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In this supplementary material, we first include addi-
tional implementation details to those provided in Sec. 4.1
needed to reproduce our work (Sec. A). Then, we comple-
ment Sec. 4.1 by providing all the information needed to
follow the proposed cross-dataset AMASS evaluation pro-
tocol (Sec. B). Sec. 3.3 is also extended with a 2D vi-
sualization of the disentangled behavioral latent space, and
several video examples of behavioral transference (Sec. C).
Class- and dataset-wise results from Sec. 4.3 are included
and discussed (Sec. D), as well as a detailed discussion on
several video examples comparing BeLFusion against the
state of the art (Sec. E). Finally, we provide a thorough de-
scription and extended results of the qualitative assessment
presented at the end of Sec. 4.3 (Sec. F).

A. Implementation details

To ensure reproducibility, we include in this section all
the details regarding BeLFusion’s architecture and training
procedure (Sec. A.1). We also cover the details on the im-
plementation of the state-of-the-art models retrained with
AMASS (Sec. A.2). We follow the terminology used in Fig.
2 and 3 from the main paper.

Note that we only report the hyperparameter values of
the best models. For their selection, we conducted grid
searches that included learning rate, losses weights, and
most relevant network parameters. Data augmentation for
all models consisted in randomly rotating from 0 to 360 de-
grees around the Z axis and mirroring the body skeleton
with respect to the XZ- and YZ-planes. The axis and mir-
roring planes were selected to preserve the floor position
and orientation. All models were trained with the ADAM
optimizer with AMSGrad [10], with PyTorch 1.9.1 [8] and
CUDA 11.1 on a single NVIDIA GeForce RTX 3090. The
whole BeLFusion training pipleine was trained in 12h for
H36M, and 24h for AMASS.

Figure A. Behavioral disentanglement. Main (left) and adver-
sarial (right) training losses of the behavioral latent space. As
expected, when the auxiliary loss weight is higher (orange), the
adversarial interplay intensifies.

A.1. BeLFusion

Behavioral latent space. The behavioral VAE consists
of four modules. The behavior encoder pθ, which receives
the flattened coordinates of all the joints, is composed of a
single Gated Recurrent Unit (GRU) cell (hidden state of size
128) followed by a set of a 2D convolutional layers (kernel
size of 1, stride of 1, padding of 0) with L2 weight normal-
ization and learned scaling parameters that maps the GRU
state to the mean of the latent distribution, and another set
to its variance. The behavior coupler Bϕ consists of a GRU
(input shape of 256, hidden state of size 128) followed by
a linear layer that maps, at each timestep, its hidden state
to the offsets of each joint coordinates with respect to their
last observed position. The context encoder gα is an MLP
(hidden state of 128) that is fed with the flattened joints
coordinates of the target motion xm, that includes C=3
frames. Finally, the auxiliary decoder Aω is a clone of Bϕ

with a narrower input shape (128), as only the latent code
is fed. Note that the adversarial interplay introduces addi-
tional complexity, making convergence more challenging,
see Fig. A. For H36M, the behavioral VAE was trained with
learning rates of 0.005 and 0.0005 for Lmain and Laux, re-
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spectively. For AMASS, they were set to 0.001 and 0.005.
All learning rates were decayed with a ratio of 0.9 every 50
epochs. The batch size was set to 64. Each epoch consisted
of 5000 and 10000 iterations for H36M and AMASS, re-
spectively. The weight of the −Laux term in Lmain was set
to 1.05 for H36M and to 1.00 for AMASS. The KL term
was assigned a weight of 0.0001 in both datasets. Once
trained, the behavioral VAE was further fine-tuned for 500
epochs with the behavior encoder pθ frozen, to enhance
the reconstruction capabilities without modifying the dis-
entangled behavioral latent space. Note that for the ablation
study, the non-behavioral latent space was built likewise by
disabling the adversarial training framework, and optimiz-
ing the model only with the log-likelihood and KL terms of
Lmain (main paper, Eq. 4), as in a traditional VAE frame-
work.

Observation encoding. The observation encoder hλ

was pretrained as an autoencoder with an L2 reconstruc-
tion loss. It consists of a single-cell GRU layer (hidden
state of 64) fed with the flattened joints coordinates. The
hidden state of the GRU layer is fed to three MLP layers
(output sizes of 300, 200, and 64), and then set as the hid-
den state of the GRU decoder unit (hidden state of size 64).
The sequence is reconstructed by predicting the offsets with
respect to the last observed joint coordinates.

