
Towards Improved Input Masking for Convolutional Neural Networks:
Appendix

1. Implementation details
In order to fairly compare the masking techniques, we fix the number of segments that the segmentation algorithm par-

titions the image into to approximately equal around 200. We use the sklearn implementation for SLIC and quickshift.
For SLIC, we fix the approximate number of segments to 196. For quickshift, we set kernel size=2, max dist=200 ,
ratio=0.2, which produces approximately 200 segments per image. For LIME, we use 500 random samples to train the
linear classifier.

For the token dropping variant of Vision Transformers (ViT and DeiT), we use code from https://github.com/
MadryLab/missingness.

2. Comparison of layer masking with partial convolution
Partial convolution is a method for image inpainting introduced by Liu et al, 2018. Partial convolution handles convolution

over images with irregular holes by using a method similar to layer masking. However, instead of doing neighbor padding
as in layer masking, the convolutions over the edge is scaled up by a factor of k2

m⊙1k×k
(where m is the binary mask

corresponding to the field of the convolution and k is the size of the filter). This means that the edge convolutions are given
a higher weight than normal. While this may be useful for inpainting purposes, where most of the important information
is concentrated around the edges and parameters of the neural network can be trained, it is exactly the opposite of what we
want, as this worsens the edge artifact problem which we cannot fix by training. Thus, naively using partial convolution is
worse than even zero padding as far as accuracy or unchanged predictions are concerned. We thus find that the AUC for the
accuracy (or class entropy) vs fraction of masked image is only 0.1922 (or 3.8589) when we use partial convolution layers,
which is much lower than corresponding numbers for layer masking (see Fig. 1).

Figure 1. Accuracy and class entropy vs fraction of 16 × 16 patches of the image masked out in random order using various masking
methods on ResNet-50
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3. Ablation study
To further investigate the effect of layer masking and neighbor padding on model behavior, we construct 3 variants of layer

masking: (a) With zero padding instead of neighbor padding (b) Masking and padding only the first two residual blocks, (c)
Masking and padding only the first convolutional layer, ReLU and BatchNorm layer

Using a similar setup as in Sec. 4.1, we compute the area under curve (AUC) for each plot of metric vs fraction of segments
dropped. The AUC values are averaged over different segmentation algorithms (SLIC, quickshift, etc) and masking orders
(random, salient first, etc)(refer Tab. 1).

We find that both neighbor padding and masking all layers are important to the masking technique. Layer masking with
zero padding is still better than blackout or greyout, but much worse than with neighbor padding. Layer masking only the
first two residual blocks is also inferior to masking through all layers, but we find that there are diminishing returns, as we
are able to obtain much of the improvement by masking only half of the layers.

Accuracy Class Wordnet Unchanged
Entropy Similarity Predictions

Blackout 0.3881 4.6473 0.6930 0.4094
Greyout 0.4398 4.9408 0.7167 0.4636
Layer masking:
On all layers 0.5604 5.6021 0.7881 0.5907
On 1st and 2nd
residual blocks

0.5103 5.0962 0.7616 0.5391

Zero padding 0.4502 5.0388 0.7262 0.4747

Table 1. Average AUC for different variants of layer masking alongside the black out and grey out baselines (model: ResNet-50). Higher
the better



4. Extended results for segment masking experiments (Section 4.1)
We also measure the degradation of WordNet similarity and change in predictions as segments are removed for models

like ResNet-50, ResNet-50 with augmentations, DenseNet, SqueezeNet, AlexNet, EfficientNet and MobileNet. Note that
EfficientNet and MobileNet are also trained with grey missingness data augmentations, thus greyout is disproportionately
more robust for these models. Most significant differences are found in random 16× 16 patch removal

ResNet-50 Quickshift segments 16× 16 patches SLIC superpixels
Random Most sal.

first
Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.415 0.134 0.832 0.193 0.359 0.608 0.362 0.213 0.699
Greyout 0.484 0.146 0.853 0.253 0.393 0.648 0.437 0.247 0.746
Layer masking 0.580 0.169 0.877 0.608 0.511 0.741 0.569 0.311 0.808

