
In this supplemental material, we show additional texture
generation results in Section A, nearest train images by SSIM
metric in Section B, texture transfer from query images in
Section C, additional comparison with Adobe PhotoShop
generative tool D, qualitative visualizations for ablations in
Section E, network architecture details in Section F, and
additional implementation details in Section G.

A. Additional Generation Results
In Fig. 4 we show additional qualitative evaluation on

unconditional texture generation for ShapeNet meshes. Not
all baselines are able to produce diverse high-quality tex-
tures after training on uncorrelated real-world datasets. As
GET3D cannot be successfully trained on sparse views, we
use the dense view per-object training provided by the au-
thors; however, this still produces different artifacts. Our
learned hybrid mesh-field representation enables Mesh2Tex
to generate more realistic textures.

We found that a proxy loss on the coarse (face-based)
texture helped with faster convergence and avoiding incon-
sistent texturing, as our neural field considers only local
inputs (Tab. 1). In Fig. 3 we show several qualitative results
of generated textures using these ablated models for ’chair’
and ’car’ categories.

B. Nearest train images by SSIM
Fig. 1 shows the closest train images to the generated

textured meshes by SSIM. As train images are real, they
do not correspond to the shape geometry of our textured
meshes.

Figure 1: Nearest train images to generated textures with
Mesh2Tex by SSIM metric.

Figure 2: Inpainted texture by PhotoShop generative fill.

Figure 3: Generated textures without global style loss. Su-
pervising only the mesh field ψ generated textures leads to
severe mode collapses and inconsistent texture predictions.

Method Chairs Cars
FID KID FID KID

Ours w/o proxy loss 43.51 2.67 80.87 6.73
Ours 30.01 1.69 41.35 3.41

Table 1: Ablation study on unconditional texture generation
for 3D shapes. The additional per-face supervision with
proxy loss enables more details in texture prediction as our
implicit mesh field ψ is able to efficiently refine generated
per-face texture. The KID values are scaled by 102.

C. Additional Results for Texture Transfer from
a Single RGB Image

In Figs. 5, 6, and 7, we present additional results on for
texture transfer from synthetic input images, using aligned,
unaligned query images and arbitrary shape geometry, re-
spectively. Mesh2Tex effectively leverages our learned tex-
ture manifold, preserving consistent textures while transfer-
ring to different geometries.

Figs. 8, 9, and 10 present additional results on texture
transfer from real-world images from ScanNet and Comp-
Cars images as queries. Mesh2Tex is able to perform consis-
tent texture generation from real-world queries even under
the challenging scenario of different geometry, pose, and
real-world view-dependent effects.

D. Additional Comparison with Adobe Photo-
Shop Generative Fill

Fig. 2 shows texture inpainting using Adobe Photo-
Shop [1] generative fill. We project a real RGB image query
to the left side of the input car mesh, and inpaint either the
UV map or the 2D view of the object; both result in view
and geometry inconsistencies.

E. Qualitative Ablation Visualizations
According to Tab.8 in the main paper, we show qualitative

results on an ablation study performed in texture generation
from unaligned synthetic ShapeNet images. Optimizing
textures without patch loss component or NOC guidance
leads to messy textures with stripe artifacts and disordered
texture mapping. Optimizing only the latent codes (w/o
surface features) results in inaccurate texture generation with
lost details.

F. Network Architecture
An overview of the architectures of our surface encoder,

generator, and neural field Ψ is shown in Figs. 12 and 13.
Note that we follow the use of FaceResNet blocks, FaceConv
layers, and Synthesis Block from Texturify [5]. Our genera-
tor then produces both coarse per-face rgb values as well as
feature vector Fc input to Ψ. Our discriminator architecture



follows the discriminator of Texturify.
In order to produce locally refined texture with Ψ, we

operate locally on faces, considering their barycentric co-
ordinate system. We compute per-vertex features from
Fc by averaging incident face features. For a point p on
the mesh surface, its feature is computed as the barycen-
tric averaging of the vertex features F1, F2, F3, where
the barycentric weights b1, b2, b3 are areas of triangles
△ (F1, F2, p),△ (F2, F3, p),△ (F3, F1, p) respectively.
Ψ also takes a learnable auxiliary latent vector of size
zaux = 512 as input, which is fixed for the entire model. We
observed that this auxiliary latent enhanced the consistency
of high-resolution textures. The auxiliary latent, along with
surface encoder and generator features, are then processed
with two linear layers (LeakyReLU activations) before being
concatenated and passed to an additional four linear layers.
This results in the final output color corresponding to surface
location p.

