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S1. Implementation Details
The proposed PNI algorithm is implemented with Python 3.8 and PyTorch, version torch=1.12.1 and torchvision=0.13.1.

The model is trained on NVIDIA TITAN RTX, A100, and T4 GPUs. We used ImageNet [8] pre-trained network from
PyTorch/vision:v0.10.0. The WideResNet101-2 [31] network is used in our code by default, ResNext101 32x8d [27] and
DenseNet201 [13] are used for ensemble results. In the implementation, the embedding coreset and the distribution coreset
are stored in faiss [S2] framework to calculate the distance between a test feature and the coresets efficiently. We used
pytorch-lightning [S1] framework to manage the training and evaluation process.

Figure S1 shows the more detailed process of training MLP for normal feature distribution given neighborhood information
in Figure 2. With a pre-trained network ϕ, normal sample xi is converted into feature map Φi ∈ RC×H×W . With the spatial
coordinate x = (h,w), we define neighborhood features Np(x) in equation (7) of the main paper. In Figure S1, we define
p = 9 by default. All features in Np(x) are flattened and concatenated to 1-dimensional features to become an input of MLP.
The MLP consists of NMLP = 10 sequential linear layers with cMLP = 2048 neurons by default. Batch normalization and
ReLU functions are used between layers. The MLP outputs |Cdist| nodes, which represents p(cdist|Np(x)). The ground truth
used for training is a one-hot vector, where the distribution coreset index closest to the true center feature vector is one, and
the cross-entropy loss is calculated with the MLP output.

The implemented code is provided in a zip file as supplementary material. The model in the code trained on designated
hyperparameters can achieve up to 99.56% and 98.98% AUROC scores in anomaly detection and localization for MVTec
AD benchmark [1], which is the state-of-the-art performance. This model also achieves 96.05% AUPRO score, which out-
performs the second-best algorithm by 0.53%. In addition, the same model can achieve up to 97.8% of anomaly localization
AUROC for the BTAD [19], which is the highest performance compared to previous works.
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Figure S1: The detailed process of training MLP for normal feature distribution given neighborhood information. The
numbers below the linear layer indicate the number of neurons. Each layer is annotated with the number of neurons, while
the symbols for batch normalization and ReLU indicate the operations that follow each layer.



S2. Pixelwise Refinement Network
Detailed structure: Figure S2 shows the more detailed structure of the refinement network in Figure 4. H ×W size image
I and anomaly map Â are transformed into H

4 × W
4 size features through a convolution layer and max pooling, respectively.

These features are added element-wisely, forwarded to four dense blocks and three transition layers, and transformed into
2208× H

32 ×
W
32 size features. The structure of dense blocks and transition layers are identical to that of DenseNet161 [13]. In

the decoder, features are compressed to 768 channels by the first convolution layer and are upsampled to the original image
size by five upsampling blocks. Each upsampling block consists of one bilinear upsampling interpolation and two following
convolution layers. In an upsampling block, the spatial resolution of input features is expanded by factor 2, and the number
of channels is halved. Thus, the output size of the fifth upsampling block becomes 24×H ×W . The final convolution layer
estimates H ×W size refined anomaly map Ã.
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Figure S2: The architecture of the refinement network with detailed information on the convolution blocks. Each block is
annotated with the kernel size, number of channels, and stride, while the symbols for batch normalization and ReLU indicate
the operations that follow each convolution layer. Stride values are omitted when they equal 1. For example, ‘*7, 64, S2’
indicates a kernel size of 7× 7, 64 channels, and stride 2.

Defect images generated by manual drawing: Figure S3 shows generation examples generation. First, we make the defect
patches in a hand-drawing manner as shown in Figure S3(a). Second, we generate artificial anomaly maps by combining
patches at various sizes and spatial locations as shown in Figure S3(b). Finally, we obtain I from clean image Iclean and
defect image Idefect.

I = (1−A)⊙ Iclean +A⊙ Idefect, (S1)

Figure S3(c) and (d) show examples of Iclean and I , respectively.

(a) (b) (c) (d)

Figure S3: Manual defect image generation process according to manual drawing, (a) defect patches, (b) artificial anomaly
maps, (c) Iclean, and (d) Idefect.



S3. Evaluation Results
In Table S2, S3, S4, and S5, we provide a more detailed quantitative comparison of anomaly detection and localization

performance, which we do not cover in Tables 1 and 2 of the main paper due to space constraints. Some conventional
algorithms provide multiple models with different hyperparameters. We specifically list in Table S1 which models we adopt
for comparison from each algorithm. For the remaining algorithms, we adopt the representative models mentioned in their
respective papers.

Table S1: Model selection of conventional algorithms for comparison.

Algorithm Model

FCDD [S3] Unsupervised FCDD
PaDiM [6] PaDiM-WR50-Rd550
CutPaste [17] CutPaste (3-way)
CutPaste (Ensemble) [17] Ensemble
NSA [22] NSA (logistic)
PatchCore [21] PatchCore-25%
PatchCore (Ensemble) [21] DenseN-201 & RNext-101 & WRN-101 (2+3), Imagesize 320
PEFM [25] PEFMa

Uninformed Students [2] Multiscale
CFLOW-AD [9] WideResNet-50

In Table S2, we compare the performance of the proposed PNI algorithm and conventional algorithms on the MVTec
AD [1] dataset. To assess anomaly detection performance, image-level AUROC (I-AUROC) is used, while pixel-level AU-
ROC (P-AUROC) and AUPRO are used for anomaly localization performance. Sub-total averages for object subcategories,
texture subcategories, and overall averages are provided.