Wordnet Sim
Blackout 0.705 0.547 0.889 0.571 0.672 0.802 0.669 0.591 0.838
Greyout 0.748 0.517 0.892 0.604 0.696 0.821 0.718 0.606 0.857
Layer masking 0.785 0.549 0.904 0.800 0.757 0.865 0.779 0.642 0.884

Accuracy
Blackout 0.395 0.124 0.767 0.181 0.340 0.582 0.347 0.200 0.657
Greyout 0.463 0.137 0.787 0.240 0.374 0.621 0.418 0.234 0.702
Layer masking 0.551 0.159 0.806 0.577 0.484 0.703 0.542 0.294 0.756

Class entropy
Blackout 4.988 2.224 5.824 2.574 4.570 5.406 4.815 3.976 5.661
Greyout 5.327 2.362 5.875 3.289 4.807 5.642 5.022 4.229 5.808
Layer masking 5.698 2.572 5.892 5.651 5.782 5.879 5.607 4.763 5.876

Table 2. AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the accuracy of
predictions, and class entropy of the predictions vs fraction of segments masked out for plain ResNet-50

ResNet-50 (aug-
mented)

Quickshift segments 16× 16 patches SLIC superpixels

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.552 0.169 0.872 0.671 0.632 0.831 0.513 0.297 0.791
Greyout 0.734 0.232 0.894 0.746 0.644 0.838 0.708 0.417 0.854
Layer masking 0.621 0.186 0.884 0.622 0.557 0.775 0.603 0.348 0.828

Wordnet Sim
Blackout 0.787 0.577 0.912 0.838 0.823 0.903 0.770 0.654 0.886
Greyout 0.866 0.610 0.919 0.872 0.830 0.906 0.858 0.714 0.910
Layer masking 0.789 0.493 0.904 0.795 0.761 0.862 0.782 0.624 0.887

Accuracy
Blackout 0.534 0.162 0.831 0.651 0.612 0.799 0.498 0.289 0.760
Greyout 0.708 0.225 0.851 0.723 0.624 0.807 0.687 0.405 0.821
Layer masking 0.603 0.180 0.843 0.605 0.540 0.749 0.585 0.338 0.798

Class entropy
Blackout 5.520 2.458 5.878 5.742 5.807 5.892 5.438 4.511 5.834
Greyout 5.875 2.628 5.895 5.860 5.865 5.898 5.862 4.849 5.896
Layer masking 5.603 2.258 5.893 5.554 5.630 5.789 5.554 4.305 5.887

Table 3. AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the accuracy of
predictions, and class entropy of the predictions vs fraction of segments masked out for ResNet-50 trained with data augmentations



WideResNet-50 Quickshift segments 16× 16 patches SLIC superpixels
Random Most sal.

first
Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.445 0.129 0.862 0.226 0.401 0.666 0.389 0.227 0.731
Greyout 0.515 0.141 0.877 0.293 0.447 0.707 0.472 0.263 0.778
Layer masking 0.596 0.158 0.891 0.620 0.526 0.769 0.584 0.323 0.823

Wordnet Sim
Blackout 0.718 0.544 0.906 0.602 0.695 0.826 0.693 0.603 0.855
Greyout 0.757 0.529 0.909 0.624 0.727 0.846 0.733 0.618 0.874
Layer masking 0.798 0.569 0.919 0.810 0.768 0.878 0.793 0.661 0.897

Accuracy
Blackout 0.435 0.125 0.835 0.220 0.394 0.652 0.379 0.222 0.711
Greyout 0.504 0.137 0.851 0.288 0.440 0.694 0.461 0.258 0.758
Layer masking 0.587 0.154 0.864 0.609 0.516 0.754 0.574 0.317 0.802

Class entropy
Blackout 5.161 2.102 5.865 2.706 4.855 5.585 4.967 4.224 5.706
Greyout 5.372 2.177 5.884 3.299 5.204 5.718 5.165 4.408 5.815
Layer masking 5.734 2.354 5.891 5.668 5.790 5.884 5.664 4.819 5.878

