A. Multimodal Contrastive Learning

To obtain the image embedding I¢ = f7(I;) for a given
batch of N image-text pairs, {I;, T;}_,, we pass the image
I; to the image encoder f;. Similarly, we obtain the text
embedding T¢ = fr(T;) for each pair. The image and text
embeddings are normalized to have unit {5 norm. Finally,
the multimodal contrastive loss Lcpp is used to align the
text and image representations. Mathematically, we have:

Zlog exp ((I;,Tje)/T)

N
=t > exp ((I5, Ty) /7)
k=1

Contrasting images with texts

2)

exp ({15, T5)/7)
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Contrasting texts with images

where (-, -) denotes the inner product operation, and 7
denotes a trainable temperature parameter.

B. CleanCLIP

In a batch that consists of N corresponding image and
text pairs (I;,7;) € Dfnewne, the self-supervised objective
enforces the representations of each modality I and 77,
along with their respective augmentations I¢ and T, to be
close to each other in the embedding space. In contrast,
the representations of any two pairs within the batch, such
as (I¢,17) and (T, T¢), where k # 4, are pushed further
apart. The finetuning objective of CleanCLIP is formally
defined as:
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C. Training Setup
C.1. Pretraining

Like in [44], we use a ResNet-50 model as the CLIP vi-
sion encoder and a transformer as the text encoder. The
models are trained from scratch on 2 A5000 GPUs for 64
epochs, with a batch size of 128, a learning rate of 0.0005,
cosine scheduling, 10000 warmup steps, and AdamW [35]
optimizer.

C.2. CleanCLIP

By default, the models were finetuned for 10 epochs, us-
ing a batch size of 64, a learning rate of 0.00001, cosine
scheduling with 50 warmup steps, and AdamW as the opti-
mizer.

For the self-supervised learning objective (CleanCLIP;
Eq. 3), we created augmented versions of the image and
text data. To create variations of the images, we used Py-
Torch [41] support for AutoAugment [12]. For text aug-
mentations, we used EDA [55]. Additionally, weset \; =1
and Ao = 1, unless specified otherwise.

C.3. Supervised Finetuning

Specifically, we finetune the CLIP vision encoder on a
labeled dataset Dygperca = (I, y;) where I; is the raw im-
age and y; is the class label. Since we have access to the
class labels, the model is trained with the supervised cross-
entropy objective. As the pretrained CLIP vision encoder
adapts itself to the target distribution of the downstream
task, the associations between the backdoor triggers and the
target label are forgotten, thus reducing the impact of the
backdoor attack on multimodal contrastive learning in the
downstream applications. We finetuned the CLIP vision en-
coder on 50,000 clean images from the ImageNet-1K vali-
dation dataset.
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Figure 4: (a) The strategy employed by the adversary to introduce backdoor attacks into the model. It injects a backdoor
trigger to clean images and changes their corresponding captions to proxy captions for the target label (in this case, ‘banana’).
(b) At inference time, images containing the backdoor trigger are misclassified to the target label (‘banana’). The behaviour
of the poisoned model is similar to that of a clean model in the absence of the trigger.

We finetuned the CLIP vision encoder on 50,000 clean
images from the ImageNet-1K validation dataset. We ran-
domly selected 50 images for every class in the dataset. The
model was finetuned for 10 epochs, using a batch size of 64,
a learning rate of 0.0001, cosine scheduling, 500 warmup
steps, and the AdamW optimizer.

C.4. Effect of Self-supervision signal

We conduct experiments by finetuning on a 100K subset
of clean data from CC3M for 10 epochs, using a fixed learn-
ing rate of 0.00001 and a warmup step of 50. We present the
trends of the attack success rate and clean accuracy on the
Blended attack in Figure 3.

C.5. Effect of Unsupervised Finetuning Dataset

We conducted a hyperparameter search on the most ef-
fective combinations, sweeping across a learning rate =
{0.0001, 0.0005,0.00001} and A2 = {1,2,4,8}. The re-
sults obtained through our experimentation are displayed in
, with our best outcomes being achieved through the utiliza-
tion of A\; = 1, Ay = 8, a learning rate of 0.0005 for 10
epochs, and AdamW optimizer.

D. Effect of Supervised Finetuning Dataset
Size

While performing supervised finetuning on a target
dataset, here, we investigate the effect of varying the
amount of labeled data on the clean accuracy and the at-
tack success rate. To do so, the poisoned CLIP vision en-
coder is finetuned with 5K, 10K, and 50K images from the
ImageNet-1K training data. We make sure that each class
contains an equal number of images. We present our results
across the range of backdoor attacks in Table 8.

