
A. Formulation of Diffusion Model
We provide a detailed review of the formulation of dif-

fusion models, following the notion of [16,38,67]. Starting
from a data distribution z0 ⇠ q(z0), we define a forward
Markovian noising process q which produces data samples
z1, z2, ..., zT by gradually adding Gaussian noise at each
timestep t. In particular, the added noise is scheduled by the
variance �t 2 (0, 1):

q(z1:T |z0) :=
TY

t=1

q(zt|zt�1) (3)

q(zt|zt�1) := N (zt;
p
1� �tzt�1,�tI) (4)

As noted by Ho et al. [38], we can directly sample data zt
at an arbitrary timestep t without the need of applying q
repeatedly:

q(zt|z0) := N (zt;
p
↵̄tz0, (1� ↵̄t)I) (5)

:=
p
↵̄tz0 + ✏

p
1� ↵̄t, ✏ 2 N (0, I) (6)

where ↵̄t :=
Qt

s=0 ↵s and ↵t := 1 � �t. Then, we could
use ↵̄t instead of �t to define the noise schedule.

Based on Bayes’ theorem, it is found that the posterior
q(zt�1|zt, z0) is a Gaussian distribution as well:

q(zt�1|zt, z0) = N (zt�1; µ̃(zt, z0), �̃tI) (7)

where

µ̃t(zt, z0) :=

p
↵̄t�1�t

1� ↵̄t
z0 +

p
↵t(1� ↵̄t�1)

1� ↵̄t
zt (8)

and

�̃t :=
1� ↵̄t�1

1� ↵̄t
�t (9)

are the mean and variance of this Gaussian distribution.
We could get a sample from q(z0) by first sampling from

q(zT) and running the reversing steps q(zt�1|zt) until z0.
Besides, the distribution of q(zT) is nearly an isotropic
Gaussian distribution with a sufficiently large T and rea-
sonable schedule of �t (�t ! 0), which making it triv-
ial to sample zT ⇠ N (0, I). Moreover, since calculating
q(zt�1|zt) exactly should depend on the entire data dis-
tribution, we could approximate q(zt�1|zt) using a neural
network, which is optimized to predict a mean µ✓ and a di-
agonal covariance matrix ⌃✓:

p✓(zt�1|zt) := N (zt�1;µ✓(zt, t),⌃✓(zt, t)) (10)

Instead of directly parameterizing µ✓(zt, t), Ho et al. [38]
found learning a network f✓(zt, t) to predict the ✏ or z0
from Equation (6) worked best. We choose to predict z0 in
this work.

(a) Deformable DETR [115] vs. DiffusionDet

(b) Sparse R-CNN [91] vs. DiffusionDet

Figure 5. Dynamic number of boxes. All models are trained with
300 candidates (i.e., learnable queries or random boxes). When
Ntrain > Neval, we directly choose Neval from Ntrain can-
didates; when Ntrain < Neval, we design two strategies, i.e.,
clone and concat random.

B. Additional Experiments
We provide some additional experiments in this section

for more detailed analysis.

B.1. Dynamic Number of Boxes
We further compare the dynamic box property of Dif-

fusionDet with Deformable DETR [115] and Sparse R-
CNN [91] in Figure 5. We directly use the provided models
in their official code repositories.1 2

We make Deformable DETR work under Ntrain 6=
Neval setting using the same clone and concat
random strategies as DETR as introduced in Section 4.2.
For Sparse R-CNN, the strategy concat random is
slightly different since Sparse R-CNN has both learnable
queries and learnable boxes. Therefore, we concatenate
Neval � Ntrain boxes to existing Ntrain boxes which are
initialized to have the same size as the whole image. Be-
sides, we also concatenate Neval�Ntrain randomly initial-
ized queries to existing Ntrain queries in the same way as
DETR and Deformable DETR.

Similar to DETR [10], neither Deformable DETR nor
Sparse R-CNN has the dynamic box property. Specifically,
the performance of Deformable DETR decreases to 9.6 AP
when Neval = 4000, far lower than the peak value of 44.5

1https://github.com/fundamentalvision/Deformable-DETR
2https://github.com/PeizeSun/SparseR-CNN

https://github.com/fundamentalvision/Deformable-DETR
https://github.com/PeizeSun/SparseR-CNN

method [E] step 1 step 3 step 5

DETR 42.03
42.00 (-0.03) 41.88 (-0.15)

X 41.35 (-0.68) 41.36 (-0.67)

Deformable DETR 44.46
43.45 (-1.01) 43.40 (-1.06)

X 44.03 (-0.43) 44.04 (-0.42)

Sparse R-CNN 45.02
1.32 (-43.70) 0.32 (-44.70)

X 42.90 (-2.12) 42.24 (-2.78)

DiffusionDet 45.80
45.74 (-0.06) 45.46 (-0.34)

X 46.62 (+0.82) 46.79 (+0.99)

Table 8. Iterative evaluation. [E] denotes ensembling predic-
tions from multiple steps. NMS is adopted when using an ensem-
ble strategy. We show the performance differences of each method
with respect to their own performance on step 1 by (-) or (+).

AP. Although Sparse R-CNN has a slower decrease com-
pared with Deformable DETR, its performance is unsatis-
factory when the Neval is inconsistent with Ntrain. These
findings suggest the distinctive dynamic number of boxes
property of DiffusionDet.