Table 4. AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the accuracy of
predictions, and class entropy of the predictions vs fraction of segments masked out for WideResNet-50

AlexNet Quickshift segments 16× 16 patches SLIC superpixels
Random Most sal.

first
Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.278 0.104 0.789 0.128 0.224 0.431 0.234 0.147 0.573
Greyout 0.364 0.111 0.830 0.197 0.268 0.501 0.326 0.183 0.663
Layer masking 0.437 0.120 0.853 0.487 0.358 0.597 0.458 0.226 0.733

Wordnet Sim
Blackout 0.629 0.526 0.856 0.499 0.584 0.704 0.590 0.551 0.774
Greyout 0.681 0.523 0.874 0.536 0.615 0.745 0.652 0.577 0.815
Layer masking 0.721 0.527 0.882 0.734 0.676 0.794 0.729 0.601 0.845

Accuracy
Blackout 0.256 0.091 0.696 0.115 0.205 0.397 0.215 0.132 0.517
Greyout 0.337 0.098 0.732 0.181 0.245 0.462 0.302 0.166 0.599
Layer masking 0.405 0.107 0.753 0.449 0.334 0.547 0.424 0.208 0.662

Class entropy
Blackout 4.587 1.917 5.790 2.794 4.444 5.243 4.342 3.930 5.522
Greyout 5.059 2.031 5.870 3.577 4.903 5.472 4.852 4.164 5.717
Layer masking 5.406 2.230 5.889 5.196 5.439 5.690 5.360 4.432 5.825

Table 5. AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the accuracy of
predictions, and class entropy of the predictions vs fraction of segments masked out for AlexNet



SqueezeNet Quickshift segments 16× 16 patches SLIC superpixels
Random Most sal.

first
Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.285 0.103 0.794 0.141 0.243 0.469 0.240 0.147 0.578
Greyout 0.355 0.110 0.823 0.182 0.279 0.515 0.312 0.175 0.648
Layer masking 0.408 0.113 0.844 0.544 0.362 0.592 0.405 0.203 0.694

Wordnet Sim
Blackout 0.627 0.524 0.842 0.515 0.579 0.721 0.599 0.545 0.767
Greyout 0.680 0.534 0.855 0.529 0.605 0.747 0.656 0.573 0.801
Layer masking 0.694 0.483 0.853 0.750 0.666 0.775 0.689 0.568 0.810

Accuracy
Blackout 0.251 0.083 0.645 0.117 0.207 0.416 0.208 0.124 0.488
Greyout 0.311 0.090 0.669 0.154 0.237 0.456 0.270 0.148 0.546
Layer masking 0.357 0.093 0.683 0.472 0.314 0.518 0.357 0.174 0.585

Class entropy
Blackout 4.593 1.832 5.801 2.360 4.379 5.183 4.410 3.667 5.491
Greyout 5.017 1.935 5.865 2.931 4.755 5.483 4.776 3.903 5.673
Layer masking 5.052 2.018 5.879 5.266 5.065 5.506 4.926 4.074 5.708

Table 6. AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the accuracy of
predictions, and class entropy of the predictions vs fraction of segments masked out for SqueezeNet

DenseNet Quickshift segments 16× 16 patches SLIC superpixels
Random Most sal.

first
Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.423 0.124 0.852 0.184 0.387 0.629 0.373 0.217 0.709
Greyout 0.481 0.134 0.865 0.272 0.403 0.652 0.449 0.247 0.751
Layer masking 0.483 0.127 0.873 0.503 0.434 0.671 0.497 0.256 0.774

Wordnet Sim
Blackout 0.712 0.543 0.888 0.555 0.686 0.805 0.686 0.600 0.838
Greyout 0.746 0.552 0.894 0.607 0.700 0.821 0.726 0.619 0.858
Layer masking 0.733 0.550 0.897 0.743 0.726 0.829 0.737 0.625 0.864