Latent diffusion model. BeLFusion’s LDM borrowed
its U-Net from [3]. To leverage it, the target latent codes
were reshaped to a rectangular shape (16x8), as prior work
proposed [1]. In particular, our U-Net has 2 attention layers
(resolutions of 8 and 4), 16 channels per attention head, a
FiLM-like conditioning mechanism [9], residual blocks for
up and downsampling, and a single residual block. Both the
observation and target behavioral encodings were normal-
ized between -1 and 1. The LDM was trained with the sqrt
noise schedule (s = 0.0001) proposed in [5], which also
provided important improvements in our scenario compared
to the classic linear or cosine schedules (see Fig. B). With
this schedule, the diffusion process is started with a higher
noise level, which increases rapidly in the middle of the
chain. The length of the Markov diffusion chain was set to
10, the batch size to 64, the learning rate to 0.0005, and the
learning rate decay to a rate of 0.9 every 100 epochs. Each
epoch included 10000 samples in both H36M and AMASS
training scenarios. Early stopping with a patience of 100
epochs was applied to both, and the epoch where it was trig-
gered was used for the final training with both validation
and training sets together. Thus, BeLFusion was trained
for 217 epochs in H36M and 1262 for AMASS. For both
datasets, the LDM was trained with an exponential mov-
ing average (EMA) with a decay of 0.999, triggered every
10 batch iterations, and starting after 1000 initial iterations.
The EMA helped reduce the overfitting in the last denoising
steps. Predictions were inferred with DDIM sampling [11].

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Diffusion schedules explored

diffusion steps

n
o
is

e
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n

Linear

Cosine

Sqrt

Figure B. Diffusion schedules. Schedules explored for diffusing
the target latent codes.

A.2. State-of-the-art models

The publicly available codes from TPK, DLow, GSPS,
and DivSamp were adapted to be trained and evaluated un-
der the AMASS cross-dataset protocol. The best values for
their most important hyperparameters were found with grid
search. The number of iterations per epoch for all of them
was set to 10000.

TPK’s loss weights were set to 1000 and 0.1 for the tran-
sition and KL losses, respectively. The learning rate was
set to 0.001. DLow was trained on top of the TPK model
with a learning rate of 0.0001. Its reconstruction and diver-
sity losses weights were set to 2 and 25. For GSPS, the
upper- and lower-body joint indices were adapted to the
AMASS skeleton configuration. The multimodal ground
truth was generated with an upper L2 distance of 0.1, and a
lower APD threshold of 0.3. The body angle limits were re-
computed with the AMASS statistics. The GSPS learning
rate was set to 0.0005, and the weights of the upper- and
lower-body diversity losses were set to 5 and 10, respec-
tively. For DivSamp, we used the multimodal ground truth
from GSPS, as for H36M they originally borrowed such in-
formation from GSPS. For the first training stage (VAE),
the learning rate was set to 0.001, and the KL weight to 1.
For the second training stage (sampling model), the learn-
ing rate was set to 0.0001, the reconstruction loss weight
was set to 40, and the diversity loss weight to 20. For all of
them, unspecified parameters were set to the values reported
in their original H36M implementations.

B. AMASS cross-dataset protocol

In this section, we give more details to ensure the repro-
ducibility of the cross-dataset AMASS evaluation protocol.

Training splits. The training, validation, and test
splits are based on the official AMASS splits from the
original publication [6]. However, we also include the
new datasets added afterward and with available SMPL+H
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Figure C. Test set sequences. We show the number of test se-
quences evaluated for each class/dataset in H36M/AMASS.

model parameters, up to date. Accordingly, the training set
contains the ACCAD, BMLhandball, BMLmovi, BMLrub,
CMU, EKUT, EyesJapanDataset, KIT, PosePrior, TCD-
Hands, and TotalCapture datasets, and the validation set
contains the HumanEva, HDM05, SFU, and MoSh datasets.
The remaining datasets are all part of the test set: DFaust,
DanceDB, GRAB, HUMAN4D, SOMA, SSM, and Transi-
tions. AMASS datasets showcase a wide range of behav-
iors at both intra- and inter-dataset levels. For example,
DanceDB, GRAB, and BMLhandball contain sequences of
dancing, grabbing objects, and sport actions, respectively.
Other datasets like HUMAN4D offer a wide intra-dataset
variability of behaviors by themselves. As a result, this eval-
uation protocol represents a very complete and challenge
benchmark for HMP.

Test sequences. For each dataset clip (previously down-
sampled to 60Hz), we selected all sequences starting from
frame 180 (3s), with a stride of 120 (2s). This was done
to ensure that for any segment to predict (prediction win-
dow), up to 3s of preceding motion was available. As a
result, future work will be able to explore models exploit-
ing longer observation windows while still using the same
prediction windows and, therefore, be compared to our re-
sults. A total of 12728 segments were selected, around 2.5
times the amount of H36M test sequences. Note that those
clips with no framerate available in AMASS metadata were

Directions Greeting Posing SittingDown WalkDog

Discussion Phoning Purchases Smoking WalkTogether

Eating Photo Sitting Waiting Walking

Figure D. Behavioral latent space. 2D projection of the behav-
ioral encodings of all H36M test sequences generated with t-SNE.

ignored. Fig. C shows the number of segments extracted
from each test dataset. 94.1% of all test samples belong to
either DanceDB, GRAB, or HUMAN4D. Most SSM clips
had to be discarded due to lengths shorter than 300 frames
(5s). The list of sequence indices is made available along
the project code for easing reproducibility.

