Supplementary Material on
PNI : Industrial Anomaly Detection using Position and Neighborhood
Information

S1. Implementation Details

The proposed PNI algorithm is implemented with Python 3.8 and PyTorch, version torch=1.12.1 and torchvision=0.13.1.
The model is trained on NVIDIA TITAN RTX, A100, and T4 GPUs. We used ImageNet [8] pre-trained network from
PyTorch/vision:v0.10.0. The WideResNet101-2 [31] network is used in our code by default, ResNext101 32x8d [27] and
DenseNet201 [13] are used for ensemble results. In the implementation, the embedding coreset and the distribution coreset
are stored in faiss [S2] framework to calculate the distance between a test feature and the coresets efficiently. We used
pytorch-lightning [S1] framework to manage the training and evaluation process.

Figure S1 shows the more detailed process of training MLP for normal feature distribution given neighborhood information
in Figure 2. With a pre-trained network ¢, normal sample x; is converted into feature map ®; € RE*#*W With the spatial
coordinate x = (h, w), we define neighborhood features IV, (x) in equation (7) of the main paper. In Figure S1, we define
p = 9 by default. All features in N, (x) are flattened and concatenated to 1-dimensional features to become an input of MLP.
The MLP consists of Ny,p = 10 sequential linear layers with cyrp = 2048 neurons by default. Batch normalization and
ReLU functions are used between layers. The MLP outputs |Cais | nodes, which represents p(cqist|Np(x)). The ground truth
used for training is a one-hot vector, where the distribution coreset index closest to the true center feature vector is one, and
the cross-entropy loss is calculated with the MLP output.

The implemented code is provided in a zip file as supplementary material. The model in the code trained on designated
hyperparameters can achieve up to 99.56% and 98.98% AUROC scores in anomaly detection and localization for MVTec
AD benchmark [ 1], which is the state-of-the-art performance. This model also achieves 96.05% AUPRO score, which out-
performs the second-best algorithm by 0.53%. In addition, the same model can achieve up to 97.8% of anomaly localization
AUROC for the BTAD [19], which is the highest performance compared to previous works.
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Figure S1: The detailed process of training MLP for normal feature distribution given neighborhood information. The
numbers below the linear layer indicate the number of neurons. Each layer is annotated with the number of neurons, while
the symbols for batch normalization and ReLU indicate the operations that follow each layer.



S2. Pixelwise Refinement Network

Detailed structure: Figure S2 shows the more detailed structure of the refinement network in Figure 4. H x W size image
I and anomaly map A are transformed 1nto % size features through a convolution layer and max pooling, respectively.
These features are added element-wisely, forwarded to four dense blocks and three transition layers, and transformed into
2208 x 5 X % size features. The structure of dense blocks and transition layers are identical to that of DenseNet161 [13]. In
the decoder, features are compressed to 768 channels by the first convolution layer and are upsampled to the original image
size by five upsampling blocks. Each upsampling block consists of one bilinear upsampling interpolation and two following
convolution layers. In an upsampling block, the spatial resolution of input features is expanded by factor 2, and the number
of channels is halved. Thus, the output size of the fifth upsampling block becomes 24 x H x W. The final convolution layer

estimates H x W size refined anomaly map A.
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Figure S2: The architecture of the refinement network with detailed information on the convolution blocks. Each block is
annotated with the kernel size, number of channels, and stride, while the symbols for batch normalization and ReL.U indicate
the operations that follow each convolution layer. Stride values are omitted when they equal 1. For example, ‘*7, 64, S2’
indicates a kernel size of 7 x 7, 64 channels, and stride 2.

Defect images generated by manual drawing: Figure S3 shows generation examples generation. First, we make the defect
patches in a hand-drawing manner as shown in Figure S3(a). Second, we generate artificial anomaly maps by combining
patches at various sizes and spatial locations as shown in Figure S3(b). Finally, we obtain I from clean image I jc., and
defect image Ijefect-

I= (1 - A) © Iclean + AO Idefecta (S1)

Figure S3(c) and (d) show examples of I.jca, and I, respectively.
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Figure S3: Manual defect image generation process according to manual drawing, (a) defect patches, (b) artificial anomaly
maps, (C) Iclca.n: and (d) Idcfcct-



S3. Evaluation Results

In Table S2, S3, S4, and S5, we provide a more detailed quantitative comparison of anomaly detection and localization
performance, which we do not cover in Tables 1 and 2 of the main paper due to space constraints. Some conventional
algorithms provide multiple models with different hyperparameters. We specifically list in Table S1 which models we adopt
for comparison from each algorithm. For the remaining algorithms, we adopt the representative models mentioned in their

respective papers.

In Table S2, we compare the performance of the proposed PNI algorithm and conventional algorithms on the MVTec
AD [1] dataset. To assess anomaly detection performance, image-level AUROC (I-AUROC) is used, while pixel-level AU-
ROC (P-AUROC) and AUPRO are used for anomaly localization performance. Sub-total averages for object subcategories,

Table S1: Model selection of conventional algorithms for comparison.