B.2. Iterative Evaluation

In Table 8 we compare the progressive refinement
property of DiffusionDet with some previous approaches
like DETR [10], Deformable DETR [115] and Sparse R-
CNN [91]. All of these four models have 6 cascading stages
as the detection decoder. The refinement refers to the out-
put of the previous 6 stages and is taken as the input of the
next 6 stages. All model checkpoints are from Model Zoo
in their official code repositories.

We experiment with two settings: (1) only use the out-
put of the last reference step as the final prediction; (2) use
the ensemble of the output of multiple steps as the final pre-
diction. For the latter setting, we adopt NMS to remove
duplicate predictions among different steps.

We find that all models have performance drop when
evaluated with more than one step without ensemble strat-
egy. However, the performance drop of DiffusionDet and
DETR is negligible. Adopting an ensemble would mitigate
the performance degradation except for DETR. Neverthe-
less, previous query-based based methods still have perfor-
mance drops with more steps. In contrast, DiffusionDet
turns performance down to up. Specifically, DiffusionDet
has performance gains with more refinement steps. For ex-
ample, DiffusionDet with five steps has 0.99 AP higher than
with a single step. Therefore, we use the ensemble strategy
as default. To better compare DiffusionDet with DETR,
Deformable DETR, and Sparse R-CNN, we also draw the
comparison curves of Table 8 in Figure 6.

(a) DETR [10] vs. DiffusionDet

(b) Deformable DETR [115] vs. DiffusionDet

(c) Sparse R-CNN [91] vs. DiffusionDet

Figure 6. Iterative evaluation. All models are the provided mod-
els in their official code repositories.

C. Experimental Settings
In this section, we give the detailed experimental settings

in Section 4.2 and Section 4.3.

C.1. DETR with 300 Queries
Since the official GitHub repository3 of only provides

DETR [10] with 100 object queries, we reproduce it
with 300 object queries using the official code for fair
comparison in Section 4.2. Specifically, we train this
model with Detectron2 wrapper based on configura-
tion https://github.com/facebookresearch/
detr/blob/main/d2/configs/detr_256_6_6_
torchvision.yaml, as summarized in Table 9. We
note that the configuration only trains the model for about
300 epochs. We only change the NUM OBJECT QUERIES
from 100 to 300 and leave everything else the same as the
original one.

3https://github.com/facebookresearch/detr

https://github.com/facebookresearch/detr/blob/main/d2/configs/detr_256_6_6_torchvision.yaml
https://github.com/facebookresearch/detr/blob/main/d2/configs/detr_256_6_6_torchvision.yaml
https://github.com/facebookresearch/detr/blob/main/d2/configs/detr_256_6_6_torchvision.yaml
https://github.com/facebookresearch/detr

config value
object queries 300
optimizer AdamW [61]
base learning rate 1e-4
weight decay 1e-4
optimizer momentum �1,�2=0.9, 0.999
batch size 64
learning rate schedule step lr
lr decay steps (369600,)
warmup iter 10
warmup factor 1.0
training iters 554400
clip gradient type full model
clip gradient value 0.01
clip gradient norm 2.0
data augmentation RandomFlip, RandomResizedCrop, RandomCrop

Table 9. DETR reproduction setting.

config value
optimizer AdamW [61]
base learning rate 2.5e-5
weight decay 1e-4
optimizer momentum �1,�2=0.9, 0.999
batch size 16
learning rate schedule step lr
lr decay steps (350000, 420000)
warmup iter 1000
warmup factor 0.01
training iters 450000
clip gradient type full model
clip gradient value 1.0
clip gradient norm 2.0
data augmentation RandomFlip, RandomResizedCrop, RandomCrop

Table 10. COCO setting.

config value
optimizer AdamW [61]
base learning rate 2.5e-5
weight decay 1e-4
optimizer momentum �1,�2=0.9, 0.999
batch size 16
learning rate schedule step lr
lr decay steps (210000, 250000)
warmup iter 1000
warmup factor 0.01
training iters 270000
clip gradient type full model
clip gradient value 1.0
clip gradient norm 2.0
data augmentation RandomFlip, RandomResizedCrop, RandomCrop
data sampler RepeatFactorTrainingSampler
repeat thres. 0.001

Table 11. LVIS setting.

C.2. Benchmark on COCO and LVIS

In Section 4.3, we benchmark DiffusionDet on COCO
dataset and LVIS dataset. The training configuration is in
Table 10 and Table 11, respectively.

D. Training Loss
We adopt set prediction loss [10, 91, 115] on the set of

Ntrain predictions for DiffusionDet. Set prediction loss
requires pairwise matching cost between predictions and
ground truth objects, taking into account both the category
and box predictions. The matching cost is formulated as :

C = �cls · Ccls + �L1 · CL1 + �giou · Cgiou , (11)

where Ccls the focal loss [56] between prediction and
ground truth class labels. Besides, our boxes loss contains
CL1 and Cgiou , which are most commonly-used `1 loss and
generalized IoU (GIoU) loss [75]. �cls, �L1 and �giou 2 R
are weights of each component to balance to overall multi-
ple losses. Following [10, 91, 115], we adopt �cls = 2.0,
�L1 = 5.0 and �giou = 2.0.

We assign multiple predictions to each ground truth with
the optimal transport approach [25, 26]. Specifically, for
each ground truth, we select the top-k predictions with the
least matching cost as its positive samples, others as neg-
atives. Then, DiffusionDet is optimized with a multi-task
loss function:

L = �cls · Lcls + �L1 · LL1 + �giou · Lgiou , (12)

The component of training loss is the same as the matching
cost, except that the loss is only performed on the matched
pairs.

