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Abstract

Due to the lack of space in the main paper, we provide more details of the dataset construction and spherical resampling
module in the supplementary material. Specifically, in Sec. 1, we provide more details of the parameters of Möbius transfor-
mations and dataset construction. Sec. 2 explains more details of the angle calculation in the spherical resampling module.
Sec. 3 presents more experimental results and discussion. Lastly, Sec. 4 presents additional visual comparisons between
OmniZoomer and other methods on different datasets.

1. Details of the ODIM dataset
We synthesize the proposed ODI-Möbius (ODIM) dataset with various Möbius transformations. As we aim to move and

zoom in on ODIs, the parameters of Möbius transformations in Eq. 3 in the main paper are determined by rotation angles
α, and zoom level s, respectively. Given a specific rotation angle α along the rotation axis L = (l,m, n), the parameters of
Möbius transformations can be described as follows:(
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Specifically, when performing horizontal rotation with angle β, the rotation axis can be represented with L = (0, 0, 1),
and the parameters of Möbius transformations can be simplified as follows:(
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Similarly, when performing vertical rotation with angle γ, the rotation axis can be represented with L = (0, 1, 0), and the
parameters of Möbius transformations can be simplified as follows:(
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An arbitrary rotation can be divided into horizontal rotation and vertical rotation. In addition, Möbius transformations can
be composed to give a new Möbius transformation. Therefore, we can achieve arbitrary rotation or movement on ODIs with
horizontal rotation angle β and vertical rotation angle γ.

For zoom with level s, if the pole is North pole (0, 0, 1), the parameters of Möbius transformations can be described as
follows: (
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Furthermore, if the pole is an arbitrary point (x0, y0, z0), we can rotate the sphere so that the arbitrary pole coincides with
the north pole (0, 0, 1), and then apply the standard stereographic projection (STP) and its inversion in Eq. 2,4 in the main
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paper. To rotate the sphere, we can employ quaternions. The quaternion of (0, 0, 1) can be written as: v = [0, i0, j0, k1], and
the quaternion of (x0, y0, z0) can be written as: v′ = [0, ix0, jy0, kz0]. To estimate the rotation between two quaternions,
we can utilize the equation: v′ = qvq−1, where q = [cos( 12θ), sin(

1
2θ)u], u is a unit axis for rotation, and θ is the rotation

angle along the unit axis u. To estimate the axis u, we can compute the cross product of v and v′: v× v′. The rotation axis u
can be expressed with v×v′

||v×v′|| . Moreover, considering that v and v′ are unit vectors, ||v × v′|| = sin(θ). Meanwhile, we can
compute cos(θ) = v · v′, and utilize that cos(θ) = 2 cos2( θ2 )− 1 to simplify q as follows:
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2
,
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Finally, we introduce the parameters of the random distributions we use in Tab. 1. We uniformly sample horizontal rotation
angle β and vertical rotation angle γ, and zoom level s. Note that the ODIs vary greatly when rotated vertically with large
angles. Empirically, to make the training process stable, we constrain γ into (−π

4 ,
π
4 ). Similarly, with too large or small

(nearly zero) zoom levels, some specific regions are enlarged too much and make the other regions almost disappear from
the ODIs. In this case, we also constrain s into (0.5, 5). We do not randomly sample the pole because there are overlapping
functions between rotation and changing pole. During validation and testing, we assign a fixed Möbius transformation matrix
for each ODI. We also test on SUN360 dataset with the same Möbius transformation matrices in the testing set of ODIM
dataset.

Variable Sampling distribution Note
β U(0, 2π) Horizontal rotation
γ U(−π

4 ,
π
4 ) Vertical rotation

s U(0.5, 5) Zoom

Table 1: Random variable sampling distributions for the Möbius transformation matrix.