Table S2: Summary of anomaly detection and localization results on MVTec AD dataset for conventional algorithms. The
proposed PNI is compared to recent algorithms in terms of I-AUROC, P-AUROC, and AUPRO. For each metric, sub-total
averages are provided for both object and texture subcategories, additionally. For each metric, the best result is boldfaced,
and the second best is underscored.

I-AUROC P-AUROC AUPRO

Object Texture Average Object Texture Average Object Texture Average

FCDD [S3] - - - 95 97 96 - - -
Patch SVDD [29] 90.8 94.5 92.1 96.7 93.7 95.7 - - -
SPADE [5] - - 85.5 97.6 92.9 96.0 93.4 88.4 91.7
PaDiM [6] 93.6 98.8 95.3 97.8 96.9 97.5 91.6 93.1 92.1
RIAD [33] 89.9 95.1 91.7 94.3 93.9 94.2 - - -
CutPaste [17] 94.4 97.0 95.2 95.8 96.3 96.0 - - -
CutPaste (ensemble) [17] 95.5 97.5 96.1 - - - - - -
DRÆM [32] 97.4 99.1 98.0 97.0 97.9 97.3 - - -
FastFlow [30] 99.1 99.9 99.4 98.6 98.1 98.5 - - -
SOMAD [18] 97.7 98.4 97.9 98.1 97.1 97.8 94.1 91.6 93.3
InTra [20] 93.1 98.9 95.0 96.9 96.1 96.6 - - -
MB-PFM [26] - 99.4 97.5 97.0 97.8 97.3 92.3 94.6 93.0
NSA [22] 96.5 98.6 97.2 96.0 96.8 96.3 90.4 92.2 91.0
IKD [3] - - - 98.3 96.8 97.8 93.3 91.1 92.5
PatchCore [21] 99.2 99.0 99.1 98.4 97.5 98.1 93.3 93.6 93.4
PatchCore (ensemble) [21] - - 99.6 - - 98.2 - - 94.9
Reverse Distillation [7] 98.0 99.5 98.5 97.9 97.7 97.8 93.4 95.0 93.9
Tsai et al. [24] 98.4 97.7 98.1 98.4 97.6 98.1 95.7 95.0 95.5
PEFM [25] - - - 98.37 98.17 98.30 95.30 95.95 95.52
CDO [4] - - - 98.36 97.94 98.22 94.57 94.90 94.68
Uninformed Students [2] - - - - - - 90.8 92.7 91.4
CFLOW-AD [9] 97.66 99.47 98.26 98.69 98.51 98.62 93.58 96.65 94.60
PNI 99.55 99.59 99.56 99.12 98.72 98.98 96.34 95.47 96.05
PNI (Ensemble) 99.64 99.59 99.63 99.14 98.90 99.06 96.83 96.00 96.55



Unlike the main paper, we also compare models that use multiple networks alongside other models, and we indicate the
best and second best performances with boldface and underscore, respectively. The proposed PNI outperforms all other
conventional algorithms in 7 out of 9 metrics, excluding I-AUROC texture and AUPRO texture. Furthermore, PNI (Ensem-
ble) improves PNI in all terms, and notably, it demonstrates performance exceeding 99% in overall P-AUROC for the first
time. In Table S3, S4, and S5, we provide the I-AUROC, P-AUROC, and AUPRO performance of individual subcategories,
respectively. These tables include detailed results of the algorithms that are not covered in the main paper. Note that in terms
of I-AUROC, PaDiM [6] does not provide performance for each subcategory. Also, MB-PFM [26] is missing the result for
the capsule subcategory.

As shown in Table S3, the PNI algorithm also demonstrates the best anomaly detection performance in the subcategories.
For example, out of 15 subcategories, PNI and PNI (Ensemble) show 100% detection results in 7 and 8 subcategories, respec-
tively, which surpasses the 5 subcategories for MB-PFM [26] and 4 subcategories for Reverse Distillation [7]. Additionally,
PNI outperforms the anomaly detection performance of conventional algorithms in 11 subcategories.

Table S3: Comparison of anomaly detection performance between the proposed PNI algorithm and conventional algorithms
on the MVTec AD dataset using I-AUROC. Performance for each subcategory is also provided. For each subcategory, the
best result is boldfaced.

Patch
PaDiM DRÆM SOMAD MB-PFM NSA

Reverse CutPaste PNI PNI
SVDD Distillation (Ensemble) (Ensemble)

Object

Bottle 98.6 - 99.2 100 100 97.7 100 98.2 100 100
Cable 90.3 - 91.8 98.8 98.8 94.5 95.0 81.2 99.76 99.91
Capsule 76.7 - 98.5 93.8 - 95.2 96.3 98.2 99.72 99.72
Hazelnut 92.0 - 100 100 100 94.7 99.9 98.3 100 100
Metal nut 94.0 - 98.7 99.7 100 98.7 100 99.9 100 100
Pill 86.1 - 98.9 98.6 96.5 99.2 96.6 94.9 96.89 97.79
Screw 81.3 - 93.9 95.5 91.8 90.2 97.0 88.7 99.51 99.10
Toothbrush 100 - 100 98.6 88.6 100 99.5 99.4 99.72 100
Transistor 91.5 - 93.1 94.5 97.8 95.1 96.7 96.1 100 100
Zipper 97.9 - 100 97.7 97.4 99.8 98.5 99.9 99.87 98.89