Multimodal ground truth. The L2 distance threshold
used for the generation of the multimodal ground truth was
set to 0.4 so that the average number of resulting multi-
modal ground truths for each sequence was similar to that
of H36M with a threshold of 0.5 [15].

C. Behavioral latent space

In this section, we present 1) a t-SNE plot for visualiz-
ing the behavioral latent space of the H36M test segments,
and 2) visual examples of transferring behavior to ongoing
motions.

2D projection. Fig. D shows a 2-dimensional t-SNE
projection of all behavioral encodings of the H36M test
sequences [13]. Note that, despite its class label, a se-
quence may show actions of another class. For example,
Waiting sequences include sub-sequences where the person
walks or sits down. Interestingly, we can observe that most
walking-related sequences (WalkDog, WalkTogether, Walk-
ing) are clustered together in the top-right and bottom-left
corners. Such entanglement within those clusters suggests
that the task of choosing the way to keep walking might
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be relegated to the behavior coupler, which has informa-
tion on how the action is being performed. Farther in those
corners, we can also find very isolated clusters of Phon-
ing and Smoking, whose proximity to the walking behaviors
suggests that such sequences may involve a subject making
a call or smoking while walking. However, without fine-
grained annotations at the sequence level, we cannot come
to any strong conclusion.

Transference of behaviors. We include several videos1

showing the capabilities of the behavior coupler to transfer
a behavioral latent code to any ongoing motion. The motion
tagged as behavior shows the target behavior to be encoded
and transferred. All the other columns show the ongoing
motions where the behavior will be transferred to. They are
shown with blue and orange skeletons. Once the behavior
is transferred, the color of the skeletons switches to green
and pink. In ‘H1’ (H36M), the walking action or behavior
is transferred to the target ongoing motions. For ongoing
motions where the person is standing, they start walking to-
wards the direction they are facing (#1, #2, #4, #5). Such
transition is smooth and coherent with the observation. For
example, the person making a phone call in #7 keeps the
arm next to the ear while starting to walk. When sitting or
bending down, the movement of the legs is either very lit-
tle (#3 and #6), or very limited (#8). ‘H2’ and ‘H3’ show
the transference of subtle and long-range behaviors, respec-
tively. For AMASS, such behavioral encoding faces a huge
domain drift. However, we still observe good results at this
task. For example, ‘A1’ shows how a stretching movement
is successfully transferred to very distinct ongoing motions
by generating smooth and realistic transitions. Similarly,
‘A2’ and ‘A3’ are examples of transferring subtle and ag-
gressive behaviors, respectively. Even though the dancing
behavior in ‘A3’ was not seen at training time, it is trans-
ferred and adapted to the ongoing motion fairly realistically.

D. Further experimental results
In this section, we present a class- and dataset-wise com-

parison to the state of the art for H36M and AMASS, re-
spectively (Sec. D.1). We also include the distributions
of predicted displacement for each class/dataset, which are
used for the CMD calculation. Then, we present an ex-
tended analysis of the effect of k, which controls the loss
relaxation level (Sec. D.2). Finally, we compare the infer-
ence time of BeLFusion to the state of the art (Sec. D.3).

D.1. Class- and dataset-wise results

Tab. A shows that BeLFusion achieves state-of-the-art
results in most metrics in all H36M classes. We stress that
our model is especially good at predicting the future in con-

1Videos referenced in the supp. material can be found in: https:
//barquerogerman.github.io/BeLFusion/.

texts where the observation strongly determines the follow-
ing action. For example, when the person is Smoking, or
Phoning, a model should predict a coherent future that also
involves holding a cigar, or a phone. BeLFusion succeeds
at it, showing improvements of 9.1%, 6.3%, and 3.7% for
FDE with respect to other methods for Eating, Phoning,
and Smoking, respectively. Our model also excels in classes
where the determinacy of each part of the body needs to be
assessed. For example, for Directions, and Photo, which
often involve a static lower-body, and diverse upper-body
movements, BeLFusion improves FDE by an 8.9%, and an
8.0%, respectively. We also highlight the adaptive APD that
our model shows, in contrast to the constant variety of mo-
tions predicted by the state-of-the-art methods. Such ef-
fect is better observed in Fig. E, where BeLFusion is the
method that best replicates the intrinsic multimodal diver-
sity of each class (i.e., APD of the multimodal ground truth,
see Sec. 4.2). The variety of motions present in each
AMASS dataset impedes such a detailed analysis. How-
ever, we also observe that the improvements with respect to
the other methods are consistent across datasets (Tab. B).
The only dataset where BeLFusion is beaten in an accuracy
metric (FDE) is Transitions, where the sequences consist
of transitions among different actions, without any behav-
ioral cue that allows the model to anticipate it. We also
observe that our model yields a higher variability of APD
across datasets that adapts to the sequence context, clearly
depicted in Fig. E as well.

