
Appendices
A. PUMaVOS Dataset

PUMaVOS is a dataset that covers visually challenging
segmentation scenarios, including, but not limited to high
appearance variability due to changes in lighting, viewing
angles, deformation, and scale changes; partial segmenta-
tion (where only a part of the object is being segmented),
often with limited to no low-level image cues (e.g. half of a
person’s face) and occlusion. It consists of 24 videos, from
13.5 to 60 seconds long, 29 on average, with 480p resolu-
tion with different aspect ratios (both vertical and horizon-
tal). There is a total of 21K densely annotated frames in
PUMaVOS.

Examples of the videos from the dataset are illustrated in
Fig. 9. Sequences “Half Face”, “Guitar” and “Dog Tail” de-
pict challenging partial segmentation use-case where only
the left part of a person’s face, the dog’s tail or just the
body of the guitar body is segmented, without following
any image cues such as edges or corners. “Queen car” and
“Full Face” contain changes in scale and heavy occlusion
throughout the sequence, while “Pimples” and “Ice Cream”
both contain very small objects that also move a lot through-
out the scene. “Pimples” and “Caps” are also examples of
ambiguity - there are multiple objects with similar appear-
ances present in the video, but only some of them are sup-
posed to be segmented. “Vlog” is one of the most challeng-
ing sequences in the dataset, as it not only contains partial
segmentation with arbitrarily-defined boundaries (irrespec-
tive of the low-level image cues) but also has multiple target
regions to segment, which are located on the same physi-
cal object, as well as having a lot of variability in lighting,
static and dynamic background scenes, and frequent defor-
mations, which are also present in “Shirt” and “Tattoo” se-
quences.

PUMaVOS and the source code of XMem++ and the an-
notation algorithm are going to be released to the public af-
ter the paper is accepted. We also provide pseudocode for
our frame selection algorithm.

B. Frame Selection User Study
A user study was performed to analyze the effectiveness

of the automatic frame selection module. A total of seven
participants were selected - two experienced and two novice
users. The users were given three videos each and asked to
select 5 most representative frames (besides frame #0) that
capture the variation in the appearance of the target object.
The videos chosen from PUMaVOS are: sequences “Half
Face” (shortened), “Ice Cream”, and “Vlog”. Videos last
from 22s (673 frames) to 32s (960 frames).

The experienced users were explained how XMem++
works internally in detail, as well as shown its predictions
on a few sample videos, while novice users treated it as a

blackbox. The participants were shown the full video and
the annotation of the target object(s) for the first frame and
were free to rewatch it as many times as they deemed nec-
essary, then asked to pick the frames. They were told that
the relative position of the frame does not matter, only its
content. We recorded the time it took the users to select
the frames (excluding the initial video viewing time) and
compared it to the running time of the frame selection algo-
rithm. We then took the chosen annotations and performed
a quantitative comparison of speed and final segmentation
accuracy using XMem++, presented in Table 4.

Group/Method IoU F-score Average time, s
Algorithm 0.777 0.828 1.7
Experts 0.805 0.855 47.1
Non-experts 0.779 0.825 54.8

Table 4. Comparison of performance metrics across expert and
non-expert with the frame annotation candidate selection algo-
rithm.

Our algorithm is 27× faster than the expert users, and
32× faster than non-expert ones, while providing compara-
ble performance to non-expert users’ results. This makes it
a practical tool for large-scale environments where it is in-
feasible to have a lot of trained experts to work on videos,
while also having a practical application for expert users,
who can use the algorithm to very quickly obtain a lot of
potentially valuable annotation candidates and then select
the best ones with their expertise, saving a lot of time in the
process.

C. Additional Results
Please refer to the accompanying video to see all the

video results and method comparisons. We highlight a num-
ber of highly complex scenes, where existing methods are
challenged with varying scales, appearance, occlusions, and
ambiguous objects. For example, in Fig. 16 row 1 the sub-
ject’s face is segmented (without ears or hair), while they
are going through a variety of poses, rotate around, occlude
the target region, and move both closer to and farther from
the camera.

Our method successfully segments the target across mul-
tiple scales and poses, resulting in a smooth, temporally
coherent, and accurate segmentation. Rows 4 and 5 de-
pict scenes with similar challenges - a multitude of objects
present, that have a similar appearance, frequently occlude
each other and move, both around the scene and with their
individual body parts. In both cases, our method success-
fully segments all of the targets, without confusing them,
“bleeding” the mask into neighboring objects, or merging
multiple targets into one.

Moreover, in the last picture of row 5, Fig. 16 it can be
observed that the flower the person marked with the blue
mask is holding was correctly not segmented, since in the

Figure 9. PUMaVOS dataset overview

provided annotations, it is not included, as not being a part
of the target object. This illustrates that XMem++ can work
correctly with a large number of targets in the scene while
preserving a high level of detail about their appearance.