Accuracy
Blackout 0.400 0.115 0.776 0.173 0.366 0.594 0.351 0.204 0.656
Greyout 0.456 0.124 0.790 0.256 0.381 0.618 0.423 0.232 0.696
Layer masking 0.456 0.118 0.796 0.477 0.412 0.632 0.469 0.243 0.718

Class entropy
Blackout 4.987 1.999 5.861 2.606 5.090 5.555 4.868 4.092 5.667
Greyout 5.321 2.160 5.880 3.549 5.176 5.660 5.234 4.365 5.798
Layer masking 5.051 2.017 5.885 5.152 5.391 5.661 5.050 4.215 5.773

Table 7. AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the accuracy of
predictions, and class entropy of the predictions vs fraction of segments masked out for DenseNet



MobileNet-v3 Quickshift segments 16× 16 patches SLIC superpixels
Random Most sal.

first
Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.525 0.144 0.871 0.278 0.406 0.646 0.495 0.271 0.761
Greyout 0.661 0.181 0.888 0.633 0.576 0.779 0.633 0.355 0.815
Layer masking 0.516 0.135 0.873 0.619 0.441 0.644 0.531 0.271 0.767

Wordnet Sim
Blackout 0.769 0.557 0.910 0.612 0.702 0.822 0.751 0.636 0.872
Greyout 0.829 0.542 0.911 0.817 0.791 0.878 0.816 0.665 0.889
Layer masking 0.753 0.531 0.907 0.804 0.715 0.813 0.764 0.623 0.870

Accuracy
Blackout 0.515 0.139 0.837 0.272 0.398 0.632 0.486 0.266 0.738
Greyout 0.644 0.176 0.853 0.621 0.562 0.757 0.617 0.345 0.788
Layer masking 0.504 0.131 0.838 0.605 0.430 0.627 0.520 0.265 0.744

Class entropy
Blackout 5.560 2.204 5.897 4.069 5.319 5.679 5.490 4.504 5.848
Greyout 5.813 2.324 5.897 5.776 5.805 5.886 5.771 4.753 5.895
Layer masking 5.336 2.152 5.887 5.532 5.309 5.540 5.341 4.406 5.801

Table 8. AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the accuracy of
predictions, and class entropy of the predictions vs fraction of segments masked out for MobileNet

EfficientNet Quickshift segments 16× 16 patches SLIC superpixels
Random Most sal.

first
Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.591 0.162 0.883 0.261 0.439 0.666 0.581 0.326 0.805
Greyout 0.729 0.204 0.896 0.686 0.605 0.804 0.723 0.411 0.849
Layer masking 0.553 0.146 0.881 0.581 0.476 0.692 0.572 0.302 0.802

Wordnet Sim
Blackout 0.804 0.569 0.910 0.595 0.716 0.824 0.800 0.667 0.887
Greyout 0.860 0.594 0.915 0.842 0.807 0.891 0.859 0.709 0.903
Layer masking 0.769 0.533 0.906 0.788 0.737 0.839 0.778 0.637 0.880

Accuracy
Blackout 0.570 0.154 0.835 0.252 0.424 0.641 0.559 0.314 0.768
Greyout 0.697 0.194 0.847 0.661 0.580 0.772 0.692 0.394 0.809
Layer masking 0.532 0.139 0.834 0.561 0.459 0.666 0.549 0.290 0.766

Class entropy
Blackout 5.642 2.222 5.893 3.772 5.378 5.661 5.654 4.610 5.868
Greyout 5.879 2.430 5.893 5.848 5.857 5.897 5.880 4.941 5.895
Layer masking 5.356 2.099 5.891 5.410 5.464 5.682 5.367 4.390 5.844

Table 9. AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the accuracy of
predictions, and class entropy of the predictions vs fraction of segments masked out for EfficientNet



5. Extended experiments on shape bias (Section 4.2 and Section 4.3)
We now show the bar plots for object masked and broken masked cases for different CNN architectures. Consistent with

the previous section, we observe that layer masking is more robust as compared to black-out or grey-out for Wide ResNet-
50, AlexNet, SqueezeNet and DenseNet (Fig. 3). Also, the object masked accuracy is typically lower on average. Looking
at specific classes, we see similar trends as mentioned in Section 4.2. There are many classes for like megalith, obelisk,
sunglasses, etc in which the object’s true color is very close to the masking color, and the shape of the object mask conveys
a lot of information about the class itself. Conversely, other classes like priarie grouse, bee eater, southern black widow, etc
get misclassified as other related classes when masked out using black or grey baseline colors at a higher -than-ideal rate as
compared to layer masking.