Average 90.8 93.6 97.4 97.7 - 96.5 98.0 95.5 99.55 99.64

Texture

Carpet 92.9 - 97.0 100 100 95.6 98.9 93.9 100 100
Grid 94.6 - 99.9 93.9 98.0 99.9 100 100 98.41 98.50
Leather 90.9 - 100 100 100 99.9 100 100 100 100
Tile 97.8 - 99.6 98.7 99.6 100 99.3 94.6 100 100
Wood 96.5 - 99.1 99.2 99.5 97.5 99.2 99.1 99.56 99.47

Average 94.5 98.8 99.1 98.4 99.4 98.6 99.5 97.5 99.59 99.59

Average 92.1 95.3 98.0 97.9 97.5 97.2 98.5 96.1 99.56 99.63

In Tables S4 and S5, which assess anomaly localization performance using P-AUROC and AUPRO, respectively, the
proposed PNI demonstrates outstanding performance in multiple subcategories. In terms of P-AUROC, PNI shows the best
or second-best results in 9 out of 15 subcategories and exhibits performance above 99% in 11 subcategories. This surpasses
the competitor ones [4,7,22,25,32], which only show performance exceeding 99% in 3 to 6 subcategories. Furthermore, PNI
(Ensemble) presents the best or second-best results in 11 out of 15 subcategories. In AUPRO, PNI (Ensemble) ranks within
the top two in 8 subcategories, while showing performance above 95% in 12 subcategories. This also surpasses the other
algorithms [2,4,7,9,24,25], which record performance above 95% in 7 to 11 subcategories.

Table S6 presents the anomaly detection and localization performance of the proposed PNI algorithm on the VisA dataset
using I-AUROC and P-AUROC. Scores are provided for each subcategory, sub-total average of each subcategory type, and
overall average



Table S4: Comparison of anomaly localization performance between the proposed PNI algorithm and conventional algo-
rithms on the MVTec AD dataset using P-AUROC. Performance for each subcategory is also provided. For each subcategory,
the best result is boldfaced, and the second best is underscored.

FCDD
Patch

SPADE PaDiM DRÆM SOMAD MB-PFM NSA IKD
Reverse

PEFM CDO PNI PNI
SVDD Distillation (Ensemble)

Object

Bottle 96 98.1 98.4 98.3 99.1 98.3 98.4 98.3 98.99 98.7 98.51 99.30 98.87 99.03
Cable 93 96.8 97.2 96.7 94.7 98.2 96.7 96.0 98.03 97.4 98.31 97.60 99.10 99.16
Capsule 95 95.8 99.0 98.5 94.3 98.7 98.3 97.6 98.55 98.7 98.51 98.64 99.34 99.38
Hazelnut 97 97.5 99.0 98.2 99.7 98.4 99.1 97.6 98.71 98.9 99.17 99.24 99.37 99.40
Metal nut 98 98.0 98.1 97.2 99.5 98.0 97.2 98.4 98.38 97.3 96.98 98.54 99.29 99.34
Pill 97 95.1 96.5 95.7 97.6 98.0 97.2 98.5 98.79 98.2 97.04 98.94 99.03 98.99
Screw 93 95.7 98.9 98.5 97.6 99.1 98.7 96.5 98.63 99.6 99.01 99.01 99.60 99.68
Toothbrush 95 98.1 97.9 98.8 98.1 98.5 98.6 94.9 98.58 99.1 99.18 98.86 99.09 99.11
Transistor 90 97.0 94.1 97.5 90.9 95.3 87.8 88.0 97.13 92.5 98.39 95.30 98.04 97.74
Zipper 98 95.1 96.5 98.5 98.8 98.7 98.2 94.2 97.56 98.2 98.61 98.21 99.43 99.56

Average 95 96.7 97.6 97.8 97.0 98.1 97.0 96.0 98.34 97.9 98.37 98.36 99.12 99.14

Texture

Carpet 99 92.6 97.5 99.1 95.5 98.9 99.2 95.5 98.71 98.9 99.15 99.08 99.40 99.46
Grid 95 96.2 93.7 97.3 99.7 98.4 98.8 99.2 97.04 99.3 99.23 98.40 99.20 99.20
Leather 99 97.4 97.6 99.2 98.6 99.1 99.4 99.5 98.53 99.4 99.42 99.17 99.56 99.59
Tile 98 91.4 87.4 94.1 99.2 94.8 96.2 99.3 95.68 95.6 96.55 97.20 98.40 98.69
Wood 94 90.8 88.5 94.9 96.4 94.4 95.6 90.7 93.88 95.3 96.49 95.85 97.04 97.55

Average 97 93.7 92.9 96.9 97.9 97.1 97.8 96.8 96.77 97.7 98.17 97.94 98.72 98.90

Average 96 95.7 96.0 97.5 97.3 97.8 97.3 96.3 97.81 97.8 98.30 98.22 98.98 99.06

Table S5: Comparison of anomaly localization performance between the proposed PNI algorithm and conventional algo-
rithms on the MVTec AD dataset using AUPRO. Performance for each subcategory is also provided. For each subcategory,
the best result is boldfaced, and the second best is underscored.

SPADE PaDiM SOMAD MB-PFM NSA IKD PatchCore
Reverse Tsai

PEFM CDO
Uninformed CFLOW PNI PNI

Distillation et al. Students -AD (Ensemble)

Object

Bottle 95.5 94.8 94.7 95.4 92.9 96.08 96.2 96.6 95.3 95.92 97.17 93.1 96.80 95.95 96.84
Cable 90.9 88.8 93.4 94.2 89.9 94.21 92.5 91.0 96.7 97.73 94.17 81.8 93.53 98.93 99.23
Capsule 93.7 93.5 93.4 91.7 91.4 90.62 95.5 95.8 97.8 92.11 92.97 96.8 93.40 95.63 96.12
Hazelnut 95.4 92.6 95.1 96.7 93.6 95.97 93.8 95.5 97.8 97.99 97.39 96.5 96.68 96.93 97.35
Metal nut 94.4 85.6 93.6 94.6 94.6 94.69 91.4 92.3 88.8 93.88 95.74 94.2 91.65 95.89 96.88
Pill 94.6 92.7 96.5 96.1 96.0 96.09 93.2 96.4 96.1 96.18 96.59 96.1 95.39 96.68 97.00
Screw 96.0 94.4 96.0 93.4 90.1 92.95 97.9 98.2 98.3 95.73 94.33 94.2 95.30 97.17 97.88
Toothbrush 93.5 93.1 90.7 90.7 90.7 87.01 91.5 94.5 94.4 96.21 90.50 93.3 95.06 92.68 93.76
Transistor 87.4 84.5 91.6 74.9 75.3 93.78 83.7 78.0 95.0 90.84 92.56 66.6 81.40 96.24 95.35
Zipper 92.6 95.9 95.9 94.8 89.2 91.55 97.1 95.4 97.0 96.45 94.28 95.1 96.60 97.28 97.86

Average 93.4 91.6 94.1 92.3 90.4 93.30 93.3 93.4 95.7 95.30 94.57 90.8 93.58 96.34 96.83

Texture

Carpet 94.7 96.2 95.5 96.9 85.0 94.49 96.6 97.0 92.7 96.75 96.77 87.9 97.70 97.55 97.67
Grid 86.7 94.6 95.3 96.0 96.8 87.73 96.0 97.6 97.9 97.21 96.02 95.2 96.08 94.26 94.29
Leather 97.2 97.8 97.7 98.8 98.7 97.64 98.9 99.1 99.2 98.91 98.34 94.5 99.35 98.27 98.58
Tile 75.9 86.0 81.3 88.7 95.3 86.35 87.3 90.6 88.8 91.10 90.51 94.6 94.34 94.74 95.66
Wood 87.4 91.1 88.2 92.6 85.3 89.06 89.4 90.9 96.2 95.77 92.87 91.1 95.79 92.51 93.82

Average 88.4 93.1 99.4 94.6 92.2 91.05 93.6 95.0 95.0 95.95 94.90 92.7 96.65 95.47 96.00

Average 91.7 92.1 97.5 93.0 91.0 92.55 93.4 93.9 95.5 95.52 94.68 91.4 94.60 96.05 96.55

Table S6: I-AUROC and P-AUROC scores of the proposed PNI algorithm on VisA [35] are presented. Scores are provided
for each subcategory, sub-total average of each subcategory type, and overall average.

Single instance Multiple instances Complex structure
Average

Cashew Chewing gum Fryum Pipe fyrum Average Macaroni1 Macaroni2 Capsules Candle Average PCB1 PCB2 PCB3 PCB4 Average

I-AUROC 99.04 99.06 98.94 99.74 99.20 94.66 74.34 83.27 99.33 87.90 98.84 97.52 97.95 99.84 98.54 95.21
P-AUROC 99.18 99.01 94.68 99.37 98.06 99.67 98.56 99.10 99.54 99.22 99.80 98.92 99.00 98.35 99.02 98.77



S4. Ablation Study
We conduct detailed ablation studies on the components of the proposed PNI algorithm, which is covered in Table 3 of the

main paper. Table S7 shows the specific settings of each model, named setting A, B, ..., and L. These settings cover various
ablation studies on the three main components of the proposed PNI algorithm, which are neighborhood information, position
information, and pixelwise refinement, as well as coreset subsampling ratios, defect image creation methods, and a different
loss setting. For example, setting A is the baseline of the ablation study, which does not include neighborhood, position
information, or pixelwise refinement. Table S8 summarizes the performance of the settings on the MVTec AD dataset, while
Tables S9, S10, and S11 provide more detailed information on I-AUROC, P-AUROC, and AUPRO for each subcategory,
respectively.

Table S7: Various settings for the ablation study of the proposed PNI algorithm, in which we break down the PNI into detailed
components and define settings A, B, ..., and L, using only specific combinations of these components.

Neighborhood Position Refinement Subsampling ratio
Defect image creation method

Loss ℓgrad Ensemble
CutPaste CutPaste (scar) DRÆM Manual

Setting A (baseline) - - - 0.01 - - - - - -
Setting B ✓ - - 0.01 - - - - - -
Setting C ✓ ✓ - 0.0025 - - - - - -
Setting D ✓ ✓ - 0.005 - - - - - -
Setting E ✓ ✓ - 0.01 - - - - - -
Setting F ✓ ✓ - 0.02 - - - - - -
Setting G ✓ ✓ ✓ 0.01 ✓ - - - ✓ -
Setting H ✓ ✓ ✓ 0.01 - ✓ - - ✓ -
Setting I ✓ ✓ ✓ 0.01 ✓ ✓ - - ✓ -
Setting J ✓ ✓ ✓ 0.01 - - ✓ - ✓ -
Setting K ✓ ✓ ✓ 0.01 - - - ✓ ✓ -
Setting L ✓ ✓ ✓ 0.01 ✓ ✓ ✓ ✓ - -

PNI ✓ ✓ ✓ 0.01 ✓ ✓ ✓ ✓ ✓ -
PNI (ensemble) ✓ ✓ ✓ 0.01 ✓ ✓ ✓ ✓ ✓ ✓

Three main components: By comparing the settings A, B, E, and PNI in Tables S9, S10, and S11, we can observe the
effects of the three components of the PNI algorithm, which are neighborhood information, position information, and pixel-
wise refinement. These results provide a more detailed version of Table 3 in the main paper, and the following observations
can be made.