2. Spherical Resampling Module
We first resample p0, p1 to p01. The angle α01 subtended by p0 and p1 is calculated as follows:

α01 = arccos (p0 · p1), (6)

where (p0 · p1) denotes dot production between p0 and p1. To make the longitude of p01 = (θ01, ϕ01) same with the query
pixel q = (θ, ϕ), i.e., θ01 = θ, the resampling weight t01 in Eq. 6 in the main paper needs to be selected specifically.
According to Eq. 1,6 in the main paper, we can get the following equation:
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The unknown parameters in Eq. 7 are t01 and ϕ01. Also, Eq. 7 contains two equations because p01 is located on the unit
sphere. Therefore, t01 can be obtained from Eq. 7. The complicated formula is mainly due to p0, p1, and p01 do not have the
same longitude or latitude. If we assume that p0, p1, and p01 have the same latitude, the calculation of t01 can be simplified
into:

t01 =
θ − θ0
θ1 − θ0

. (8)

The calculation of t23 is similar with that of t01. Furthermore, as p01, p23, and q are located on the same longitude, the
resampling weight tq is convenient to calculate as follows:

tq =
ϕ− ϕ01

ϕ23 − ϕ01
. (9)



Figure 1: Visual comparison of zooming in with level 3. (a) The original ODI (b) Uniformly zooming in on the ODI. (c) Applying Möbius
transformation on the ODI. As shown in the ERP images (left column) and spherical images (right column), uniformly zooming in causes
incorrect spherical distortion, while the result from Möbius transformation is conformal and reasonable.

3. More Discussion
About zooming in uniformly. From Fig. 1(b), we can see that zooming in on ERP images uniformly not only loses some
pixels from the original ERP images, but also leads to shape distortion when projected onto the sphere surface. This is because
uniformly zooming in on ERP images is not conformal. In contrast, as shown in Fig. 1(c), Möbius transformation preserves
the angles on the sphere surface effectively, e.g., the rectangular shape of the advertising board. Möbius transformation is the
only conformal and bijective transformation on the sphere.
About computation costs and time consuming of each module. In Tab. 2, firstly, the feature extractors and upsampling
modules are directly from the backbones with no change. Then, our core index generation and resampling modules have
minor computational costs compared with backbones. For decoder, we add three ResBlocks, which obtain 0.02 WS-PSNR
improvement, but with relatively heavy computational costs.

Ours-EDSR-baseline Ours-RCAN
Computation Time Computation Time

Feature Extractor 39.9 0.006 496.9 0.079
Up Sampling 101.5 0.010 101.5 0.010

Index Generation <0.1 0.050 <0.1 0.050
Spherical Resamp. 0.6 0.029 0.6 0.029

Decoder-0 3.6 0.002 3.6 0.002
Decoder-3 467.5 0.066 467.5 0.066

Sum-0 145.6 0.097 602.6 0.170
Sum-3 609.5 0.161 1066.5 0.234

Table 2: MACs/G and time (s) of each module.

4. More Visual results
From Fig. 2,3,4,5,6,7, we can find that OmniZoomer reconstructs clearer textural and structural details, e.g., the branches

in Fig. 2, the nearly ninety degree’s corner of the object in Fig. 3, the thin handrails in Fig. 4, the windows in Fig. 5. Also, in
Fig. 6 and Fig. 7, we can see that other methods’ predictions have jagging and blurring artifacts. Inversely, our OmniZoomer
predicts more continuous edges of the tables and windows, showing the effectiveness of the HR feature representation and
spherical resampling.



(a) Ground Truth (b) Bicubic (c) EDSR-baseline (d) LAU-Net

(f) RRDB(e) LTEW (g) RCAN (h) Ours

OmniZoomer

Figure 2: Visual comparisons of different methods for Möbius transformation with ×8 up-sampling factor on ODI-SR dataset.

(a) Ground Truth (b) Bicubic (c) EDSR-baseline (d) LAU-Net

(f) RRDB(e) LTEW (g) RCAN (h) Ours
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Figure 3: Visual comparisons of different methods for Möbius transformation with ×8 up-sampling factor on ODI-SR dataset.
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(f) RRDB(e) LTEW (g) RCAN (h) Ours
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Figure 4: Visual comparisons of different methods for Möbius transformation with ×8 up-sampling factor on ODI-SR dataset.



(a) Ground Truth (b) Bicubic (c) EDSR-baseline (d) LAU-Net

(f) RRDB(e) LTEW (g) RCAN (h) Ours
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Figure 5: Visual comparisons of different methods for Möbius transformation with ×8 up-sampling factor on ODI-SR dataset.
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Figure 6: Visual comparisons of different methods for Möbius transformation with ×8 up-sampling factor on SUN360 dataset.

(a) Ground Truth (b) Bicubic (c) EDSR-baseline (d) LAU-Net

(f) RRDB(e) LTEW (g) RCAN (h) Ours
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Figure 7: Visual comparisons of different methods for Möbius transformation with ×8 up-sampling factor on SUN360 dataset.