Regarding the CMD, Tab. A and B show how meth-
ods that promote highly diverse predictions are biased to-
ward forecasting faster movements than the ones present
in the dataset. Fig. F shows a clearer picture of this bias
by plotting the average predicted displacement at all pre-
dicted frames. We observe how in all H36M classes, GSPS
and DivSamp accelerate very early and eventually stop by
the end of the prediction. We argue that such early di-
vergent motion favors high diversity values, at expense of
realistic transitions from the ongoing to the predicted mo-
tion. By contrast, BeLFusion produces movements that re-
semble those present in the dataset. While DivSamp fol-
lows a similar trend in AMASS than in H36M, GSPS does
not. Although DLow is far from state-of-the-art accuracy,
it achieves the best performance with regard to this metric
in both datasets. Interestingly, BeLFusion slightly deceler-
ates at the first frames and then achieves the motion closest
to that of the dataset shortly after. We hypothesize that this
effect is an artifact of the behavioral coupling step, where
the ongoing motion smoothly transitions to the predicted
behavior.

D.2. Ablation study: implicit diversity

As described in Sec. 3.3 and 4.3 of the main paper, by re-
laxing the loss regularization (i.e., increasing the number of
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Classes APD APDE ADE FDE MMADE MMFDE CMD FID

Directions

TPK 6.510 2.039 0.447 0.482 0.523 0.544 7.455 1.768
DLow 11.874 3.359 0.415 0.465 0.499 0.514 2.011 4.633
GSPS 15.398 6.877 0.407 0.477 0.492 0.522 10.469 4.827
DivSamp 15.663 7.142 0.389 0.463 0.502 0.523 10.539 5.489
BeLFusion 7.090 1.709 0.378 0.422 0.484 0.494 10.110 1.150

Discussion

TPK 6.966 2.572 0.511 0.581 0.570 0.600 7.554 1.090
DLow 11.872 2.659 0.472 0.536 0.533 0.549 2.695 1.300
GSPS 14.199 4.992 0.448 0.541 0.526 0.563 8,470 1.870
DivSamp 15.310 5.905 0.432 0.526 0.534 0.557 8.975 1.522
BeLFusion 9.172 1.425 0.420 0.507 0.512 0.530 7.521 1.055

Eating

TPK 6.412 1.066 0.388 0.473 0.452 0.472 5.306 4.345
DLow 11.603 4.829 0.358 0.433 0.439 0.452 3.214 10.300
GSPS 15.570 8.793 0.334 0.419 0.424 0.448 12.360 11.322
DivSamp 15.681 8.904 0.321 0.419 0.428 0.445 13.863 10.270
BeLFusion 5.954 1.297 0.310 0.381 0.418 0.420 5.808 1.439

Greeting

TPK 6.779 2.545 0.555 0.615 0.571 0.598 12.313 2.148
DLow 11.897 3.112 0.530 0.590 0.542 0.564 5.994 3.724
GSPS 14.974 5.950 0.502 0.592 0.532 0.577 10.654 5.488
DivSamp 15.447 6.373 0.489 0.579 0.535 0.562 9.044 4.848
BeLFusion 8.482 1.690 0.482 0.544 0.524 0.540 12.740 2.201

Phoning

TPK 6.410 1.400 0.377 0.475 0.468 0.507 3.057 1.882
DLow 11.542 4.605 0.343 0.444 0.451 0.487 4.886 4.847
GSPS 15.050 8.120 0.311 0.413 0.436 0.476 12.292 6.458
DivSamp 15.751 8.813 0.296 0.400 0.437 0.471 14.295 5.149
BeLFusion 6.649 1.477 0.283 0.375 0.426 0.445 3.388 0.836

Photo

TPK 6.894 1.884 0.541 0.689 0.548 0.633 3.928 3.231
DLow 11.931 4.180 0.507 0.655 0.516 0.596 4.013 3.305
GSPS 14.310 6.482 0.485 0.663 0.502 0.606 10.855 3.851
DivSamp 15.330 7.428 0.474 0.665 0.506 0.607 11.427 4.571
BeLFusion 8.446 1.726 0.434 0.601 0.462 0.546 4.491 2.526

