
Supplementary Material for Sound Localization from Motion:
Jointly Learning Sound Direction and Camera Rotation

A.1. Camera pose from audio prompting
We illustrate our prompting idea in Fig. 9. To create

our audio prompts, we simulate 181 binaural RIRs at dif-
ferent angles from [−90◦, 90◦] without reverberation using
SoundSpaces [15] and render with audio signals from Lib-
riSpeech [69]. We use the sound with an angle of 0◦ as
the input prompt as (the source view audio) and mix it into
mono audio as the input at the target viewpoint. We calculate
the interaural intensity difference (IID) cues for the audio
prompts ai and generated audio ât. We use L1 distance
between IID cues to find the nearest neighbors:
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where Ai = STFT(ai). We use ground truth annotations
of sound directions from the nearest prompts to predict the
camera rotation angles. We first obtain rotation prediction
votes from 1024 audio prompts and use a RANSAC-like
mode estimation [26, 17] to get the final prediction.
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Figure 9: Estimating camera pose from audio prompting. We es-
timate camera rotation by providing our cross-view binauralization
model with synthetically generated audio prompts. Given the sound
that it predicts, we infer the camera angle. We do this by finding
the nearest neighbor (using IID cues) to a database of synthetic
sounds, each paired with their corresponding angle.

A.2. Additional experimental results
Evaluating pretext task. We also evaluate the perfor-
mance of our model on the pretext task, which involves
binauralizing sound at a novel microphone pose using sound
from a different viewpoint and visual cues from both views as
references. We use the STFT distance between the predicted
and ground-truth spectrogram to measure the audio recon-
struction performance. As the results are shown in Tab. 7,
our model that incorporates both visual and audio features
as input performs the best and is comparable to the model
that receives ground truth rotation angles as inputs. This
suggests that our model effectively uses the spatial informa-
tion in both visual and audio signals to solve binauralization

tasks, and encourages the network to learn useful represen-
tations. Moreover, the results show that training with more
viewpoints improves the performance of the pretext task.
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0.206
✓ 0.207

✓ 0.161
✓ ✓ 0.130

Ours–GTRot ✓ 0.131
Ours (3 views) ✓ ✓ 0.125

Table 7: Reconstruct performance of cross-view binauralization
pretext task. We report the STFT distance performance of variants
of our models with different input features on HM3D-SS dataset
with LibriSpeech samples [69]. V and A mean visual and audio
features, respectively.

Experiment on FreeMusic. We report the performance
of downstream tasks with learned representations on the
HM3D-SS dataset with FreeMusic [20] samples in Tab. 8.
We outperform baselines and learn a useful representation.

Model Audio Loc.
Acc (%) ↑

Camera Rot.
Acc (%) ↑
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Random feature 6.0 4.7
ImageNet [38]+Random – 56.3
RotNCE [27] 46.3 –
AVSA [63] 66.5 6.7

Ours–L2R (3 views) 72.0 76.5
Ours (2 views) 67.5 76.2
Ours (3 views) 67.5 81.1

Supervised 77.1 95.8

Table 8: Downstream task performance on HM3D-SS dataset
with FreeMusic [20] samples. We report linear probe performance
on the audio localization and camera rotation downstream tasks.

SLfM without pretraining. We further demonstrate the
important role of the features learned from our cross-view
binaural pretext task by training our SLfM model with ran-
dom features. We show results in Tab. 9. We can see that
the models perform better using our feature representations,
which emphasizes the significance of our pretext task. Our
SLfM model finetuned from random features achieves ac-
curate predictions, highlighting that our proposed method
successfully leverages the geometrically consistent changes
between visual and audio signals.



Model Init. feature
Audio angle
MAE (◦) ↓

Camera angle
MAE (◦) ↓

Ours Random (freeze) 36.51 29.26
Ours Random (finetune) 3.92 1.32
Ours M2B (freeze) 3.17 0.77
Ours M2B (finetune) 2.77 0.76

Table 9: SLfM results with different features. We evaluate our
SLfM models trained with different feature initialization on HM3D-
SS.

A.3. Ablation study
Audio prediction network. We study how audio predic-
tion architectures will influence representation learning from
our proposed pretext task. We adapt the U-Net architec-
ture with cross-attention modules for conditional feature
inputs [79, 88] and compare the pretext and downstream per-
formance with U-Net [30] we used for our main experiments.
We train our models on the HM3D-SS dataset with a single
sound source presented in the scenes and use LibriSpeech
signals [69]. We report results in Tab. 10. Interestingly, we
found that ATTN U-Net can reconstruct better sounds for
the pretext task while it does not learn the features as well as
the 2.5D U-Net [30]. We hypothesize that a more complex
network may transfer the representation learning inside of
the prediction networks rather than the feature extractors.

Model Pretext ↓ Downstream Acc (%) ↑
STFT Dist. AudLoc. CamRot.

ATTN U-Net [79, 88] 0.128 68.0 75.3
2.5D U-Net [30] 0.130 74.5 80.0

Table 10: Audio prediction model ablation study. We evaluate
both pretext and downstream performance on the HM3D-SS with
LibriSpeech samples [69].
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Figure 10: Robustness
to reverberation. We
study the effect of rever-
beration on our pretext
model. Chance perfor-
mance is 1.5%.

Robustness to reverberation.
We also evaluate our representa-
tion under the influence of rever-
beration. We report linear probe
performance on downstream
tasks with average reverberation
RT60 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.
As shown in Fig. 10, the results
indicate a decrease in down-
stream performances as the level
of reverberation increases, where
audio becomes more challenging
during both training and testing.

Weights of geometric loss. We assign appropriate weights
for the geometric loss (Eq. (6)) to avoid it from dominating
the optimization. In our approach, we search λ from 1 to 10
during training, and we select models weights using a metric
by calculating 1/(100 · Lgeo + Lbinaural + Lsym) during
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Figure 11: Hyparameter search. We experiment with λ from 1 to
10 and monitor the scores of models.

validation. We show the search experiment in Fig. 11. The
performance is relatively stable when λ ∈ [3, 8]. We select
λ = 5 or 3 in the main paper, please see Appendix A.4 for
details.

A.4. Implementation details
SLfM model. We use separate multi-layer perceptrons gv
and ga (i.e., FC (512 → 256)–ReLU–FC (256 → 1) layers)
to predict scalar rotation and sound angles.

Hyperparameters. For all experiments, we re-sample the
audio to 16kHz and use 2.55s audio for the binauralization
task. For pretext training, we use the AdamW optimizer [46,
53] with a learning rate of 10−4, a cosine decay learning rate
scheduler, a batch size of 96, and early stopping. During
downstream tasks, we change the learning rate to 10−3 for
linear probing experiments. To train our self-supervised pose
estimation model, we set the weights λ of geometric loss to
be 5 and weights of binaural and symmetric losses to be 1.
For more complex scenarios (Sec. 4.5), we set the weights λ
as 3 to avoid the geometric loss from dominating.

IID cues. We describe our implementation of predicting
sound on the left or right using IID cues in detail here: we
first compute the magnitude spectrogram |A| from the bin-
aural waveform a and sum the magnitude over the frequency
axis. Next, we calculate the log ratio between the left and
right channels for each time frame. After this, we take the
sign of log ratios and convert them into either +1 or -1. We
sum over the votes and take the sign of it for final outputs.

Dataset. Due to the fact that SoundSpaces 2.0 [15] does
not support material configuration for HM3D [76] at the
current time, we obtain binaural RIRs with different rever-
beration levels by scaling the indirect RIRs and add them up
with direct RIRs. We render binaural sounds with random
audio samples as augmentation during training.