• The setting A without the three components is identical to PatchCore and performs similarly.

• The setting B, E, and PNI outperform setting A in terms of I-AUROC, P-AUROC, and AUPRO since setting A deals
with normal features unconditionally.

• As shown in the comparison between settings A and B, the use of neighborhood information significantly improves per-
formance in all metrics, particularly in texture subcategories where greater improvements are observed. For example,
in the carpet subcategory, AUPRO is improved by 22.88%, increasing from 71.94% to 94.82%.

• As shown in the comparison between settings B and E (which is consistent with intuition mentioned in the main paper),
position information is effective for object subcategories. For example, in the transistor subcategory, improvements of
2.19% and 3.1% are observed in P-AUROC and AUPRO, respectively.

• Pixelwise refinement is complementary to the position information and is more effective in texture subcategories.
For example, when comparing the settings E and PNI, improvements of 0.26%, 0.85%, and 1.71% in I-AUROC,
P-AUROC, and AUPRO, respectively, are observed for the wood subcategory.



Coreset subsampling ratio: We compare the effects of coreset sampling ratios of 0.25%, 0.5%, 1%, and 2% in settings
C, D, E, and F. Generally, increasing the sampling ratio tends to improve anomaly detection and localization performance.
However, the gain from increasing the sampling ratio converges. For example, when comparing settings E and F, setting
F shows better anomaly localization performance but worse anomaly detection performance. In the subcategory level, F
performs worse than E in the pill, screw, zipper, grid, and tile subcategories in terms of I-AUROC. On the other hand,
increasing the sampling ratio significantly increases the runtime of the algorithm. Setting F requires approximately twice the
time for inference compared to setting E. Considering both performance and inference time, we adopt the optimal coreset
sampling ratio to 1%.

Table S8: Summary of anomaly detection and localization results on MVTec AD dataset for ablation studies. For each metric,
the best result is boldfaced, and the second best is underscored.

I-AUROC P-AUROC AUPRO

Object Texture Average Object Texture Average Object Texture Average

Setting A (baseline) 99.01 98.75 98.92 98.70 97.15 98.18 92.30 85.09 89.90
Setting B 99.38 99.55 99.44 98.79 98.29 98.62 94.98 93.86 94.61
Setting C 97.86 99.44 98.39 98.68 98.24 98.53 92.09 93.64 92.61
Setting D 99.39 99.35 99.38 98.95 98.30 98.73 94.52 93.79 94.28
Setting E 99.46 99.46 99.46 99.03 98.29 98.79 95.27 93.79 94.78
Setting F 99.41 99.45 99.42 99.05 98.30 98.80 95.34 93.82 94.83
Setting G 99.18 99.40 99.26 98.99 98.34 98.77 95.69 94.18 95.19
Setting H 99.27 99.50 99.35 99.04 98.33 98.80 96.04 94.09 95.39
Setting I 99.46 99.40 99.44 99.07 98.37 98.84 95.86 94.14 95.29
Setting J 99.57 99.59 99.58 99.05 98.69 98.93 96.16 95.65 95.99
Setting K 99.48 99.62 99.53 99.12 98.56 98.93 95.69 94.74 95.38
Setting L 99.44 99.57 99.48 99.07 98.68 98.94 96.33 95.42 96.02

PNI 99.55 99.59 99.56 99.12 98.72 98.98 96.34 95.47 96.05
PNI (Ensemble) 99.64 99.59 99.63 99.14 98.90 99.06 96.83 96.00 96.55

Table S9: Comparison of anomaly detection performance between ablation settings and the proposed PNI algorithm on the
MVTec AD dataset using I-AUROC. Performance for each subcategory is also provided. For each subcategory, the best result
is boldfaced.

Setting Proposed

A B C D E F G H I J K L PNI PNI (Ensemble)

Object

Bottle 100 100 100 100 100 100 100 99.92 100 100 100 100 100 100
Cable 99.63 99.04 99.63 99.79 99.42 99.48 99.46 99.39 99.40 99.44 99.68 99.66 99.76 99.91
Capsule 98.92 99.36 99.24 99.36 99.44 99.60 99.44 99.76 99.44 99.56 99.48 99.60 99.72 99.72
Hazelnut 100 100 99.11 100 100 100 100 100 100 100 100 100 100 100
Metal nut 100 100 99.90 99.51 100 100 100 100 100 100 99.95 100 100 100
Pill 95.23 96.86 97.23 97.25 96.97 96.56 96.89 96.67 96.97 97.49 96.54 97.30 96.89 97.79
Screw 96.37 99.55 97.54 99.34 99.57 99.28 97.66 99.00 99.55 99.49 99.30 99.55 99.51 99.10
Toothbrush 100 99.17 86.39 98.89 99.44 99.44 99.44 99.44 99.44 100 100 98.61 99.72 100
Transistor 100 100 100 100 100 100 99.96 100 100 99.96 100 100 100 100
Zipper 99.97 99.82 99.58 99.74 99.76 99.74 98.98 98.56 99.82 99.76 99.84 99.63 99.87 99.89

Average 99.01 99.38 97.86 99.39 99.46 99.41 99.18 99.27 99.46 99.57 99.48 99.44 99.55 99.64

Texture

Carpet 96.99 99.60 99.80 99.68 99.80 99.84 99.68 99.80 99.68 100 100 100 100 100
Grid 98.41 98.75 98.33 98.33 98.41 98.33 97.91 98.41 98.41 98.41 98.58 98.41 98.41 98.50
Leather 100 99.83 99.76 99.56 99.83 99.90 100 99.93 99.66 99.97 100 100 100 100
Tile 98.70 100 99.93 99.89 99.96 99.89 99.96 99.82 99.96 100 99.96 99.89 100 100
Wood 99.65 99.56 99.39 99.30 99.30 99.30 99.47 99.56 99.30 99.56 99.56 99.56 99.56 99.47

Average 98.75 99.55 99.44 99.35 99.46 99.45 99.40 99.50 99.40 99.59 99.62 99.57 99.59 99.59

Average 98.92 99.44 98.39 99.38 99.46 99.42 99.26 99.35 99.44 99.58 99.53 99.48 99.56 99.63



Defect image creation method: We compare the effects of different defect image creation methods for training the pixelwise
refinement network in settings G, H, I, J, K, and PNI. In settings G, H, J, and K, we train the refinement network using
only the defect images created by the CutPaste [17], CutPaste (scar) [17], DRÆM [32], and manual drawing methods,
respectively. Examples of defect images created by each method are shown in Figure 3 of the main paper. In setting I, we
use a combination of the CutPaste and CutPaste (scar) methods to create the defect images, which is the method adopted in
CutPaste (3-way) [17].

As shown in settings G and H, the methods using relatively simple defect types, from CutPaste and CutPaste (scar), are
not suitable for training the refinement network. Even when compared to the results of setting E without refinement, there
is a little decrease in performance in settings G and H. On the other hand, in setting I where two defect creation methods
are combined, an improvement in anomaly localization performance is observed. For example, setting I shows a 0.51%
improvement in AUPRO compared to setting E. These results imply that using a combination of diverse defect patterns for
training can enhance the effectiveness of pixelwise refinement.

In settings J and K, which generate more complex defect images based on Perlin noise [S4] or manual drawing, significant
performance improvement is observed especially in anomaly localization performance in texture subcategories. Finally, in the
PNI algorithm that combines all 4 defect image creation methods mentioned earlier, the training of the pixelwise refinement
network works most effectively, and once again, it demonstrates the effectiveness of the approach of PNI combining multiple
synthetic defect data.

Position Information: While using position information is beneficial to most aligned object classes, it shows little improve-
ment in some classes such as screw, which are not aligned. (Compare settings B and E in Tables S9, S10, and S11.) In
practical industrial environments, however, the alignment of rigid objects can be performed during the preprocessing stage
without challenge, which makes the proposed PNI work effectively for certain objects.

Table S10: Comparison of anomaly localization performance between ablation settings and the proposed PNI algorithm on
the MVTec AD dataset using P-AUROC. Performance for each subcategory is also provided. For each subcategory, the best
result is boldfaced, and the second best is underscored.

Setting Proposed

A B C D E F G H I J K L PNI PNI (Ensemble)

Object

Bottle 98.54 98.90 98.83 98.88 98.90 98.90 98.74 98.79 98.79 98.86 98.93 98.81 98.87 99.03
Cable 98.68 98.75 98.90 99.01 99.07 99.11 99.06 99.07 99.07 99.06 99.17 99.09 99.10 99.16
Capsule 99.06 99.26 99.20 99.25 99.26 99.25 99.29 99.32 99.31 99.31 99.36 99.32 99.34 99.38
Hazelnut 98.82 99.13 98.86 99.10 99.15 99.14 99.09 99.10 99.36 99.17 99.18 99.20 99.37 99.40
Metal nut 99.16 99.37 99.09 99.14 99.31 99.32 99.26 99.29 99.29 99.27 99.27 99.27 99.29 99.34
Pill 98.81 98.89 98.55 98.80 98.89 98.90 98.99 99.02 99.02 99.02 99.06 99.05 99.03 98.99
Screw 99.04 99.53 99.06 99.44 99.53 99.57 99.54 99.59 99.57 99.60 99.35 99.59 99.60 99.68
Toothbrush 98.79 99.08 97.98 99.01 99.08 99.10 98.99 99.01 98.99 99.03 99.02 99.13 99.09 99.11
Transistor 97.41 95.67 97.08 97.54 97.86 97.87 97.99 97.88 97.99 97.86 98.55 97.90 98.04 97.74
Zipper 98.69 99.32 99.29 99.30 99.31 99.31 98.95 99.33 99.33 99.35 99.31 99.37 99.43 99.56

Average 98.70 98.79 98.68 98.95 99.03 99.05 98.99 99.04 99.07 99.05 99.12 99.07 99.12 99.14

Texture

Carpet 98.42 99.22 99.21 99.22 99.25 99.24 99.29 99.27 99.33 99.45 99.41 99.42 99.40 99.46
Grid 97.50 98.80 98.68 98.79 98.77 98.77 98.94 98.99 98.97 99.19 99.12 99.20 99.20 99.20
Leather 99.18 99.49 99.48 99.47 99.48 99.48 99.55 99.49 99.53 99.53 99.54 99.55 99.56 99.59
Tile 96.53 97.66 97.73 97.78 97.78 97.81 97.63 97.64 97.74 98.37 98.20 98.21 98.40 98.69
Wood 94.12 96.26 96.08 96.22 96.19 96.22 96.29 96.26 96.29 96.91 96.52 97.02 97.04 97.55

Average 97.15 98.29 98.24 98.30 98.29 98.30 98.34 98.33 98.37 98.69 98.56 98.68 98.72 98.90

Average 98.18 98.62 98.53 98.73 98.79 98.80 98.77 98.80 98.84 98.93 98.93 98.94 98.98 99.06



Loss ℓgrad: To show the efficacy of using ℓgrad in (11) of the main paper, we compare the setting L and PNI. ℓgrad makes
the training of the refinement network more focused on a near edge region of defect, and it is effective for anomaly detection
results. For example, in 13 of 15 subcategories, PNI keeps or improves I-AUROC performance compared to setting L.