Algorithm Model
FCDD [S3] Unsupervised FCDD
PaDiM [6] PaDiM-WRS50-Rd550

CutPaste [17]

CutPaste (Ensemble) [17]
NSA [22]

PatchCore [21]
PatchCore (Ensemble) [
PEFM [25]

Uninformed Students [2]
CFLOW-AD [9]

]

CutPaste (3-way)
Ensemble

NSA (logistic)
PatchCore-25%

DenseN-201 & RNext-101 & WRN-101 (2+3), Imagesize 320

PEFM,
Multiscale
WideResNet-50

texture subcategories, and overall averages are provided.

Table S2: Summary of anomaly detection and localization results on MVTec AD dataset for conventional algorithms. The
proposed PNI is compared to recent algorithms in terms of I-AUROC, P-AUROC, and AUPRO. For each metric, sub-total
averages are provided for both object and texture subcategories, additionally. For each metric, the best result is boldfaced,

and the second best is underscored.

I-AUROC P-AUROC AUPRO
Object Texture Average Object Texture Average Object Texture Average

FCDD [S3] - - - 95 97 96 - - -
Patch SVDD [29] 90.8 94.5 92.1 96.7 93.7 95.7 - - -
SPADE [5] - - 85.5 97.6 92.9 96.0 93.4 88.4 91.7
PaDiM [6] 93.6 98.8 95.3 97.8 96.9 97.5 91.6 93.1 92.1
RIAD [33] 89.9 95.1 91.7 94.3 93.9 94.2 - - -
CutPaste [17] 94.4 97.0 95.2 95.8 96.3 96.0 - - -
CutPaste (ensemble) [17] 95.5 97.5 96.1 - - - - - -
DRAM [32] 97.4 99.1 98.0 97.0 97.9 97.3 - - -
FastFlow [30] 99.1 99.9 99.4 98.6 98.1 98.5 - - -
SOMAD [18] 97.7 98.4 97.9 98.1 97.1 97.8 94.1 91.6 93.3
InTra [20] 93.1 98.9 95.0 96.9 96.1 96.6 - - -
MB-PFM [26] - 99.4 97.5 97.0 97.8 97.3 92.3 94.6 93.0
NSA [22] 96.5 98.6 97.2 96.0 96.8 96.3 90.4 92.2 91.0
IKD [3] - - - 98.3 96.8 97.8 93.3 91.1 92.5
PatchCore [21] 99.2 99.0 99.1 98.4 97.5 98.1 93.3 93.6 93.4
PatchCore (ensemble) [21] - - 99.6 - - 98.2 - - 94.9
Reverse Distillation [7] 98.0 99.5 98.5 97.9 97.7 97.8 93.4 95.0 93.9
Tsai et al. [24] 98.4 97.7 98.1 98.4 97.6 98.1 95.7 95.0 95.5
PEFM [25] - - - 98.37 98.17 98.30 95.30 95.95 95.52
CDO [4] - - - 98.36 97.94 98.22 94.57 94.90 94.68
Uninformed Students [2] - - - - - - 90.8 92.7 914
CFLOW-AD [9] 97.66 99.47 98.26 98.69 98.51 98.62 93.58 96.65 94.60
PNI 99.55 99.59 99.56 99.12 98.72 98.98 96.34 95.47 96.05
PNI (Ensemble) 99.64 99.59 99.63 99.14 98.90 99.06 96.83 96.00 96.55




Unlike the main paper, we also compare models that use multiple networks alongside other models, and we indicate the
best and second best performances with boldface and underscore, respectively. The proposed PNI outperforms all other
conventional algorithms in 7 out of 9 metrics, excluding [-AUROC texture and AUPRO texture. Furthermore, PNI (Ensem-
ble) improves PNI in all terms, and notably, it demonstrates performance exceeding 99% in overall P-AUROC for the first
time. In Table S3, S4, and S5, we provide the I-AUROC, P-AUROC, and AUPRO performance of individual subcategories,
respectively. These tables include detailed results of the algorithms that are not covered in the main paper. Note that in terms
of I-AUROC, PaDiM [6] does not provide performance for each subcategory. Also, MB-PFM [26] is missing the result for
the capsule subcategory.

As shown in Table S3, the PNI algorithm also demonstrates the best anomaly detection performance in the subcategories.
For example, out of 15 subcategories, PNI and PNI (Ensemble) show 100% detection results in 7 and 8 subcategories, respec-
tively, which surpasses the 5 subcategories for MB-PFM [26] and 4 subcategories for Reverse Distillation [7]. Additionally,
PNI outperforms the anomaly detection performance of conventional algorithms in 11 subcategories.

Table S3: Comparison of anomaly detection performance between the proposed PNI algorithm and conventional algorithms
on the MVTec AD dataset using I-AUROC. Performance for each subcategory is also provided. For each subcategory, the
best result is boldfaced.

