
Appendix
In this document, we present implementation details and

additional results that are supplemental to the main paper.
In Appendix A, we outline key design details for the ray
conditioning method. In Appendix B, we include more re-
sults of viewpoint editing. We also compare to concurrent
work in 3D-aware image inversion, and show that these
methods still have challenges with respect to realism. Fi-
nally, in Appendix C, we include more details about the
datasets used.

A. Design Details

We outline some key design details in this section.

A.1. Pretraining and Weight Initialization

Recall that the ray embedding is a 6 × H × W feature
map which is concatenated to each intermediate representa-
tion of StyleGAN. To accommodate these extra features, we
add 6 channels to each convolutional layer of StyleGAN. To
begin training, we initialize all prior weights to be those of a
pretrained StyleGAN model. The extra 6 channels for each
layer is then initialized normally, with the default Style-
GAN2 gain parameters [11, 6]. The discriminator also uses
pretrained discriminator weights. The pose conditioninal
discriminator module is initialized as an MLP in the same
way done in EG3D and StyleGAN2-ADA [2, 8]. In Fig-
ure 2, we demonstrate the effect that ray conditioning has on
the intermediate layers of StyleGAN. Consistent with prior
work [18, 7], subject pose is generally a coarse-level feature
which takes form around resolutions 16×16 to 64×64. Ray
conditioning also converges very fast. In Figure 1, we show
that ray conditioning takes about 160kimgs, or 1.5 hours on
2 Nvidia A6000s, to learn camera pose.
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Figure 1. Training Convergence Speed. For faces, we initialize
our ray conditioning model from a pretrained StyleGAN2 model.
Through training, it learns to properly generate images from a tar-
get pose. Ray conditioning converges quickly. After 160kimgs
(1.5 hours on 2 A6000s), ray conditioning is already able to prop-
erly generate an image at a target pose.

A.2. Effect on Latent Space

Many prior work have found directions in StyleGAN’s
W latent space which correspond to subject pose [7, 14].
Surprisingly, ray condition nullifies these directions in the
latent space. When we try to modify an image’s pose us-
ing InterfaceGAN directions [14] after ray conditioning, the
image stays the same. This implies that ray conditioning
“moves” the pose information previously embedded in the
W latent space into the convolutional weights assigned to
the ray embedding.

A.3. StyleGAN2 vs. StyleGAN3.

We have implemented ray conditioning successfully for
both StyleGAN2 [11] and StyleGAN3 [9]. StyleGAN3 is
better suited for video generation tasks because of its an-
tialiasing abilities. However, for multi-view image gener-
ation, we have found no advantage for using StyleGAN3.
Following EG3D [2] and GMPI [20], we choose to use
StyleGAN2 because of its slightly higher image quality and
faster model.

A.4. Training Details

FFHQ and AFHQ models were trained starting from of-
ficial StyleGAN checkpoints. They were trained on 2×
Nvidia A6000 GPUs for 1040kimgs - 1440kimgs. For SRN
Cars, we train from scratch for 13,520kimgs. Hyperparam-
eters are set to the same as those of StyleGAN2.

B. Additional Results
B.1. Viewpoint Editing Examples

We believe that ray conditioning is a natural choice for
portrait editing over 3D-aware GANs. In Figure 5, we recre-
ate Figure 2 in the main paper with EG3D. We see that the
resulting images from EG3D appear more cartoonish than
human-like. There are also geometry distortions. In the
top right individual (yellow background), we see geometry
artifacts near his ear. In the bottom example (pink back-
ground), the challenges are also apparent when we try to
blend faces into a preexisting image. EG3D fails to achieve
our intended effect of photorealistic viewpoint editing. In
the supplementary material, we also include a video demon-
strating the viewpoint control we have over input samples.

B.2. 3D-Aware GAN Inversion

Many have recognized the issues with using a 2D GAN
inversion method such as PTI [13] with a 3D-aware GAN
such as EG3D [2]. Although PTI can successfully invert an
input image, it can cause geometry artifacts that are only
realized after a change in viewpoint. Several work have
created dedicated 3D GAN inversion methods for EG3D.
However, we find that these methods can still cause alias-
ing in the inverted images, creating a loss of quality. In
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Figure 2. Ray Conditioning Affects Intermediate Features. To learn viewpoint control, we condition each intermediate layer of Style-
GAN on a ray embedding. We picture coarse to fine resolution feature maps of one latent seed from different poses. Consistent with prior
work [18, 7], we find that subject pose is a coarse-level feature in the StyleGAN latent space. It begins to take form around resolutions
16× 16 to 64× 64.

addition, they can struggle when inverting side-facing im-
ages. The occluded regions can have incorrect geometry.
The eyes can also lose their specularity, which is important
for human perception of identity. In Figure 6, and Figure 7
we demonstrate these issues. We compare ray conditioning
to two related work. 3D GAN Inversion with Pose Esti-
mation [12] is a recent work designed for EG3D inversion.
HFGI3D [19] is a concurrent work also designed for EG3D
inversion. Inversion with dedicated 3D-aware methods can
also take much longer than with PTI. For instance, 3D GAN
Inversion with Pose Estimation [12] takes on average 3 min-
utes per image. HFGI3D [19] can take 8 minutes. Mean-
while, PTI with ray conditioning only takes 1 minute per
image.

B.3. Latent Space Pose Editing

InterfaceGAN and similar work [14, 7, 1] allow for view-
point change by finding directions in the StyleGAN latent
space which correspond to pose. However, these methods
can only do binary changes such as left facing or right fac-
ing, instead of explicit viewpoint control. Because they do
not operate per-pixel like how ray conditioning does, they
also lack the spatial inductive bias which makes ray condi-
tioning effective. We show an example of the differences
between latent space editing and ray conditioning in Fig-
ure 8.