Table S11: Comparison of anomaly localization performance between ablation settings and the proposed PNI algorithm on
the MVTec AD dataset using AUPRO. Performance for each subcategory is also provided. For each subcategory, the best
result is boldfaced, and the second best is underscored.

Setting Proposed

A B C D E F G H I J K L PNI PNI (Ensemble)

Object

Bottle 90.14 95.32 95.09 95.34 95.29 95.52 95.34 95.80 95.45 95.77 94.32 96.17 95.95 96.84
Cable 96.49 98.27 97.88 98.53 98.77 99.06 98.70 98.72 98.70 98.76 98.81 98.87 98.93 99.23
Capsule 92.92 95.15 93.31 93.86 95.10 94.42 95.17 95.47 95.30 95.44 95.02 95.82 95.63 96.12
Hazelnut 83.41 90.03 82.89 87.97 90.06 89.82 96.57 96.54 96.40 96.89 96.02 96.90 96.93 97.35
Metal nut 93.20 95.32 93.59 92.83 94.88 95.22 95.33 95.23 95.30 95.78 94.95 95.80 95.89 96.88
Pill 93.92 96.76 96.22 96.44 96.75 96.78 96.44 96.54 96.53 96.72 96.03 96.74 96.68 97.00
Screw 94.05 97.09 93.75 96.36 97.05 97.28 96.88 97.14 97.06 97.18 96.32 97.18 97.17 97.88
Toothbrush 91.03 91.90 76.14 91.27 91.88 92.28 91.54 91.95 90.83 91.95 92.54 92.54 92.68 93.76
Transistor 94.04 92.96 95.30 95.70 96.06 95.97 96.13 96.09 96.15 96.06 96.20 96.15 96.24 95.35
Zipper 93.82 96.96 96.75 96.90 96.90 97.02 94.81 96.92 96.86 97.02 96.70 97.11 97.28 97.86

Average 92.30 94.98 92.09 94.52 95.27 95.34 95.69 96.04 95.86 96.16 95.69 96.33 96.34 96.83

Texture

Carpet 71.94 94.82 95.20 95.02 94.89 95.23 96.91 96.61 96.67 97.70 97.46 97.69 97.55 97.67
Grid 89.21 93.58 92.49 93.28 93.29 93.12 92.91 92.83 93.18 94.11 93.07 94.52 94.26 94.29
Leather 95.60 97.83 97.79 97.71 97.77 97.78 98.17 97.90 97.66 98.15 98.13 98.34 98.27 98.58
Tile 86.85 92.10 92.08 92.20 92.21 92.18 92.08 92.13 92.41 95.71 93.65 94.04 94.74 95.66
Wood 81.84 90.98 90.64 90.73 90.80 90.82 90.85 90.96 90.80 92.59 91.41 92.49 92.51 93.82

Average 85.09 93.86 93.64 93.79 93.79 93.82 94.18 94.09 94.14 95.65 94.74 95.42 95.47 96.00

Average 89.90 94.61 92.61 94.28 94.78 94.83 95.19 95.39 95.29 95.99 95.38 96.02 96.05 96.55



Precision-recall curve: Similar to Figure 5 of the main paper, we show the pixel-level precision-recall curves and F1-max
scores for each ablation setting across all subcategories of the MVTec AD in Figure S4. Again, each component of the
algorithm improves anomaly localization performance in the precision-recall curves as well.