Patch PaDiM  DREM  SOMAD  MB-PFM  NSA Reverse Cutbaste PNI PNI
SVDD Distillation (Ensemble) (Ensemble)
Bottle 98.6 - 99.2 100 100 97.7 100 98.2 100 100
Cable 90.3 - 91.8 98.8 98.8 94.5 95.0 81.2 99.76 99.91
Capsule 76.7 - 98.5 93.8 - 95.2 96.3 98.2 99.72 99.72
Hazelnut 92.0 - 100 100 100 94.7 99.9 98.3 100 100
Metal nut 94.0 - 98.7 99.7 100 98.7 100 99.9 100 100
Object Pill 86.1 - 98.9 98.6 96.5 99.2 96.6 94.9 96.89 97.79
Screw 81.3 - 93.9 95.5 91.8 90.2 97.0 88.7 99.51 99.10
Toothbrush 100 - 100 98.6 88.6 100 99.5 99.4 99.72 100
Transistor 91.5 - 93.1 94.5 97.8 95.1 96.7 96.1 100 100
Zipper 97.9 - 100 97.7 974 99.8 98.5 99.9 99.87 98.89
Average 90.8 93.6 97.4 97.7 - 96.5 98.0 95.5 99.55 99.64
Carpet 929 - 97.0 100 100 95.6 98.9 93.9 100 100
Grid 94.6 - 99.9 93.9 98.0 99.9 100 100 98.41 98.50
Texture Leather 90.9 - 100 100 100 99.9 100 100 100 100
Tile 97.8 - 99.6 98.7 99.6 100 99.3 94.6 100 100
Wood 96.5 - 99.1 99.2 99.5 97.5 99.2 99.1 99.56 99.47
Average | 945 98.8 99.1 98.4 99.4 98.6 99.5 97.5 | 99.59 99.59
Average | 921 953 98.0 97.9 97.5 97.2 98.5 96.1 | 99.56 99.63

In Tables S4 and S5, which assess anomaly localization performance using P-AUROC and AUPRO, respectively, the
proposed PNI demonstrates outstanding performance in multiple subcategories. In terms of P-AUROC, PNI shows the best
or second-best results in 9 out of 15 subcategories and exhibits performance above 99% in 11 subcategories. This surpasses
the competitor ones [ ], which only show performance exceeding 99% in 3 to 6 subcategories. Furthermore, PNI
(Ensemble) presents the best or second-best results in 11 out of 15 subcategories. In AUPRO, PNI (Ensemble) ranks within
the top two in 8 subcategories, while showing performance above 95% in 12 subcategories. This also surpasses the other
algorithms [ ], which record performance above 95% in 7 to 11 subcategories.

Table S6 presents the anomaly detection and localization performance of the proposed PNI algorithm on the VisA dataset
using [-AUROC and P-AUROC. Scores are provided for each subcategory, sub-total average of each subcategory type, and
overall average



Table S4: Comparison of anomaly localization performance between the proposed PNI algorithm and conventional algo-
rithms on the MVTec AD dataset using P-AUROC. Performance for each subcategory is also provided. For each subcategory,
the best result is boldfaced, and the second best is underscored.

Fcop PYM SpADE  PaDIM DREAM  SOMAD MB-PEM NSA KD RE™C  pppv cpo | PNI PNI
SVDD Distillation (Ensemble)
Bottle 96 98.1 984 983  99.1 98.3 984 983 98.99 98.7 98.51 9930 | 98.87 99.03
Cable 93 968 972 967 947 98.2 967 960 98.03 97.4 9831 97.60 | 99.10  99.16
Capsule 95 958 990 985 94.3 98.7 983 976 98.55 98.7 9851 98.64 | 99.34  99.38
Hazelnut 97 975 990 982 997 98.4 99.1 976 9871 98.9 99.17  99.24 | 99.37 99.40
Metal nut 98 980  98.1 972 995 98.0 972 984 9838 97.3 96.98 9854 | 99.29 99.34
Object  Pill 97 951 965 957 976 98.0 972 985 9879 98.2 97.04  98.94 | 99.03 98.99
Screw 93 957 989 985 97.6 99.1 987 965 98.63 99.6 99.01  99.01 | 99.60  99.68
Toothbrush | 95 981 979 988  98.1 98.5 986 949 98.58 99.1 99.18  98.86 | 99.09 99.11
Transistor 90 970 941 975 909 95.3 878 880 97.13 925 9839 9530 | 98.04  97.74
Zipper 98 951 965 985 988 98.7 982 942 97.56 98.2 98.61 9821 | 99.43 99.56
Average 95 9.7 976  97.8 970 98.1 97.0 960 9834 97.9 9837 9836 | 99.12 99.14
Carpet 99 926 975 9.1 95.5 98.9 992 955 9871 98.9 99.15 99.08 | 99.40  99.46
Grid 95 9.2 937 973 997 98.4 988 992  97.04 99.3 9923 98.40 | 9920  99.20
Texture  LeathET 99 974 976 992 986 99.1 994 995 98.53 99.4 9942 99.17 | 99.56  99.59
Tile 98 914 874 941 99.2 94.8 962 993 95.68 95.6 9655 9720 | 9840  98.69
Wood 94 908 885 949 964 94.4 956 907 93.88 95.3 96.49 9585 | 97.04  97.55
Average | 97 937 929 969 979 97.1 97.8 968 96.77 97.7 98.17 97.94 | 98.72 98.90
Average | 9 957 960 975 973 97.8 973 963 97.81 97.8 9830 98.22 | 98.98 99.06

Table S5: Comparison of anomaly localization performance between the proposed PNI algorithm and conventional algo-
rithms on the MVTec AD dataset using AUPRO. Performance for each subcategory is also provided. For each subcategory,
the best result is boldfaced, and the second best is underscored.