Posing

TPK 6.520 2.310 0.466 0.538 0.542 0.565 4.740 1.279
DLow 11.875 3.116 0.442 0.521 0.510 0.525 3.421 2.521
GSPS 15.149 6.399 0.415 0.527 0.498 0.543 10.720 4.967
DivSamp 15.429 6.676 0.395 0.499 0.510 0.541 11.201 4.143
BeLFusion 8.438 1.241 0.406 0.510 0.498 0.531 4.729 1.463

Purchases

TPK 7.450 2.161 0.505 0.522 0.535 0.538 10.298 7.194
DLow 11.947 2.629 0.430 0.422 0.493 0.477 5.090 6.871
GSPS 13.969 4.552 0.414 0.429 0.497 0.497 7.380 6.521
DivSamp 14.967 5.517 0.388 0.404 0.502 0.478 6.950 3.758
BeLFusion 10.272 1.738 0.410 0.409 0.494 0.472 8.800 5.696

Classes APD APDE ADE FDE MMADE MMFDE CMD FID

Sitting

TPK 6.417 1.167 0.400 0.547 0.461 0.548 1.542 1.619
DLow 11.425 4.972 0.364 0.513 0.440 0.523 7.490 3.290
GSPS 14.966 8.494 0.323 0.454 0.411 0.484 14.377 5.717
DivSamp 15.614 9.146 0.317 0.465 0.417 0.490 16.828 3.485
BeLFusion 6.495 1.233 0.306 0.446 0.400 0.461 1.957 1.836

SittingDown

TPK 7.393 1.864 0.496 0.678 0.531 0.666 2.889 1.987
DLow 12.044 4.576 0.451 0.605 0.495 0.606 5.651 2.759
GSPS 13.725 6.520 0.406 0.561 0.461 0.565 9.301 3.694
DivSamp 14.899 7.240 0.413 0.579 0.478 0.586 11.929 3.471
BeLFusion 9.026 2.236 0.413 0.585 0.468 0.587 2.997 2.642

Smoking

TPK 6.522 1.807 0.422 0.529 0.509 0.560 3.148 1.652
DLow 11.549 4.058 0.400 0.515 0.490 0.537 5.123 3.535
GSPS 14.822 7.332 0.366 0.485 0.472 0.530 11.478 4.622
DivSamp 15.688 8.153 0.353 0.486 0.475 0.523 14.041 4.258
BeLFusion 6.780 1.372 0.341 0.467 0.467 0.512 3.849 0.847

Waiting

TPK 6.631 2.080 0.480 0.584 0.526 0.568 4.143 1.022
DLow 11.680 3.398 0.441 0.541 0.497 0.534 3.866 1.758
GSPS 15.000 6.702 0.400 0.514 0.475 0.529 10.686 3.277
DivSamp 15.455 7.156 0.387 0.517 0.486 0.535 11.611 3.108
BeLFusion 7.747 1.542 0.390 0.507 0.471 0.511 4.186 0.981

WalkDog

TPK 7.384 2.481 0.560 0.694 0.592 0.665 13.157 3.395
DLow 11.882 2.732 0.490 0.566 0.539 0.570 8.495 3.019
GSPS 13.746 4.569 0.459 0.564 0.530 0.587 8.869 2.647
DivSamp 15.616 6.212 0.439 0.555 0.532 0.577 8.177 1.979
BeLFusion 9.335 1.893 0.432 0.530 0.527 0.569 11.908 3.193

WalkTogether

TPK 6.718 1.791 0.443 0.548 0.535 0.573 10.814 14.715
DLow 11.951 3.922 0.395 0.495 0.503 0.530 5.234 20.315
GSPS 15.030 6.994 0.316 0.440 0.473 0.516 10.265 22.212
DivSamp 16.095 8.060 0.321 0.458 0.486 0.525 10.584 19.643
BeLFusion 6.378 2.092 0.296 0.393 0.484 0.495 5.613 4.348

Walking

TPK 6.708 1.875 0.455 0.533 0.538 0.558 14.279 16.210
DLow 11.904 3.507 0.428 0.518 0.516 0.539 8.400 20.670
GSPS 14.797 6.399 0.351 0.469 0.490 0.528 10.352 19.394
DivSamp 15.964 7.566 0.373 0.535 0.508 0.547 10.024 17.166
BeLFusion 5.116 3.345 0.367 0.471 0.530 0.546 8.588 3.784

Table A. Comparison of BeLFusion with state-of-the-art methods on H36M. Bold and underlined results correspond to the best and second-
best results, respectively. Lower is better for all metrics except APD.