When optimizing for texture from an input image query,
we also use a pose predictor network and NOC predictor
network. Pose prediction uses a ResNet18 [3] backbone,
with the final features of size 512 passed to two linear layers
with output dimension 256. This refined feature is then
passed to a two-layer MLP with hidden size 128 to estimate
the angles αa and αe. The NOC predictor leverages the
EfficientNet-b4 [7] architecture as a backbone for the U-
shaped model. It takes an RGB image and the corresponding
binary mask of a foreground object as 4-channel input and
predicts NOCs a 3-channel image.

G. Implementation Details
We train Mesh2Tex using an Adam optimizer with learn-

ing rates of 1e-4, 12e-4, 1e-4, 14e-4 for the encoder, gen-
erator, Ψ, and both discriminators, respectively, for Photo-
Shape [4], and learning rates of 1e-4, 15e-4, 5e-4, 1e-4 for
CompCars [8]. For both models, we use a batch size of 2,
and render 8 views for each shape in the batch.

To optimize texturing for input query images, we optimize
latent codes for 100 iterations and refined weights with the
parameters of the two last generator synthesis blocks for addi-
tional 300 iterations using an Adam optimizer with a learning
rate of 1e-2. For the style loss, we use VGG19 [6] network,
and extract features of the (2nd, 4th, 8th, 12th, 16th) convo-
lutional layers. We extract patches of size 64 from both
rendered and input images. Both full images and patches are
equipped with corresponding foreground masks to filter out
extracted VGG background features.

Pose prediction is trained using an Adam optimizer with a
learning rate of 3e-4 for chairs and 2e-5 for cars, with a batch
size of 128 on images of size 512x512. The NOC Predictor
is trained using an Adam optimizer with a learning rate of
3e-4 for chairs and 5e-5 for cars, with a batch size of 64 on
images of size 512x512. Both networks are first pretrained

on synthetic renders of ShapeNet objects and fine-tuned on
real-world ScanNet and CompCars datasets (except for NOC
Prediction for CompCars as NOC data is not available).
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Figure 4: Additional results on unconditional texturing for meshes from ShapeNet [2], in comparison with state of the art. Our
approach generates more realistic, detailed textures.



Figure 5: Optimized textures based on input query images (top row) using aligned query images from ShapeNet chairs and
cars.



Figure 6: Optimized textures based on input query images (top row) using unaligned images query images from ShapeNet
chairs and cars.



Figure 7: Texture transfer from input query images (top row) using unaligned images and arbitrary shape geometry of the
same class category (ShapeNet).



Figure 8: Texture transfer from real-world input query images (top row, ScanNet) using aligned images and close shape
geometry (ShapeNet).



Figure 9: Texture transfer from real-world input query images (top row, ScanNet) using unaligned images and similar shape
geometry (ShapeNet).



Figure 10: Texture transfer from real-world input query images (top row, ScanNet, CompCars) using unaligned images and
arbitrary shape geometry from the same class category (ShapeNet).



Figure 11: Qualitative ablation study on texture transfer from synthetic input query images (ShapeNet) using unaligned images;
visualized with the query image pose.



Figure 12: Overview of Surface Encoder (orange) and Generator (green) architectures. The encoder takes as input normals and
curvatures of the finest resolution quadmesh, processes them in a hierarchical convolutional structure to extract geometric
features. The generator then considers a latent texture code, learned noise, and the geometric features to produce per-face
features for the neural field.

Figure 13: Our architecture for local face neural field Ψ. Features from the surface encoder and generator are fused by their
barycentric coordinates and passed with an auxiliary latent vector into an MLP to produce the final color of surface location p.