SPADE PaDiM SOMAD MB-PFM NSA IKD PatchCore Noe¢ TSt pppy cpo Uninformed CFLOWI pyy - PNI

Distillation et al. Students -AD (Ensemble)
Bottle 955 948 947 954 929 9608 962 96.6 953 9592 9717 931 96.80 [9595  96.84
Cable 909 888 934 942 899 9421 925 91.0 967 97.73 9417 818 93.53 9893  99.23
Capsule | 937 935 934 917 914 90.62 955 958 978 9211 9297 968 9340 [9563  96.12
Hazelut | 954 926 951 967 936 9597 938 95.5 978 9799 9739  96.5 96.68 (9693  97.35
Metalnut | 944 856  93.6 946 946 94.69 914 923 888 9388 9574 942 91.65 (9589  96.88
Object Pill 946 927 965 961 960 9609 932 964 961 9618 9659  96.1 9539 (9668  97.00
Screw 960 944 960 934 901 9295 979 982 983 9573 9433 942 9530 |97.17  97.88
Toothbrush | 93.5 931 907 907 907 87.01  9LS5 945 944 9621 9050 933 9506 [92.68 9376
Transistor | 87.4 845 916 749 753 9378 8§37 780 950 90.84 9256 666 8140 (9624  95.35
Zipper 926 959 959 948 892 9155 971 954 970 9645 9428  95.1 96.60 [97.28  97.86
Average | 934 916 941 923 904 9330 933 934 957 9530 9457 908 93.58 |9634  96.83
Carpet 947 962 955 969 850 9449 966 97.0 927 9675 9677 879 97.70 |9755  97.67
Grid 867 946 953 960 968 8773 960 97.6 979 9721 9602 952 9608 |9426  94.29
Texure Ledther | 972 978 977 988 987 97.64 989 99.1 992 9891 9834 945 99.35 (9827  98.58
Tile 759 860 813 887 953 8635 873 90.6 888 9110 9051 946 9434 |9474  95.66
Wood 874 911 882 926 853 89.06 894 909 962 9577 9287  9L1 9579 [9251 9382
Average | 884 931 994 946 922 9105 936 950 950 9595 9490 927 96.65 |95.47  96.00
Average | 917 921 975 930 910 9255 934 939 955 9552 9468 914 9460 [96.05 9655

Table S6: I-AUROC and P-AUROC scores of the proposed PNI algorithm on VisA [35] are presented. Scores are provided
for each subcategory, sub-total average of each subcategory type, and overall average.

Single instance Multiple instances Complex structure
Average

Cashew Chewing gum Fryum Pipe fyrum Average Macaronil Macaroni2 Capsules Candle Average PCB1 PCB2 PCB3 PCB4 Average

I-AUROC  99.04 99.06 98.94 99.74 99.20 94.66 74.34 8327 9933 8790 98.84 97.52 9795 99.84 9854 9521
P-AUROC  99.18 99.01 94.68 99.37 98.06 99.67 98.56 99.10  99.54  99.22  99.80 98.92 99.00 9835 99.02  98.77




S4. Ablation Study

We conduct detailed ablation studies on the components of the proposed PNI algorithm, which is covered in Table 3 of the
main paper. Table S7 shows the specific settings of each model, named setting A, B, ..., and L. These settings cover various
ablation studies on the three main components of the proposed PNI algorithm, which are neighborhood information, position
information, and pixelwise refinement, as well as coreset subsampling ratios, defect image creation methods, and a different
loss setting. For example, setting A is the baseline of the ablation study, which does not include neighborhood, position
information, or pixelwise refinement. Table S8 summarizes the performance of the settings on the MVTec AD dataset, while
Tables S9, S10, and S11 provide more detailed information on I-AUROC, P-AUROC, and AUPRO for each subcategory,
respectively.

Table S7: Various settings for the ablation study of the proposed PNI algorithm, in which we break down the PNI into detailed
components and define settings A, B, ..., and L, using only specific combinations of these components.

Defect image creation method

Neighborhood ~ Position  Refinement Subsampling ratio Loss £graa Ensemble

CutPaste  CutPaste (scar) DRAM  Manual

Setting A (baseline) - - - 0.01 - - - - - -
Setting B v - 0.01 - - - - - -
Setting C v v 0.0025 - - - - - -
Setting D v v 0.005 - - - - - -
Setting E v v 0.01 - - - - - -
Setting F v v - 0.02 - - - - - -
Setting G v v v 0.01 v - - - v -
Setting H v v v 0.01 - v - - v -
Setting I v v v 0.01 4 v - - v -
Setting J v v v 0.01 - - v - v -
Setting K v v v 0.01 - - - v v -
Setting L v v v 0.01 v v v v - -
PNI v v v 0.01 v v v v v -
PNI (ensemble) v v v 0.01 v 4 v v 4 v

Three main components: By comparing the settings A, B, E, and PNI in Tables S9, S10, and S11, we can observe the
effects of the three components of the PNI algorithm, which are neighborhood information, position information, and pixel-
wise refinement. These results provide a more detailed version of Table 3 in the main paper, and the following observations
can be made.

* The setting A without the three components is identical to PatchCore and performs similarly.

* The setting B, E, and PNI outperform setting A in terms of I-AUROC, P-AUROC, and AUPRO since setting A deals
with normal features unconditionally.

* Asshown in the comparison between settings A and B, the use of neighborhood information significantly improves per-
formance in all metrics, particularly in texture subcategories where greater improvements are observed. For example,
in the carpet subcategory, AUPRO is improved by 22.88%, increasing from 71.94% to 94.82%.

* As shown in the comparison between settings B and E (which is consistent with intuition mentioned in the main paper),
position information is effective for object subcategories. For example, in the transistor subcategory, improvements of
2.19% and 3.1% are observed in P-AUROC and AUPRO, respectively.

 Pixelwise refinement is complementary to the position information and is more effective in texture subcategories.
For example, when comparing the settings E and PNI, improvements of 0.26%, 0.85%, and 1.71% in I-AUROC,
P-AUROC, and AUPRO, respectively, are observed for the wood subcategory.



Coreset subsampling ratio: We compare the effects of coreset sampling ratios of 0.25%, 0.5%, 1%, and 2% in settings
C, D, E, and F. Generally, increasing the sampling ratio tends to improve anomaly detection and localization performance.
However, the gain from increasing the sampling ratio converges. For example, when comparing settings E and F, setting
F shows better anomaly localization performance but worse anomaly detection performance. In the subcategory level, F
performs worse than E in the pill, screw, zipper, grid, and tile subcategories in terms of I-AUROC. On the other hand,
increasing the sampling ratio significantly increases the runtime of the algorithm. Setting F requires approximately twice the
time for inference compared to setting E. Considering both performance and inference time, we adopt the optimal coreset
sampling ratio to 1%.

Table S8: Summary of anomaly detection and localization results on MVTec AD dataset for ablation studies. For each metric,
the best result is boldfaced, and the second best is underscored.

I-AUROC P-AUROC AUPRO
Object Texture Average Object Texture Average Object Texture Average
Setting A (baseline) 99.01 98.75 98.92 98.70 97.15 98.18 92.30 85.09 89.90
Setting B 99.38 99.55 99.44 98.79 98.29 98.62 94.98 93.86 94.61
Setting C 97.86 99.44 98.39 98.68 98.24 98.53 92.09 93.64 92.61
Setting D 99.39 99.35 99.38 98.95 98.30 98.73 94.52 93.79 94.28
Setting E 99.46 99.46 99.46 99.03 98.29 98.79 95.27 93.79 94.78
Setting F 99.41 99.45 99.42 99.05 98.30 98.80 95.34 93.82 94.83
Setting G 99.18 99.40 99.26 98.99 98.34 98.77 95.69 94.18 95.19
Setting H 99.27 99.50 99.35 99.04 98.33 98.80 96.04 94.09 95.39
Setting I 99.46 99.40 99.44 99.07 98.37 98.84 95.86 94.14 95.29
Setting J 99.57 99.59 99.58 99.05 98.69 98.93 96.16 95.65 95.99
Setting K 99.48 99.62 99.53 99.12 98.56 98.93 95.69 94.74 95.38
Setting L 99.44 99.57 99.48 99.07 98.68 98.94 96.33 95.42 96.02
PNI 99.55 99.59 99.56 99.12 98.72 98.98 96.34 95.47 96.05
PNI (Ensemble) 99.64 99.59 99.63 99.14 98.90 99.06 96.83 96.00 96.55

Table S9: Comparison of anomaly detection performance between ablation settings and the proposed PNI algorithm on the
MVTec AD dataset using I-AUROC. Performance for each subcategory is also provided. For each subcategory, the best result
is boldfaced.

Setting Proposed
A B C D E F G H 1 J K L PNI PNI (Ensemble)
Bottle 100 100 100 100 100 100 100 99.92 100 100 100 100 100 100
Cable 99.63  99.04  99.63  99.79  99.42 9948 9946  99.39 9940 9944  99.68  99.66 | 99.76 99.91
Capsule 98.92 9936 9924 9936 9944  99.60 99.44  99.76 9944  99.56 9948  99.60 | 99.72 99.72
Hazelnut 100 100 99.11 100 100 100 100 100 100 100 100 100 100 100
Metal nut 100 100 99.90  99.51 100 100 100 100 100 100 99.95 100 100 100
Object Pill 9523 9686 9723 9725 9697  96.56  96.89  96.67 9697 9749 9654  97.30 | 96.89 97.79
Screw 9637  99.55 97.54 9934  99.57 9928  97.66 99.00 99.55 9949 9930  99.55 | 99.51 99.10
Toothbrush | 100 99.17  86.39  98.89 9944 9944 9944 9944 9944 100 100 98.61 | 99.72 100
Transistor 100 100 100 100 100 100 99.96 100 100 99.96 100 100 100 100
Zipper 99.97 99.82  99.58  99.74  99.76  99.74 9898 9856 99.82  99.76  99.84  99.63 | 99.87 99.89
Average 99.01 99.38  97.86 9939 9946  99.41 99.18  99.27  99.46  99.57  99.48  99.44 | 99.55 99.64
Carpet 96.99  99.60 99.80  99.68 99.80  99.834  99.68  99.80  99.68 100 100 100 100 100
Grid 9841 9875 9833 9833 9841 9833 9791 9841 9841 9841 9858 9841 | 98.41 98.50
Texture Leather 100 99.83  99.76  99.56  99.83  99.90 100 99.93  99.66 99.97 100 100 100 100
Tile 98.70 100 99.93  99.89 9996  99.89 9996  99.82 9996 100 99.96  99.89 | 100 100
Wood 99.65 99.56 9939 9930 9930  99.30  99.47  99.56 9930  99.56  99.56  99.56 | 99.56 99.47
Average ‘ 9875 9955 9944 9935 9946 9945 9940 99.50 99.40  99.59  99.62  99.57 ‘ 99.59 99.59
Average ‘ 98.92 9944 9839 9938 99.46 9942  99.26  99.35 99.44  99.58  99.53  99.438 ‘ 99.56 99.63




Defect image creation method: We compare the effects of different defect image creation methods for training the pixelwise
refinement network in settings G, H, I, J, K, and PNI. In settings G, H, J, and K, we train the refinement network using
only the defect images created by the CutPaste [17], CutPaste (scar) [17], DRAM [32], and manual drawing methods,
respectively. Examples of defect images created by each method are shown in Figure 3 of the main paper. In setting I, we
use a combination of the CutPaste and CutPaste (scar) methods to create the defect images, which is the method adopted in
CutPaste (3-way) [17].

As shown in settings G and H, the methods using relatively simple defect types, from CutPaste and CutPaste (scar), are
not suitable for training the refinement network. Even when compared to the results of setting E without refinement, there
is a little decrease in performance in settings G and H. On the other hand, in setting I where two defect creation methods
are combined, an improvement in anomaly localization performance is observed. For example, setting I shows a 0.51%
improvement in AUPRO compared to setting E. These results imply that using a combination of diverse defect patterns for
training can enhance the effectiveness of pixelwise refinement.

In settings J and K, which generate more complex defect images based on Perlin noise [S4] or manual drawing, significant
performance improvement is observed especially in anomaly localization performance in texture subcategories. Finally, in the
PNI algorithm that combines all 4 defect image creation methods mentioned earlier, the training of the pixelwise refinement
network works most effectively, and once again, it demonstrates the effectiveness of the approach of PNI combining multiple
synthetic defect data.

Position Information: While using position information is beneficial to most aligned object classes, it shows little improve-
ment in some classes such as screw, which are not aligned. (Compare settings B and E in Tables S9, S10, and S11.) In
practical industrial environments, however, the alignment of rigid objects can be performed during the preprocessing stage
without challenge, which makes the proposed PNI work effectively for certain objects.

Table S10: Comparison of anomaly localization performance between ablation settings and the proposed PNI algorithm on
the MVTec AD dataset using P-AUROC. Performance for each subcategory is also provided. For each subcategory, the best
result is boldfaced, and the second best is underscored.

Setting Proposed
A B C D E F G H 1 J K L PNI PNI (Ensemble)

Bottle 98.54 9890 98.83 9888 9890 9890 9874 9879 98.79 9886  98.93  98.81 | 98.87 99.03

Cable 98.68 9875  98.90  99.01 99.07  99.11  99.06  99.07 99.07 99.06 99.17  99.09 | 99.10 99.16

Capsule 99.06 9926 99.20 9925 99.26 9925 9929  99.32  99.3] 99.31 99.36 9932 | 99.34 99.38

Hazelnut 98.82  99.13 9886 99.10 99.15  99.14 99.09 99.10 9936  99.17  99.18  99.20 | 99.37 99.40

Metal nut 99.16 9937  99.09  99.14 9931 9932 9926  99.29 9929  99.27 9927  99.27 | 99.29 99.34

Object Pill 98.81 98.89 9855 9880 98.89 9890 9899  99.02 99.02 99.02 99.06 99.05 | 99.03 98.99
Screw 99.04 9953  99.06 99.44  99.53  99.57 99.54 9959  99.57 99.60 9935 99.59 | 99.60 99.68
Toothbrush | 98.79  99.08 9798  99.01 99.08  99.10 9899  99.01 98.99  99.03  99.02  99.13 | 99.09 99.11