predictions sampled at each training iteration, k), we can in-
crease the diversity of BeLFusion’s predictions. We argue
that by backpropagating each loss only on its best predic-
tion out of k (Eq. 6): 1) wrong predictions are not penal-
ized, and 2) correct predictions of less frequent behaviors
are rewarded. In the disentangled BLS, distinct behaviors
are spread out (Fig. D). Thus, high k’s implicitly encourage
models denoising N (0, 1) into a distribution with multiple

behavioral modes (i.e., into behaviorally diverse futures).
We already showed that by increasing k, the diver-

sity (APD), accuracy (ADE, FDE), and realism (FID) of
BeLFusion improves. In fact, for large k (> 5), a single de-
noising step becomes enough to achieve state-of-the-art ac-
curacy. Still, going through the whole reverse Markov dif-
fusion chain helps the predicted behavior code move closer
to the latent space manifold, thus generating more realistic
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Datasets APD APDE ADE FDE MMADE MMFDE CMD

DFaust

TPK 8.998 2.435 0.591 0.555 0.637 0.601 8.263
DLow 12.805 2.755 0.521 0.505 0.565 0.539 3.640
GSPS 12.870 3.218 0.504 0.508 0.564 0.556 8.150
DivSamp 25.016 14.691 0.479 0.495 0.569 0.569 57.256
BeLFusion 9.285 2.456 0.441 0.424 0.514 0.498 14.174

DanceDB

TPK 9.665 2.812 0.810 0.798 0.815 0.796 25.232
DLow 13.703 3.307 0.763 0.760 0.769 0.756 18.800
GSPS 11.792 3.121 0.747 0.764 0.758 0.765 27.113
DivSamp 23.984 13.008 0.757 0.815 0.777 0.818 31.244
BeLFusion 10.619 2.780 0.690 0.713 0.709 0.717 28.874

GRAB

TPK 8.590 1.555 0.415 0.457 0.463 0.469 9.646
DLow 12.376 5.180 0.338 0.383 0.407 0.411 15.502
GSPS 13.515 6.331 0.300 0.381 0.404 0.435 11.642
DivSamp 25.882 18.686 0.287 0.394 0.407 0.447 76.817
BeLFusion 7.421 1.111 0.260 0.323 0.375 0.388 1.321

HUMAN4D

TPK 9.451 2.618 0.657 0.732 0.662 0.705 6.305
DLow 13.083 4.571 0.562 0.629 0.583 0.612 2.888
GSPS 12.449 4.764 0.514 0.609 0.563 0.617 4.099
DivSamp 24.665 16.149 0.519 0.632 0.581 0.641 57.120
BeLFusion 9.262 2.020 0.471 0.568 0.526 0.576 10.909

SOMA

TPK 9.823 3.166 0.806 0.835 0.798 0.817 20.689
DLow 13.761 3.402 0.726 0.746 0.722 0.737 15.123
GSPS 11.867 3.665 0.715 0.779 0.710 0.765 22.222
DivSamp 24.131 13.296 0.724 0.802 0.728 0.795 35.350
BeLFusion 10.765 3.106 0.647 0.691 0.655 0.685 23.727

SSM

TPK 9.459 2.741 0.595 0.486 0.662 0.615 13.479
DLow 13.029 3.290 0.498 0.379 0.559 0.466 8.491
GSPS 12.973 3.467 0.490 0.412 0.556 0.504 12.369
DivSamp 24.993 14.164 0.474 0.416 0.580 0.568 56.610
BeLFusion 9.576 1.916 0.433 0.356 0.502 0.470 19.351

Transitions

TPK 9.525 2.217 0.696 0.672 0.706 0.658 26.234
DLow 13.308 2.461 0.599 0.538 0.615 0.550 21.308
GSPS 12.169 2.470 0.636 0.642 0.655 0.648 27.634
DivSamp 24.612 14.092 0.648 0.724 0.687 0.725 33.953
BeLFusion 10.499 2.085 0.577 0.578 0.611 0.596 27.361

Table B. Comparison of BeLFusion with state-of-the-art methods
on AMASS. Bold and underlined results correspond to the best
and second- best results, respectively. Lower is better for all met-
rics except APD.

predictions. In Fig. G, we include the same analysis for all
the models in the ablation study of the main paper. The re-
sults prove that the implicit diversity effect is not exclusive
of either BeLFusion’s loss or behavioral latent space.

D.3. Inference times

We computed the time it takes BeLFusion and the state-
of-the-art models to generate 50 samples for a single predic-
tion on a single GTX 1080Ti GPU. We averaged the values
across 50 runs of 100 sequences. BeLFusion (320/323ms
for H36M/AMASS) is slower than BeGAN (17/20ms),

TPK (30/38ms), DLow(34/43ms), GSPS(5/7ms), and Di-
vSamp (6/9ms). Despite BeLFusion’s slower inference
(discussed as limitation in Sec. 5,), its z0 parametrization
allows it to be early-stopped and run, if needed, in real-time
(BeLFusion D, 48/52ms) with similar accuracy in return for
less diversity and worse APDE, FID, and CMD.