Comparisons. We provide additional comparisons be-
tween our method and the current SOTA interactive seg-
mentation model XMem [4]. XMem is a resource-efficient
and fast memory-based segmentation method introduced in
2022 by Ho Kei Cheng and Alexander G. Schwing. Addi-
tional comparison results are provided in Fig. 11 and Fig.
10. For each video 6 frames were selected for annotation by
uniformly sampling the video (refer to Eq. 1), starting from
frame 0. Row 1 shows the same video as in “Full Face”
sequence from PUMaVOS, but now with only half of the
face being segmented, thus providing the same challenges
as discussed earlier, but with even more difficult segmenta-
tion. Row 2 is a “guitar” example from PUMaVOS, where
only the frontal part of the guitar’s body is the target. In
both cases we see XMem++ resulting in a noticeably better
segmentation, in particular with the “Half face” sequence,
where it manages to produce the correct segmentation mask
throughout the extreme variations in pose, expression, and
scale, while XMem often “bleeds” the mask into neighbor-
ing regions, sticking more to the visual cues of the object.
The results for the “Guitar” sequence demonstrate a similar
outcome - XMem++ correctly segmenting the front of the
guitar, but not the sides, while XMem segments the whole
object, again overfitting to visual cues instead of correct
segmentation boundaries.

Figure 10. Illustration of smooth interpolation between differ-
ent object’s appearance that the permanent memory module in
XMem++ provides. The green frames are the ground truth anno-
tations given to the model. It is noticeable that XMem++ (row b)
smoothly interpolates the mask across the change in the face’s ori-
entation, but the original XMem (row a) only fixes its predictions
after processing the second ground truth annotation, resulting in a
sharp ”jump” in visual quality.

Limitations. Some examples are challenging even for our
method. For example, while some motion blur is fine, with
extreme motion blur it can’t, which is a common challenge
for all existing methods. Furthermore, memory-based mod-
els generally struggle when provided “negative masks” -
empty annotations where the target object is not present,
but the model has a false-positive segmentation prediction,
illustrated in Fig. 13

Our frame selection algorithm does not work well when
there is too much dynamics in the scene, with a lot of ob-
jects moving chaotically at the same time. Equivalently,

Figure 11. Comparison models

if there is too little movement, no clear scene boundaries,
or very little variation in the target object’s appearance. In
both of these cases, the importance of selecting the right
candidates for annotations is significantly reduced, as most
of the frames result in a similar accuracy improvement. In
this case, our algorithm wouldn’t necessarily perform bet-
ter than randomly/uniformly selected frames. To prove this,
we evaluate our frame selection algorithm with XMem++,
and a uniform baseline, calculated by the formula in the Eq.
1 on LVOS dataset [14], in which the videos typically have
one of the aforementioned traits, and we show that the per-
formance of the uniform baseline and our algorithm is very
similar (Fig. 12).

FA = ⌊linspace(0, N − 1, k)⌋ (1)

Given a video with N total frames, we select k candi-
dates for both uniform and our frame annotation candidate
selection algorithm. We then run inference on LVOS vali-
dation set with 49 videos, described in the Results section
in the main paper, and illustrate the distribution of F-score
(F) and Intersection-over-Union (J) metrics in Fig. 12.

Figure 12. Comparison of segmentation quality with frames cho-
sen by uniform baseline and our candidate selection algorithm on
LVOS validation dataset.

Figure 13. Limitation of XMem++: Partial failure (the back of the guitar is segmented in some frames)

D. Additional Evaluation
We analyze the performance increase of XMem and

XMem++ with the number of annotations available, by pro-
viding both qualitative (Fig. 15) and quantitative results
(Fig. 14). In Rows 1-3 of the “Caps” sequence in Fig. 15,
we see that providing just 5 frames is enough to completely
resolve the ambiguity problem when segmenting one of the
two identical caps in the frame. Providing 10 annotated
frames further improves segmentation quality in challeng-
ing scenes, such as in Columns 4-5, where there is a lot of
motion blur on the target object, as well as lighting vari-
ation. XMem++ demonstrates similar results for “Queen
car” sequence where just 5 provided annotated frames dras-
tically improve the quality in the scenes with extreme oc-
clusion, where the car is hardly visible behind lots of people
(Columns 2-4).

We furthermore evaluate our method’s quality scaling
performance on LVOS validation dataset, from 1 to 10 an-
notated frames provided, illustrated in Fig. 14. As expected,
given only 1 frame both models yield equivalent results,
however XMem++ (drawn with orange line) demonstrates
significantly higher scalability potential and efficiency start-
ing at 2 annotated frames and keeps the advantage through-
out the whole comparison, up to +13% difference at 10
frames (0.63 XMem vs 0.76 XMem++)
In-Memory Augmentations. We address a possible use-
case where annotations could be very sparsely available or
too expensive to produce, by exploring in-memory aug-
mentations for provided annotated frames. Through rigor-
ous testing, we select the 11 best augmentations that, when
combined, lead to the highest possible segmentation quality
improvement for XMem++, shown in Fig. 5. When pro-
cessing and adding provided frames and their annotations
to the permanent memory, each of the augmentations is ap-
plied to every frame (and their corresponding mask, where
necessary) and stored in the permanent memory as well.
This can be a practical way of increasing the segmentation
accuracy without any extra work done by the end-user, at
the cost of higher memory usage and potentially slower in-
ference speed.
Utility of Permanent Memory. We further demonstrate
the capabilities of our introduced permanent memory mod-
ule by disabling updates to the temporary memory in

Figure 14. Demonstration of superior segmentation quality scal-
ing of XMem++ compared to original XMem with the number
of annotated frames available. Blue line is the original XMem
model, orange is XMem++ as used in all other evaluations and
comparison. Purple line shows a modification of XMem++ with
disabled temporary memory, and green and red indicate the usage
of in-memory augmentations, with and without temporary mem-
ory correspondingly.