Transistor 9741 9567 97.08 9754 9786 97.87 9799 97.88 9799 97.86 9855 97.90 | 98.04 97.74

Zipper 98.69 9932 9929 9930 9931 9931 9895 99.33 9933 9935 9931  99.37 | 99.43 99.56

Average 98.70 9879  98.68 9895 99.03 99.05 9899  99.04 99.07 99.05 99.12  99.07 | 99.12 99.14

Carpet 98.42  99.22  99.21 99.22  99.25 9924 9929  99.27 9933 9945 9941  99.42 | 99.40 99.46

Grid 9750 9880 98.68  98.79 9877 9877 9894 9899 9897 99.19  99.12  99.20 | 99.20 99.20

Texture Leather 99.18  99.49 9948 9947 9948 9948 9955 9949 9953  99.53  99.54  99.55 | 99.56 99.59
Tile 96.53 9766 9773 9778 9778 9781 97.63 97.64 9774 9837 9820 9821 | 98.40 98.69

Wood 94.12 9626  96.08 9622  96.19 9622 9629 9626 9629 9691 9652  97.02 | 97.04 97.55

Average ‘ 97.15 9829 9824 9830 9829 9830 9834 9833 9837 98.69 9856  98.68 ‘ 98.72 98.90

Average ‘ 08.18 98.62 9853 9873 9879 98.80 9877 98.80 98.84 9893 9893  98.94 ‘ 98.98 99.06




Loss {44 To show the efficacy of using {graq in (11) of the main paper, we compare the setting L and PNI. £4r,q makes
the training of the refinement network more focused on a near edge region of defect, and it is effective for anomaly detection
results. For example, in 13 of 15 subcategories, PNI keeps or improves [-AUROC performance compared to setting L.

Table S11: Comparison of anomaly localization performance between ablation settings and the proposed PNI algorithm on
the MVTec AD dataset using AUPRO. Performance for each subcategory is also provided. For each subcategory, the best
result is boldfaced, and the second best is underscored.

Setting Proposed
A B C D E F G H 1 J K L PNI PNI (Ensemble)
Bottle 90.14 9532 9509 9534 9529 9552 9534 9580 9545 9577 9432  96.17 | 9595 96.84
Cable 9649 9827 97.88 9853 9877 99.06 9870 9872 9870 98.76  98.81  98.87 | 98.93 99.23
Capsule 9292 9515 9331 9386 9510 9442 9517 9547 9530 9544 95.02 95.82 | 95.63 96.12
Hazelnut 8341 90.03 82.89 8797 90.06 89.82 96.57 96.54 9640 96.89 96.02 9690 | 96.93 97.35
Metal nut 9320 9532 9359 9283 9488 9522 9533 9523 9530 9578 9495 95.80 | 95.89 96.88
Object Pill 9392 9676 9622  96.44 9675 96.78 96.44 96.54 96.53  96.72  96.03  96.74 | 96.68 97.00
Screw 9405 97.09 9375 9636 97.05 9728 96.88 97.14 97.06 97.18 96.32 97.18 | 97.17 97.88
Toothbrush | 91.03 91.90 76.14 9127 91.88 9228 91.54 9195 90.83 9195 9254 9254 | 92.68 93.76
Transistor 94.04 9296 9530 9570 96.06 9597 96.13 96.09 96.15 96.06 96.20 96.15 | 96.24 95.35
Zipper 93.82 9696 9675 9690 9690 97.02 9481 9692 9686 97.02 96.70  97.11 | 97.28 97.86
Average 9230 9498 9209 9452 9527 9534 9569 96.04 9586 96.16 95.69 96.33 | 96.34 96.83
Carpet 7194 9482 9520 9502 9489 9523 9691 96.61 96.67 9770 9746  97.69 | 97.55 97.67
Grid 89.21 9358 9249 9328 9329 93.12 9291 92.83 93.18 94.11 93.07 94.52 | 94.26 94.29
Texture Leather 95.60 9783 9779 9771 9777 9778 9817 9790 97.66 98.15 98.13  98.34 | 98.27 98.58
Tile 86.85  92.10 92.08 9220 9221  92.18 92.08 92.13 9241 9571 93.65 94.04 | 94.74 95.66
Wood 81.84 9098 90.64 90.73 90.80 90.82 90.85 9096 90.80 92.59 91.41 9249 | 92.51 93.82
Average ‘ 85.09 9386 93.64 9379 9379 93.82 94.18 94.09 94.14 9565 9474 9542 ‘ 95.47 96.00

Average ‘ 89.90 94.61 92.61 9428 9478 9483 9519 9539 9529 9599 9538  96.02 ‘ 96.05 96.55




Precision-recall curve: Similar to Figure 5 of the main paper, we show the pixel-level precision-recall curves and F1-max
scores for each ablation setting across all subcategories of the MVTec AD in Figure S4. Again, each component of the
algorithm improves anomaly localization performance in the precision-recall curves as well.
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Figure S4: Precision-recall curve at the pixel-level for 15 subcategories of MVTec AD. The proposed PNI algorithm and
three ablation settings Setting A, B, and E in Table 3 of the main paper, are compared. The F1-max scores for each setting
are indicated on the right side of the legend.