E. Examples in motion
For each dataset, we include several videos where 10

predictions of BeLFusion are compared to those of meth-
ods showing competitive performance for H36M: TPK [14],
DLow [15], GSPS [7], and DivSamp [2]. Videos are iden-
tified as ‘[dataset] [sample id] [class/subdataset]’. For ex-
ample, ‘A 6674 GRAB’ is sample 6674, which is part of
the GRAB [12] dataset within AMASS (prefix ‘A ’), and
‘H 1246 Sitting’ is the sample 1246, which is part of a ‘Sit-
ting’ sequence of H36M (prefix ‘H ’). The Context col-
umn shows the observed sequence and freezes at the last
observed pose. The GT column shows the ground truth mo-
tion.

In this section, we discuss the visual results by highlight-
ing the main advantages provided by BeLFusion and show-
ing some failure examples.

Realistic transitioning. By means of the behavior cou-
pler, BeLFusion is able to transfer predicted behaviors to
any ongoing motion with high realism. This is supported
quantitatively by the FID and CMD metrics, and percep-
tually by our qualitative assessment (Sec. 4.3). Now, we
assess it by visually inspecting several examples. For ex-
ample, when the observation shows an ongoing fast motion
(‘H 608 Walking’, ‘H 1928 Eating’ or ‘H 2103 Photo’),
BeLFusion is the only model that consistently generates a
coherent transition between the observation and the pre-
dicted behavior. Other methods mostly predict a sudden
stop of the previous action. This is also appreciated in
the cross-dataset evaluation. For example, although the ob-
servation window of the ‘A 103 Transitions’ clearly show-
cases a fast rotational dancing step, none of the state-of-
the-art methods are able to generate a plausible continu-
ation of the observed motion, and all of their predictions
abruptly stop rotating. BeLFusion is the only method that
generates predictions that slowly decrease the ongoing mo-
tion’s rotational momentum to start performing a different
action. A similar effect is observed in ‘A 2545 DanceDB’,
and ‘A 10929 HUMAN4D’.

Context-driven prediction. BeLFusion’s state-of-the-
art APDE and CMD metrics show its superior ability to ad-
just both the motion speed and motion determinacy to the
observed context. This results in sets of predictions that are,
overall, more coherent with respect to the observed context.
For example, whereas for ‘H 4 Sitting’ BeLFusion’s pre-
dicted motions showcase a high variety of arms-related ac-
tions, its predictions for sequences where the arms are used
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Figure E. Class- and dataset-wise APD. GT corresponds to the APD of the multimodal ground truth. BeLFusion is the only method that
adjusts the diversity of its predictions to model the intrinsic diversity of each class and dataset. As a result, the APD distributions between
BeLFusion and GT are very similar. The proposed APDE metric quantifies such similarity (the lower, the more similar).

in an ongoing action (‘H 402 Smoking’, ‘H 446 Smoking’,
and ‘H 541 Phoning’) have a more limited variety of arms
motion. In contrast, predictions from state-of-the-art meth-
ods do not have such behavioral consistency with respect
to the observed motion. This is more evident in diversity-
promoting methods like DLow, GSPS, and DivSamp, where
the motion predicted is usually implausible for a person
that is smoking or making a phone call. Similarly, in
‘H 962 WalkTogether’, our method predicts motions that
are compatible with the ongoing action of walking next to
someone, whereas other methods ignore such possibility.
In AMASS, BeLFusion’s capability to adapt to the context
is clearly depicted in sequences with low-range motion, or
where motion is focused on particular parts of the body. For
example, BeLFusion adapts the diversity of predictions to
the ‘grabbing’ action present in the GRAB dataset. While
other methods predict coordinate-wise diverse inaccurate
predictions, our model encourages diversity within the short
spectrum of the plausible behaviors that can follow (see
‘A 7667 GRAB’, ‘A 7750 GRAB’, or ‘A 9274 GRAB’).
In fact, in ‘A 11074 HUMAN4D’ and ‘A 12321 SOMA’,
our model is the only able to anticipate the intention of
laying down by detecting subtle cues inside the observa-
tion window (samples #6 and #8). In general, BeLFusion
provides good coverage of all plausible futures given the

contextual setting. For example, in ‘H 910 SittingDown’,
and ‘H 861 SittingDown’ our model’s predictions contain
as many different actions as all other methods, with no re-
alism trade-off as for GSPS or DivSamp.