Increase brightness 0.721 +0.009
Decrease brightness 0.725 +0.013
Grayscale 0.707 -0.005
Reduce bits to 3 0.717 +0.005
Make sharp 0.718 +0.006
Gaussian blur 0.731 +0.019
Rotate right 45 deg† 0.723 +0.011
Translate right +100 px 0.675 -0.037
Zoom out 0.5× 0.715 +0.003
Zoom in 1.5× 0.727 +0.015
Shear right by 20† 0.730 +0.018
Crop mask region 0.704 -0.008

Table 5. In-memory augmentations in their individual effect on the
overall segmentation quality on LVOS dataset. Only transforma-
tions named in bold were considered for experiments. For trans-
formation with †the equivalent symmetrical transform was used as
well. A total of 11 augmentations were used for the experiments
in Fig. 14.

XMem++, effectively keeping it empty and frozen through-
out the inference. We observe that for LVOS dataset (Fig.
14) this results in an increase in the overall segmenta-
tion quality, both with (red) and without (purple) using in-
memory augmentations. This shows that for certain types
of videos, especially when predicted masks are prone to
have errors, the best strategy is to not use them at all, and
very few high-quality references in the memory result in
higher segmentation quality than dozens, potentially hun-
dreds, but containing errors. Temporary memory plays has
an important role in XMem++ architecture, allowing it to
adapt better to changes in the target appearance, but through
our experiments we show that for some videos it can be
safely disabled (for example, if the target object’s appear-
ance stays relatively consistent throughout the video), lead-
ing to higher inference speed and lower memory footprint.

Figure 15. Visual comparison of the segmentation results by XMem++ with 1, 5, and 10 uniformly-sampled annotation candidates
provided.

Figure 16. Results of XMem++

Algorithm 1 select-next-candidates(K, M, k, PC, α = 0.5, β = 9)
Here is the pseudo-code for the annotation candidate selection algorithm. The ⊙ is a pointwise multiplication operation.
Symbol [] denotes an empty list, and symbols S and ¬S are used to denote similarity and dissimilarity correspondingly (the
negation symbol ¬ is used as a visual cue)
Require: K: list of “key” feature maps for all frames of the video
Require: M: list of masks for each frame (predicted or user-provided)
Require: k: number of candidate frames to select
Require: PC: list of previously chosen candidate indices (default is [0])
Require: α: weight of mask regions (default is 0.5), α ∈ [0..1]
Require: β: minimum number of pixels for a valid mask, to explicitly filter out frames without the target object or where it

is too small (default is 9px)
Ensure: PC not empty, 0 ≤ α ≤ 1.0, k > 0

1: function SELECT-NEXT-CANDIDATES(K, M, k, PC, α, β)
2: K← [], N ← |K| ▷ Composite keys, Number of frames
3: for i in [0, N − 1] do
4: k̂ ← K[i]⊙M[i] · α+K[i] · (1− α) ▷ k̂ is a “composite” key
5: ▷ Equivalent to alpha-blending operation
6: K.add to end(k̂)
7: end for
8: CC← PC ▷ Chosen candidates, initialize with previous candidates
9: CK̂← [K[i] | i ∈ PC] ▷ Chosen candidates composite keys

10: for i in [0, k] do
11: ¬S← [] ▷ Dissimilarities between candidates and other frames
12: for j in [0, N] do
13: if |M[i] > 0| < β then ▷ Mask empty or too small, ignore
14: ¬Smin ← 0 ▷ Minimum dissimilarity of frame i to all in CC
15: else
16: ¬SK ← [] ▷ Dissimilarities of i→ j,∀j ∈ CC
17: for j in CC do
18: Sj→i ← similarity(CK̂[j], K[i])
19: Si→j ← similarity(K[i], CK̂[j])
20: ¬Scycle ← (Sj→i − Si→j) ▷ Pixel-wise cycle dissimilarity
21: ¬Scycle ←

∑
max(0,¬Scycle)
|¬Scycle| ▷ Only non-negative mappings

22: ¬SK.add to end(¬Scycle)
23: end for
24: ¬Smin ← min(¬SK)
25: end if
26: ¬S .add to end(¬Smin)
27: end for
28: c← argmax(¬S) ▷ New selected candidate
29: CC.add to end(c)
30: CK̂.add to end(K[c])
31: end for
32: return [CC[i] | i ≥ |PC|] ▷ Return new candidates, from index |PC|
33: end function

	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@15:
	pbs@ARFix@16:
	pbs@ARFix@17:
	pbs@ARFix@18:

