396 0.362 0.242 0.504 0.060 0.059 0.010 0.067
✓ 0 100 0.619 0.422 0.390 0.241 0.530 0.062 0.061 0.010 0.068

GPT composition ✗ 50 50 0.554 0.641 0.604 0.262 0.731 0.074 0.073 0.011 0.081
✗ 0 100 0.632 0.424 0.405 0.237 0.543 0.055 0.054 0.011 0.062
✓ 50 50 0.651 0.418 0.397 0.234 0.533 0.055 0.054 0.010 0.062
✓ 0 100 0.645 0.472 0.453 0.237 0.581 0.053 0.053 0.010 0.060

Table A.7. Contribution of the synthetic data on the full validation set of BABEL: We complement Table 3 of the main paper, by reporting on
the full validation set (without any filtering).

the text embeddings mapping the expressions to similar points.

E.2. TEMOS score with various TEMOS models

As mentioned in Section 4.1 of the main paper, to report the
TEMOS score, we use a TEMOS model trained on Real-Singles
of BABEL. Here, we analyze whether the choice of the TEMOS
model has a large impact on the results when trained on pairs.
In Table A.4, we observe that the TEMOS score trend is similar
when computed with TEMOS models trained on Real-Singles
(Single-action) or on all real and synthetic data (SINC).

E.3. Diversity

Following Guo et al. [4], we report the overall diversity
(for all action pairs), and multimodality (i.e., per-action-pair
diversity) in Table A.5. We measure the L2 distance between
the TEMOS embeddings of two sets of generations. For
multimodality we sample 20 generations per description, and
for diversity we generate 5 samples per description. Both
metrics are computed for 300 random descriptions from the
BABEL validation set. Real motions do not contain a sufficient
number of motions for each action pair, thus the reason for
omitting their multimodality.

E.4. Full validation set

As explained in Section 4.1 of the main paper, we report all
the results on a challenging subset of the validation set (i.e., with-
out the action ‘stand’, and using only unseen examples). Here,
we provide the results on the full validation set for completeness.
In particular, we repeat the Tables 2 and 3 of the main paper, in

Tables A.6 and A.7. As expected, we observe slightly improved
results overall on this ‘easier’ validation set and the conclusions
remain similar to the comparison in the main paper.
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