Bottle

0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PNI, N+P+R

N+P

N

Baseline

77.38%

78.96%

77.18%

73.43%

0.2 0.4 0.6 0.8 1.0

Capsule

0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PNI, N+P+R

N+P

N

Baseline

56.09%

58.84%

56.01%

48.88%

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Carpet

Recall

P
re

ci
si

o
n

PNI, N+P+R

N+P

N

Baseline

68.50%

68.82%

66.33%

60.93%

Grid

0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PNI, N+P+R

N+P

N

Baseline

42.72%

48.18%

42.76%

33.04%

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Leather

Recall

P
re

ci
si

o
n

PNI, N+P+R

N+P

N

Baseline

56.39%

57.78%

54.39%

44.57%

Hazelnut

0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PNI, N+P+R

N+P

N

Baseline

73.46%

72.61%

68.42%

56.52%

Metal_nut

0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PNI, N+P+R

N+P

N

Baseline

88.19%

88.79%

88.95%

81.46%

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Pill

Recall

P
re

ci
si

o
n

PNI, N+P+R

N+P

N

Baseline

78.99%

79.80%

78.97%

72.90%

Screw

0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PNI, N+P+R

N+P

N

Baseline

45.80%

50.67%

45.94%

36.73%

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Tile

Recall

P
re

ci
si

o
n

PNI, N+P+R

N+P

N

Baseline

77.15%

73.45%

71.38%

62.69%

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Toothbrush

Recall

P
re

ci
si

o
n

PNI, N+P+R

N+P

N

Baseline

60.36%

66.55%

61.23%

49.44%

Transistor

0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PNI, N+P+R

N+P

N

Baseline

72.93%

73.86%

60.77%

61.49%

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Wood

Recall

P
re

ci
si

o
n

PNI, N+P+R

N+P

N

Baseline

61.42%

59.24%

57.83%

48.39%

Zipper

0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PNI, N+P+R

N+P

N

Baseline

73.32%

72.91%

71.89%

62.48%

0.2

0.4

0.6

0.8

1.0

Cable

Recall

P
re

ci
si

o
n

PNI, N+P+R

N+P

N

Baseline

72.45%

74.57%

69.74%

63.24%
0.0 0.0

0.2 0.4 0.6 0.8 1.0

Recall

0.0 0.0

0.0

Figure S4: Precision-recall curve at the pixel-level for 15 subcategories of MVTec AD. The proposed PNI algorithm and
three ablation settings Setting A, B, and E in Table 3 of the main paper, are compared. The F1-max scores for each setting
are indicated on the right side of the legend.



S5. Qualitative Results
S5.1. Misclassified Samples

The proposed PNI with ensemble method achieves 99.66% anomaly detection AUROC (I-AUROC) on MVTec AD bench-
mark as shown in Table S2. We examine all misclassified samples on the dataset to analyze the limitation of our model. We
compute false-positive and false-negative samples with the threshold optimizing F1 scores of anomaly detection. With these
per-category thresholds, total of 7 false-positive errors and 12 false-negative errors are found from the test dataset from
467 normal test images and 1258 defective test images, which are shown in Figure S5 and Figure S6, respectively. The
corresponding false negative rate (FNR) and false positive rate (FPR) are 0.95% and 1.50%, respectively.

Test image
Anomaly map

with mask
Test image

Anomaly map

with mask
Test image

Anomaly map

with mask

I-AUROC  0.266, Threshold 0.249 I-AUROC  0.379, Threshold 0.375 I-AUROC  0.419, Threshold 0.375

I-AUROC  0.491, Threshold 0.427 I-AUROC  0.484, Threshold 0.393 I-AUROC  0.417, Threshold 0.363

I-AUROC  0.417, Threshold 0.363

Figure S5: Visualization of all 7 false-positive classification cases on our proposed model (PNI). The contours overlaid on
anomaly maps are from thresholds optimizing F1-scores of anomaly detection.

In Figure S5, we visualize false-positive images and the corresponding anomaly maps with masks, which are thresholded
by the F1-optimal detection threshold. The main cause of false-positive errors is the variance of normal images. A stain in the
capsule category in the first row of the first column, for example, is considered a normal pattern which is shown in the train
dataset, but it is difficult to judge as normal since the stain pattern is various. In addition, the dust in the zipper category in
the last row rarely appears in the train dataset, resulting in ambiguous labeling. To decrease false-positive errors, infrequent
normal patterns, which are less likely to appear in the train dataset, should be trained with normal feature distribution, which
leaves for further study.



In Figure S6, we visualize the false-negative images with the corresponding ground truth masks and the corresponding
anomaly maps. Most false-negative errors are caused by detection failures of small anomaly patches. Since we extract local
features from mid-level blocks of the pre-trained network, these small regions are concatenated with the neighborhood to
generate local features, which could lead to insufficient weight to be judged the features as anomalies. In addition, small
cracks in the pill category in the second row of Figure S6 are difficult to judge as abnormal since these patches are analogous
to normal patches. To decrease false-negative errors, generating fine-grained local features for small patches are required.
The boundary between normal and anomaly regions should be clearer through more advanced normal feature distribution.

Although those kinds of misclassified errors should be improved through further work, there are only 19 misclassified
samples out of 1725 images and 7 categories are solved perfectly.
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Figure S6: Visualization of all 12 false-negative classification cases on our proposed model (PNI). The contours overlaid on
test images are the corresponding ground truth.



S5.2. Qualitative Comparison

To verify the effectiveness of our proposed model, we visualize some test images with the corresponding anomaly maps
from both PatchCore [21] and our model in Figure S7. The proposed algorithm calculates anomaly maps closer to ground
truth masks in various categories and cases.
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Figure S7: Comparison of the anomaly maps from our proposed model (PNI) and PatchCore on various classes of MVTec
AD dataset. The contours overlaid on the anomaly maps are from thresholds optimizing F1-scores of anomaly detection.



A misplaced cable in the first row of the fourth column of Figure S7, for example, PatchCore cannot find appropriate
anomalies since local features of misplaced cables are stored in the coreset of normal features. On the other hand, our
proposed PNI evaluates the whole area of the misplaced cable as abnormal since the local features are incompatible with the
corresponding position and neighborhood information. In addition, with the thread in the carpet image in the second row of
the fourth column of Figure S7, our proposed PNI draws a more detailed and precise anomaly mask which is closer to ground
truth, compared to PatchCore. This is because the PNI can refine anomaly maps with the trained refinement network to fit
better with image patterns.

S5.3. Examples in BTAD

We visualize the test images with the ground truth masks and the corresponding anomaly maps with masks from BTAD
[19] dataset in Figure S8, where all three categories are presented. The contours overlaid on the anomaly maps are from
thresholds optimizing F1 scores of anomaly localization. We can find that the predicted masks generally follow the ground
truth, which leads to the state-of-the-art anomaly localization performance, 97.8% P-AUROC.
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Figure S8: Examples of the test images (top), the anomaly maps (middle), and the predicted masks (bottom) on the BTAD.
The ground truth anomaly masks are overlaid on test images, and the contours overlaid on the anomaly maps are from
thresholds optimizing F1-scores of anomaly localization.
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