Unsurprisingly, we find that increasing the amount of
labeled data for supervised finetuning monotonically in-
creases the clean accuracy on the ImageNet-1K validation
set i.e., it increases from ~ 13% to ~ 41% as the data in-
creases from 5K to 50K. However, we find that the attack
success rate is ~ 0% oblivious to the amount of finetun-
ing dataset, across the backdoor attacks. This might be at-
tributed to the catastrophic forgetting of the pretrained rep-
resentations even at the small data scale while finetuning.

E. Backdoor Triggers Settings

e For the BadNet attack, we add a 16 x 16 patch
with each pixel sampled from a Normal distribution,
N(0,1), to a random location in the image.

* For the Blended attack, the poisoned image is obtained
as 2’ = 0.8 X 4+ 0.2 x n, where z is the clean image
and n is a noise tensor having the same shape as x and
containing uniform random values in the range [0, 1).

» For WaNet, we follow the setup used by [43] for Im-
ageNet and use control grid size k& = 224 and warp-
ing strength s = 1 and train models without the noise
mode.

* For the label-consistent attack, we sample images con-
taining the target class label in the caption, and apply a
trigger similar to the one used for BadNet while leav-
ing the corresponding caption unchanged.

F. Cluster of the Target Class Images

In Figure 6, We find that the “clean” target class images
lie in the cluster of the “clean” images in the embedding



Table 8: Variation in attack success rate (ASR) and clean accuracy (CA) with finetuning dataset size in the supervised
finetuning framework. All models were pretrained on CC3M with 1500 samples backdoored using the BadNet attack. All

values are indicated in %.

Sup. Finetuning (5K)

Sup. Finetuning (10K)

Sup. Finetuning (50K)

Attack Type CA () ASR ({) CA) ASR ({) CA () ASR (})

BadNet 12.43 0 21.88 0 40.86 0

Blended 12.88 0 21.82 0 41.34 0

WaNet 12.81 0 21.86 0 40.43 0

Label Consistent 12.7 0 21.85 0 41.42 0.17

Average 12.7 0 21.85 0 41.01 0
Clean . BadNet Blernded WaNet

Figure 5: Examples of images poisoned using various backdoor attacks.

space for the poisoned model, and thus have a large distance
from the backdoored images (d = 1.5). After cleaning,
the “clean” target class images lie very close to the “dirty”
images in the image space (d = 0.5).

CLIP 34 w/ 1500 Blended CleanCUP
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Figure 6: t-SNE plot of the image space.

G. Does CleanCLIP work on Linear Probing?

We train a linear classifier, using clean ImageNet-1K
data, on a CLIP vision encoder learned by pretraining on
CC3M w/ 1500 BadNet poisons. This model achieves an
ASR of 89.81%. However, the linear classifier on top of the
CleanCLIP version of the poisoned model achieves an ASR
of just 3.73% without any reduction in the clean accuracy
of 40%. We observed similar behavior in other attacks.

H. Baseline: Anti-Backdoor Learning (ABL)
in Multimodal Contrastive Learning

Since our defense strategies operate in the finetuning
regime on the clean data, it is pertinent to benchmark their
performance against strategies during the pretraining phase
with the poisoned data. However, to the best of our knowl-
edge, there has been no prior work to defend the mod-
els against the backdoor multimodal contrastive learning.
Hence, as an additional contribution, we consider an adap-
tion of the Anti-backdoor learning (ABL) [31] framework,
originally proposed for attacks in supervised learning, for
multimodal contrastive learning.

Originally, ABL consists of two components — (a) detect-
ing backdoored samples from the pretraining data, followed
by (b) the use of an additional objective that encourages
the loss to maximize, instead of minimize, on the detected
backdoored examples. In our adaptation to multimodal con-
trastive learning, we make use of a key insight that a clean
pretrained CLIP model would be unaware of the artificial
associations between the backdoor trigger and the target la-
bel. Hence, the cosine similarity of the embeddings of a poi-
soned image and the caption containing the target label for a
clean model would be low. Concretely, we compute the em-
beddings for all paired samples in the poisoned pretrained
data using a pretrained CLIP from [44]. Subsequently, as a
detection strategy we consider the £ samples with the lowest



cosine similarities as poisoned.