However, for EfficientNet and MobileNet-v3 (Fig. 2), we find that owing to its pretraining on data augmentations, it
is more robust grey-out masking, even compared to layer masking. Still, consistent with Section 4.3, we find classes like
megalith and hammerhead shark where layer masking can be more helpful, but also classes like pizza or carbonara where it
is not.

In conclusion, we should be cognizant of the missingness biases of a masking method when applied to a model, both
shape and color, when evaluating a model’s dependence on various image features. Layer masking can be particularly useful
in cases where the object to be masked has a distinctive shape with its color also being similar to the baseline color (for e.g:
obelisk, megalith, sunglasses). It may also be useful in situations where there exists another class closely related to the true
class which has a similar shape but different color which closely resembles the masking color (for e.g: ). It may not be so
useful in situations where shape is not very indicative of object and model is already robust to some color replacing masking
method like greyout (e.g: pizza, crate, carbonara).

(a) EfficientNet

(b) MobileNet

Figure 2. Effect of shape bias (measured as in Section 4.2) for EfficientNet and MobileNet ()



(a) Wide ResNet-50

(b) AlexNet

(c) SqueezeNet

(d) DenseNet

Figure 3. Effect of shape bias (measured as in Section 4.2) for Wide ResNet-50, AlexNet, SqueezeNet and DenseNet



6. Extended experiments on LIME (Section 4.4)
6.1. Qualitative

Figure 4. Visualization of LIME scores for the top two predictions of ResNet-50 on a sample image of a cat and a mouse. Columns
correspond to the masking techniques (blacking out, greying out, and layer masking), rows are the top 2 predictions. The top two predictions
are American black bear and mouse. Green regions contribute to the prediction, red regions detract from the prediction.

We also include some more visualizations of LIME scores on random images from ImageNet, with most important seg-
ments highlighted in green (positive score) or red (negative score). These are not cherrypicked.



Figure 5. LIME scores using SLIC segmentation (5 samples). Top 15 segments are highlighted



Figure 6. LIME scores using SLIC segmentation (5 samples). Top 15 segments are highlighted



Figure 7. LIME scores using 16× 16 segmentation (5 samples). Top 20 segments are highlighted



Figure 8. LIME scores using 16× 16 segmentation (5 samples). Top 20 segments are highlighted



6.2. Quantitative

We compute the same metrics (Top-20 ablation accuracy, Alignment score, Top-20 Jaccard similarity) for different archi-
tectures and segmentation algorithms. The metrics are computed as follows:

1. Top-k ablation accuracy: As described in Strumfels et al, we choose the k most important segments according to the
explanation, remove them by substituting with a missingness approximation (we use grey), and compute the accuracy
on the masked images. The more the accuracy drops, the better the explanations. Let m′ be a mask such that if pixel
(u, v) lies in the top k features, then m′[u, v] = 1 otherwise 0. Then, the top-k ablation accuracy is the accuracy when
images are masked by m′ using a missingness approximation t (we use grey):

E(x,y)∼D[1[f(x⊙ (1−m′) +m′ ⊙ t) = y]]

2. Alignment score: Given a segmentation mask m ∈ [0, 1]d×d for an image of dimension d, we derive the “ground truth”
g for the explanation such that gi =

∑
(u,v)∈patch i (m[u, v]−mavg) where mavg is the mean of the segmentation

mask. We can then measure how aligned the explanations are with the ground truth by computing the alignment score,
which is the cosine similarity between gi and si, or

cos(g, s) =

∑
i gisi√

(
∑

i g
2
i )(

∑
i s

2
i )

The alignment score will be 1 if the LIME explanation s is perfectly aligned with g, and −1 if it is completely
misaligned.