Generalization to unseen contexts. As a result
of the two properties above (realistic transitioning and
context-driven prediction), BeLFusion shows superior gen-
eralization to unseen situations. This is quantitatively sup-
ported by the big step forward in the results of the cross-
dataset evaluation. Such generalization capabilities are es-
pecially perceptible in the DanceDB2 sequences, which
include dance moves unseen at training time. For in-
stance, ‘A 2054 DanceDB’ shows how BeLFusion can pre-
dict, up to some extent, the correct continuation of a
dance move, while other methods either almost freeze
or simply predict an out-of-context movement. Simi-
larly, ‘A 2284 DanceDB’ and ‘A 1899 DanceDB’ show
how BeLFusion is able to detect that the dance moves in-
volve keeping the arms arising while moving or rotating.
In comparison, DLow, GSPS, and DivSamp simply pre-
dict other unrelated movements. TPK is only able to pre-
dict a few samples with fairly good continuations to the
dance step. Also, in ‘A 12391 SOMA’, BeLFusion is the

2Dance Motion Capture DB, http://dancedb.cs.ucy.ac.cy.
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Figure F. Predicted motion analysis. For each timestep in the future (predicted frame), the plots above show the displacement predicted
averaged across all test sequences. For H36M, GSPS and DivSamp predictions accelerate in the beginning, leading to unrealistic transitions.
For AMASS, DivSamp shows a similar behavior, and DLow beats all methods except in GRAB, where BeLFusion matches very well the
average dataset motion.
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Figure G. Implicit diversity. By increasing the value of k, the diversity is implicitly promoted in both the latent and reconstructed spaces
(Latent APD, and APD). We observe that this effect is not particular to the loss choice (Llat, Lrec, or both) or the latent space construction
(behavioral or not). Using the LDM to reverse the whole Markov chain of 10 steps (x-axis) helps improve diversity (APD), accuracy
(ADE), and realism (FID) in general. Note that for k > 5, only the diversity and the realism are further improved, and a single denoising
step becomes enough to generate the most accurate predictions.

only method able to infer how a very challenging repetitive
stretching movement will follow.

We also include some examples where our model fails
to generate a coherent and plausible set of predictions.
This mostly happens under aggressive domain shifts. For

example, in ‘A 1402 DanceDB’, the first-seen handstand
behavior in the observation leads to BeLFusion generat-
ing several wrong movement continuations. Similarly to
the other state-of-the-art methods, BeLFusion also strug-
gles with modeling high-frequencies. For example, in
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‘A 1087 DanceDB’, the fast legs motion during the ob-
servation is not reflected in any prediction, although
BeLFusion slightly shows it in samples #4 and #7. Even
though less clearly, this is also observed in H36M. For ex-
ample, in ‘H 148 WalkDog’, none of the models is able to
model the high-speed walking movement from the ground
truth. Robustness against huge domain drifts and modeling
of high-frequencies are interesting and challenging limita-
tions that need to be addressed as future work.

F. Qualitative assessment

Selection criteria. In order to ensure the assessment
of a wide range of scenarios, we randomly sampled from
three sampling pools per dataset. To generate them, we first
ordered all test sequences according to the average joint dis-
placement Di in the last 100 ms of observation. Then, we
selected the pools by taking sequences with Di within 1) the
top 10% (high-speed transition), 2) 40-60% (medium-speed
transition), and 3) the bottom 10% (low-speed transition).
Then, 8 sequences were randomly sampled for each group.
A total of 24 samples for each dataset were selected. These
were randomly distributed in groups of 4 and used to gener-
ate 6 tests per dataset. Since each dataset has different joint
configurations, we did not mix samples from both datasets
in the same test to avoid confusion.

Assessment details. The tests were built with the Jot-
Form3 platform. Users accessed it through a link generated
with NimbleLinks4, which randomly redirected them to one
of the tests. Fig. H shows an example of the instructions
and definition of realism shown to the user before start-
ing the test (left), and an example of the interface that al-
lowed the user to order the methods according to the realism
showcased (right). Note that the instructions showed either
AMASS or H36M ground truth samples, as both skeletons
have a different number of joints. A total of 126 people an-
swered the test, with 67 participating in the H36M study,
and 59 participating in the AMASS one.

Extended results. Extended results for the qualitative
study are shown in Tab. C. We also show the results for each
sampling pool, i.e., grouping sequences by the speed of the
transition. The average rank was computed as the average
of all samples’ mean ranks, and the 1st/2nd/3rd position
percentages as the number of times a sample was placed at
1st/2nd/3rd position over the total amount of samples avail-
able. We observe that the realism superiority of BeLFusion
is particularly notable in the sequences with medium-speed
transitions (77.0% and 64.9% ranked first in H36M and
AMASS, respectively). We argue that this is partly pro-
moted by the good capabilities of the behavior coupler to
adapt the prediction to the movement speed and direction

3https://www.jotform.com/
4https://www.nimblelinks.com/

observed. This is also seen in the high-speed set (ranked
third only in 9.8% and 14.1% of the cases), despite GSPS
showing competitive performance on it.
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