We denote the set of these k samples as D, and the re-
maining samples as D., D = @p UD,. Finally, we un-
learn the detected backdoor examples by introducing an ad-
ditional constraint to reduce the cosine similarity between
the paired image and text representations of the samples in
’Dp to 0. Formally, the ABL loss during pretraining looks
like:

- 1
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where Lorrp is the CLIP training objective (Eq. 2) and
« is a hyperparameter that controls the relative strength of
unlearning. For our experiments, we use £ = 10, 000 as the
size of ﬁp.

I. Training Dynamics

I.1. How do the training dynamics of the back-
doored and the clean examples vary during
CLIP pretraining?

We analyze the training dynamics of the clean exam-
ples and the poisoned examples when a CLIP model is pre-
trained on the poisoned data, as in §5.1. We find that the
CLIPScore [24] i.e., the cosine similarity between the repre-
sentations of the image and its corresponding text, increases
much rapidly for the poisoned images than the clean images
(Figure 7). This indicates that the spurious correlations be-
tween the image and text, from the poisoned example, are
learned early in the training phase.

L.2. Can we use the apparent difference in the back-
door dynamics for effective detection during
pretraining itself?

Since, we observe a clear distinction between the train-
ing dynamics of the clean and backdoor examples, it is im-
perative to study whether it is easier to detect the back-
doored examples well before the pretraining ends. To that
end, we consider k£ samples with the highest cosine similar-
ities at epoch 1" as the potentially poisoned examples. We
report the number of true positives i.e., the number of true
backdoored examples that are captured in the k detected ex-
amples in Figure 8. We show the results for a model trained
on 1.5M data with Blended attack for various values of the
detection epoch 7. We find that the number of backdoors
detected by the strategy can be sensitive to the choice of the
particular epoch. For instance, we observe that the num-
ber of detections suddenly drops at Epoch 50 when we use
k = 0.1|D| where |D| is the size of the training data, in
Figure 8b. We also find large qualitative variation in the re-
sults across the three models trained with 75, 300, and 1000

poisons, respectively. For instance, later epochs work well
for the model trained with 75 poisons but not for the model
trained with 1000 poisons.

I.3. Can we use a set of the correctly detected poi-
soned examples to erase the impact of the
backdoor trigger?

In §H, we had used a CLIP model that is pretrained with
400M data, however, it is unaware of the characteristics of
any specific backdoor attacks since it is not trained on them.
To that end, we evaluate whether the detections from a CLIP
model that is pretrained on the poisoned data be more useful
to construct a stronger defense. Concretely, we considered
the top 5,000 samples with the highest CLIPScore at epoch
8, chosen randomly, as backdoored samples and performed
our adaptation of anti-backdoor learning. We find that even
the unlearning objective failed to defend the model, since
the undetected backdoor examples were enough to poison
the model via multimodal contrastive loss. For instance,
in the case of a CLIP model trained on 1.5M data with
1000 samples poised with the Blended attack, only 368 poi-
soned samples were correctly detected as backdoors, and
the remaining undetected backdoor examples were enough
to maintain the ASR to 98.53%. Similarly, for the WaNet
attack with 1000 backdoored samples out of 1.5M training
samples, only 168 samples were detected and the ASR was
99.35%. The potency of the backdoor attack remained high
in our experiments even when the weight of the unlearning
term was increased. We believe that exploring different de-
tection and unlearning strategies that can effectively elim-
inate backdoor attacks during pretraining is an interesting
direction for future work.
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(a) CLIPScores during training under BadNet attack. (b) CLIPScores during training under Blended attack.

Figure 7: Variation in the cosine similarity between embeddings of images and their corresponding texts (referred to as
CLIPScore for original (clean) and backdoored images during training. It can be seen that the CLIPScores of backdoored
samples increase much more quickly as compared to the original samples. The models in both plots were trained on CC3M
with 300 poisoned samples. The plot for ‘original’ images was approximated by averaging the CLIPScores of 10,000 images
randomly sampled from the training set of CC3M. We observed similar trends in the case of 1500 poisoned samples in the
pretraining data.
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Figure 8: Results of the strategy that aims to detect poisoned data during pretraining using the training dynamics of clean and
poisoned samples. We pretrain CLIP on 1.5M samples from the CC3M training data attacked by the Blended attack with (a)
75, (b) 300, and (c) 1000 poisoned samples, respectively. Subsequently, we consider the top 10% training samples, with the
highest CLIPScore, at a given pretraining epoch as poisoned. We evaluate this strategy at various epochs during pretraining
and find that there is no single epoch that works well across all settings.