3. Top-k Jaccard similarity: Take the top-k most contributing features according to the explanation and compute a mask
m′ such that if pixel (u, v) lies in the top k features, then m′[u, v] = 1 otherwise 0. Then, we compute Jaccard
similarity between the segmentation mask m and m′ as

JaccSim(m,m′) =

∑
u,v m[u, v] ·m′[u, v]∑

u,v 1[m[u, v] +m′[u, v] > 0]

All of these metrics have their pros and cons. Top k ablation accuracy does not require any supervision or ground truth,
but has an undesirable dependence on the missingness approximation used to compute it. The alignment score is designed
such that random attributions get a score of 0, but has an undesirable dependence on scale of the explanations. Top k Jaccard
similarity is not dependent on the scale, but only the relative ordering of importance of the features, but has a non-zero value
for random features. Together, they give a more complete picture of the performance of LIME.

We report our results in Tab. 10. For Wide ResNet-50, AlexNet, SqueezeNet, and DenseNet, the performance of layer
masking is the best across all metrics. For EfficientNet and MobileNet-v3, performance of layer masking is worse than
greyout in top-k ablation accuracy, but better in alignment score and top-k Jaccard similarity.



Top-20 ablation accuracy (↓) Alignment score (↑) Top-20 Jaccard similarity (↑)
Quickshift 16×16 SLIC Quickshift 16×16 SLIC Quickshift 16×16 SLIC

Wide ResNet-50
Blackout 0.668 0.736 0.767 0.128 0.028 0.091 0.177 0.089 0.128
Greyout 0.395 0.642 0.611 0.246 0.084 0.195 0.232 0.113 0.180
Layer masking 0.315 0.392 0.429 0.319 0.252 0.276 0.267 0.188 0.216
AlexNet
Blackout 0.550 0.506 0.681 0.039 0.006 0.020 0.139 0.085 0.097
Greyout 0.375 0.488 0.531 0.114 0.014 0.074 0.189 0.089 0.124
Layer masking 0.181 0.256 0.331 0.209 0.200 0.187 0.240 0.167 0.188
SqueezeNet
Blackout 0.479 0.552 0.615 0.058 0.002 0.031 0.154 0.081 0.101
Greyout 0.307 0.547 0.568 0.124 0.015 0.075 0.195 0.087 0.129
Layer masking 0.224 0.234 0.281 0.197 0.194 0.186 0.235 0.167 0.189
DenseNet
Blackout 0.562 0.745 0.682 0.156 0.029 0.122 0.203 0.089 0.149
Greyout 0.276 0.589 0.495 0.273 0.099 0.234 0.259 0.122 0.196
Layer masking 0.312 0.359 0.500 0.301 0.261 0.290 0.277 0.195 0.220
MobileNet
Blackout 0.562 0.896 0.719 0.214 0.072 0.173 0.225 0.108 0.168
Greyout 0.365 0.526 0.536 0.237 0.167 0.207 0.231 0.159 0.182
Layer masking 0.547 0.656 0.599 0.258 0.203 0.241 0.249 0.168 0.201
EfficientNet
Blackout 0.703 0.901 0.771 0.251 0.084 0.231 0.246 0.119 0.199
Greyout 0.500 0.646 0.604 0.236 0.175 0.198 0.244 0.167 0.192
Layer masking 0.661 0.688 0.750 0.291 0.231 0.266 0.268 0.185 0.216

Table 10. Top-20 ablation accuracy, alignment score, and top-20 Jaccard similarity of LIME scores over 200 random images



7. Other interesting properties of layer masking
In this section, we identify some more properties of layer masking that are important for model interpretability.