B.4. Latent Space Samples

In Figure 11, we show uncurated latent space samples
from StyleGAN2 with ray conditioning. Even without a
3D representation, ray conditioning is still able change the
viewpoint of generated samples. We picture latent seeds
0-31. To show our image quality, we also present larger

images in Figure 10.

B.5. Additional Results on Cars

In Figure 3, we demonstrate that our model can enable
360◦ viewpoint editing when trained on a dataset with 360◦

of views. The car stays consistent as we rotate the camera.
We also include videos of smooth trajectories in the sup-
plementary material. We use StyleGAN3 [9] because of its
antialiasing properties.

Figure 3. 360◦ View Consistency from Ray Conditioning.
When trained on a multi-view dataset, ray conditioning is able to
generate view consistent results with 360◦ of rotation. Please see
the accompanying videos for continuous results.

B.6. More Experiments on Light Field Networks

In terms of image quality, ray conditioning is a large im-
provement over Light Field Networks (LFNs) [16]. We pro-



vide more results from LFNs on FFHQ in Figure 4. As dis-
cussed in the main paper, LFNs have two main challenges.
First, LFNs struggle to reconstruct high frequency details on
a photo-realistic dataset such as FFHQ. We also attempted
to train LFNs with SIREN [15] activations instead of ReLU
activations, but the model struggled to converge. Second,
LFNs are unable to generate novel views when trained on a
dataset with only one image per instance. Our work demon-
strates that light field priors introduced in LFNs can be nat-
urally extended from MLPs to more powerful CNN-based
image synthesizers.
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Figure 4. Light Field Networks on FFHQ. Light Field Networks
(LFNs) [16] have two key challenges. First, they struggle to re-
construct high frequency details from input images. Second, when
trained on a dataset with only one image per face, LFNs [16] strug-
gle to construct novel views (NVs). When combined with a more
powerful generative model such as a GAN, ray conditioning helps
to address both of these problems.

C. Evaluation Details

C.1. Datasets

Similar to prior work [2, 20], our method requires a
dataset of images and estimated camera poses. We outline
the datasets used below.
FFHQ Human Faces. FFHQ [10] is a dataset of ∼ 70k
1024 × 1024 images of front-facing faces. We use camera
poses provided by EG3D, which are estimated by a deep
face pose estimator [5]; camera poses are assumed to be
distributed on a sphere, all facing a shared center. As pre-
viously reported by EG3D, this dataset contains bias which
may affect the resulting generations. For instance, people
in front-facing images are more likely to smile. People who
appear to be lower than the camera tend to be children. In
Figure 9, we present the distribution of subject pose in terms
of yaw (horizontal rotation), and pitch (vertical rotation).
AFHQv2 Cat Faces. AFHQv2 [4] is a dataset consisting
of many animal faces. We train our model on the cat subset

using the camera poses provided by EG3D. This subset only
consists of ∼ 5k 512× 512 images, which is much smaller
than FFHQ. Some pretraining is expected for good results.
SRN Cars. The SRN Cars [17] training set is a collection
of ∼2.5k ShapeNet [3] cars, each rendered from 250 cam-
eras distributed on a sphere at a resolution of 128 × 128.
Because it contains multiple images per object, it is com-
monly used for evaluating geometry-free view synthesis
models. We demonstrate our method’s ability to generate
360◦ light fields, and compare to the LFNs [16] baseline on
this dataset. Unlike for FFHQ or AFHQ, we start training
from scratch.
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Figure 6. Comparison to 3D-Aware GAN Inversion Methods. Even dedicated 3D GAN inversion methods for EG3D [12, 19] can
struggle to generate realistic novel views. It is especially challenging for 3D-aware GAN inversion methods when the input image is not
front facing. It tends to distort the geometry of the input individual. For instance, when combined with EG3D, 3D GAN inversion [12] and
PTI [13] appear to widen the individual’s face. PTI [13], 3D GAN Inversion [12], and HFGI3D [19] all appear to make the individual’s
nose more pointy.
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Figure 7. Comparison to 3D-Aware GAN Inversion Methods. Ray conditioning provides the best image quality compared to geometry-
based GANs and inversion methods. The loss of image quality is noticeable. For 3D GAN Inversion [12] and HFGI3D [19], there are
streaks across the face, hinting at spatial aliasing issues. 3D GAN Inversion and HFGI3D also cannot reconstruct the specularity of the
eyes, which is very apparent in the ray conditioning example.
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Figure 8. Comparison to InterfaceGAN. Latent space editing techniques such as InterfaceGAN [14] can generate binary changes to
images to make them left facing or right facing. However, these models lack the same level of control that ray conditioning and geometry-
based generative models do. We can achieve free viewpoint control with ray conditioning, while latent space editing is restricted to one
dimension. InterfaceGAN also lacks the same amount of disentanglement as we do, causing identity shift.

Figure 9. FFHQ Pose Distribution. FFHQ consists mainly of front facing photographs. Its standard deviation for yaw (horizontal rotation)
is 16◦. Its standard deviation for pitch (vertical rotation) is 2◦ degrees. As noted by EG3D [2], this unbalanced distribution of subject pose
is a challenge for all multi-view generative models trained on FFHQ. Proper data augmentation to reduce distribution bias is still an open
and important problem.



Figure 10. Curated Latent Space Samples. Given the 12 front facing images, we show that we can map them to a different viewpoint
while maintaining the quality of the generated faces.



Figure 11. Uncurated Latent Samples. We picture two views from latent vectors of seeds 0-31 to demonstrate the quality of our GAN.
Even without a 3D representation, ray conditioning successfully generates images of the same individual from different view points. Results
were generated with a truncation of ψ = 0.7.