S5. Qualitative Results
S5.1. Misclassified Samples

The proposed PNI with ensemble method achieves 99.66% anomaly detection AUROC (I-AUROC) on MVTec AD bench-
mark as shown in Table S2. We examine all misclassified samples on the dataset to analyze the limitation of our model. We
compute false-positive and false-negative samples with the threshold optimizing F1 scores of anomaly detection. With these
per-category thresholds, total of 7 false-positive errors and 12 false-negative errors are found from the test dataset from
467 normal test images and 1258 defective test images, which are shown in Figure S5 and Figure S6, respectively. The
corresponding false negative rate (FNR) and false positive rate (FPR) are 0.95% and 1.50%, respectively.

Anomaly map
with mask

Anomaly map
with mask

Anomaly map

Test image with mask

Test image Test image

I-AUROC 0.266, Threshold 0.249 I-AUROC 0.379, Threshold 0.375 I-AUROC 0.419, Threshold 0.375

I-AUROC 0.491, Threshold 0.427 I-AUROC 0.484, Threshold 0.393 I-AUROC 0.417, Threshold 0.363

I-AUROC 0.417, Threshold 0.363

Figure S5: Visualization of all 7 false-positive classification cases on our proposed model (PNI). The contours overlaid on
anomaly maps are from thresholds optimizing F1-scores of anomaly detection.

In Figure S5, we visualize false-positive images and the corresponding anomaly maps with masks, which are thresholded
by the F1-optimal detection threshold. The main cause of false-positive errors is the variance of normal images. A stain in the
capsule category in the first row of the first column, for example, is considered a normal pattern which is shown in the train
dataset, but it is difficult to judge as normal since the stain pattern is various. In addition, the dust in the zipper category in
the last row rarely appears in the train dataset, resulting in ambiguous labeling. To decrease false-positive errors, infrequent
normal patterns, which are less likely to appear in the train dataset, should be trained with normal feature distribution, which
leaves for further study.



In Figure S6, we visualize the false-negative images with the corresponding ground truth masks and the corresponding
anomaly maps. Most false-negative errors are caused by detection failures of small anomaly patches. Since we extract local
features from mid-level blocks of the pre-trained network, these small regions are concatenated with the neighborhood to
generate local features, which could lead to insufficient weight to be judged the features as anomalies. In addition, small
cracks in the pill category in the second row of Figure S6 are difficult to judge as abnormal since these patches are analogous
to normal patches. To decrease false-negative errors, generating fine-grained local features for small patches are required.
The boundary between normal and anomaly regions should be clearer through more advanced normal feature distribution.

Although those kinds of misclassified errors should be improved through further work, there are only 19 misclassified
samples out of 1725 images and 7 categories are solved perfectly.
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Figure S6: Visualization of all 12 false-negative classification cases on our proposed model (PNI). The contours overlaid on

test images are the corresponding ground truth.



S5.2. Qualitative Comparison

To verify the effectiveness of our proposed model, we visualize some test images with the corresponding anomaly maps
from both PatchCore [21] and our model in Figure S7. The proposed algorithm calculates anomaly maps closer to ground
truth masks in various categories and cases.

Test image Patchcore Proposed Test image Patchcore Proposed
with G.T anomaly map anomaly map with G.T anomaly map anomaly map

Figure S7: Comparison of the anomaly maps from our proposed model (PNI) and PatchCore on various classes of MVTec
AD dataset. The contours overlaid on the anomaly maps are from thresholds optimizing F1-scores of anomaly detection.



A misplaced cable in the first row of the fourth column of Figure S7, for example, PatchCore cannot find appropriate
anomalies since local features of misplaced cables are stored in the coreset of normal features. On the other hand, our
proposed PNI evaluates the whole area of the misplaced cable as abnormal since the local features are incompatible with the
corresponding position and neighborhood information. In addition, with the thread in the carpet image in the second row of
the fourth column of Figure S7, our proposed PNI draws a more detailed and precise anomaly mask which is closer to ground
truth, compared to PatchCore. This is because the PNI can refine anomaly maps with the trained refinement network to fit
better with image patterns.

S5.3. Examples in BTAD

We visualize the test images with the ground truth masks and the corresponding anomaly maps with masks from BTAD
[19] dataset in Figure S8, where all three categories are presented. The contours overlaid on the anomaly maps are from
thresholds optimizing F1 scores of anomaly localization. We can find that the predicted masks generally follow the ground
truth, which leads to the state-of-the-art anomaly localization performance, 97.8% P-AUROC.

Test image Anomaly map Test image Anomaly map Test image Anomaly map
with G.T with mask with G.T with mask with G.T with mask

= =

Figure S8: Examples of the test images (top), the anomaly maps (middle), and the predicted masks (bottom) on the BTAD.
The ground truth anomaly masks are overlaid on test images, and the contours overlaid on the anomaly maps are from
thresholds optimizing F1-scores of anomaly localization.
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