7.1. Linearity in masking:

Consider a model equipped with a masking technique fm which acts on an input - mask pair (x,m) and returns an
output y which depends only on the unmasked parts of the input. Then, we say that the model fm is linear in masking if
fm(x,m1 +m2) = fm(x,m1) + fm(x,m2) for any two binary masks m1,m2 such that m1 ·m2 = 0. This property is
useful for interpretability methods like LIME which train a linear model on (m,y) pairs and use its weights to explain the
model prediction. Modern vision models like CNNs and Vision Transformers are non-linear and include cross-interactions
between features in m1 and m2. Thus, it is not possible to design a perfectly linear masking technique for these architectures,
which means that only approximate linearity is possible. However, we can attempt to design more linear masking methods
for each model architecture, and thus obtain more interpretable masking techniques.

We measure linearity by sampling random images from ImageNet and dividing it into N smaller square patches. We can
then compute the cosine similarity between f(x) and

∑N
i=1 fm(x,mi) where mi corresponds to patch i (Tab. 11). We find

that layer masking is much more linear as compared to greying out or blacking out pixels, and in general, ResNet masking
methods are more linear than corresponding methods for ViTs. Because the attention heads in ViTs introduce a lot of cross
terms right from the beginning, including cross terms between distant patches, linearity in vision transformer masking is
much lower than CNN masking.

We also find that in layer masking, Ex∥fm(x,m)∥ scales linearly with |m|. We test this by measuring the magnitude
of fm(x,m) with m as a mask for square patches of side length n, so that ∥m∥ ∝ n2. We observe in Fig. 10 that layer
masking closely tracks the n2 curve, which implies that Ex∥fm(x,m)∥ scales almost linearly with ∥m∥ for layer masking.
However, the magnitude for ViT features remain approximately constant.

Figure 9. Average difference in cosine similarity vs image size.
Since model features of ViTs can be negative unlike ResNet-50,
cosine similarity can vary from -1 to 1

ResNet-50 ViT-B/16
Patch
size

Blackout Greyout Layer
mask-
ing

Blackout Greyout Token
drop-
ping

112 0.7975 0.8284 0.9485 0.6707 0.7063 0.7043
56 0.5124 0.5842 0.8310 0.2202 0.2506 0.1929
32 0.4282 0.4878 0.7094 0.1377 0.1365 0.1426
16 0.3848 0.4371 0.6490 0.0912 0.0876 0.0877

Table 11. Average cosine similarity between image features and
their linear approximation



7.2. Avoidance of output collapse:

As the fraction of masked input approaches 1, it is desirable to avoid the model output collapsing to the same vector and
thus not being sensitive enough to the unmasked features. To test for this, we take two random images x1 and x2 of size
224 × 224 and compute the cosine similarity between their model features, c = cos(f(x1), f(x2)). Then, these images are
resized to a smaller size n, and padded with zeros to recover the original size . We now have images x1,n and x2,n of size
224 × 224 and a mask of the same shape mn which is 1 for a region of size n × n and 0 elsewhere. We then measure the
cosine similarity between x1,n and x2,n as cn = cos(fm(x1,n,mn), fm(x2,n,mn)) and plot Ex1,x2

[cn − c] as function
of n in Fig. 9. We clearly see that as the image size is decreased, the cosine similarity changes much more for greyout or
blackout as compared to layer masking for ResNet-50 or token dropping for ViTs.

Figure 10. Mean magnitude of output feature vectors vs image size



8. Other baseline colors
We also repeat the experiments in Section 4.1 with other baseline colors like red, blue and green. Grey baseline is included

for reference. Segments are removed out in random order. We find that the best constant baseline is either greyout or average
color of that image for both ResNet-50 and transformers.

(a) Accuracy (b) Class entropy

(c) WordNet Similarity (d) Unchanged predictions

Figure 11. Changes in model prediction for different model architectures


	. Implementation details
	. Comparison of layer masking with partial convolution
	. Ablation study
	. Extended results for segment masking experiments (Section 4.1)
	. Extended experiments on shape bias (Section 4.2 and Section 4.3)
	. Extended experiments on LIME (Section 4.4)
	. Qualitative
	. Quantitative

	. Other interesting properties of layer masking 
	. Linearity in masking:
	. Avoidance of output collapse:

	. Other baseline colors

