
Supplementary Material

A. Qualitative Examples: Motion-to-Muscle
In the Motion-to-Muscle folder of the supplemental ma-

terial, we show a qualitative result per exercise, where we
predict the muscle activation (sEMG) from motion (3D
skeleton). Each video is slowed down by a factor of 3 in or-
der to better visualize the results. The axis in the animated
plots are scaled to the min and max of the predicted and
ground truth values. The values themselves are normalized
per muscle per subject.

B. Qualitative Examples: Muscle-to-Motion
In the Muscle-to-Motion folder of the supplemental ma-

terial, we show a qualitative result per exercise, where we
reconstruct the 3D skeleton from sEMG signals, and visual-
ize it by re-projecting the 3D skeleton onto the ground-truth
video frames, utilizing the provided bounding box. The red
skeleton is ground-truth, and the green skeleton is our pre-
dicted reconstruction. We additionally share results from
the same subject performing the same exercise, this time
with our 2D decoder, which directly predicts 2D coordi-
nates with respect to the frame.

C. Qualitative Examples of Editing
In the Editing folder, we showcase two types of editing.

While in the main paper we only had space to discuss edit-
ing via scaling, we also introduce editing via the complete
replacement of one or two muscles. We call this second type
“Muscle Stitching Editing”. We note that for every single
one of these examples, the stitching of muscle activations,
and corresponding motions, do not exist in the training set.
We believe this exemplifies our decoder’s ability to general-
ize decently well. The second type of editing that we share
qualitative examples of is “Scaled Editing”, whose method
is discussed in the main paper.

Scaled Editing. For each video, the top left corner of the
video illustrates the ground truth input skeleton in red. The
left bottom corner shows the predicted muscle activation for
the dorsal muscles, visualized on an SMPL [2] mesh. The
right bottom corner shows our edited predicted muscle ac-
tivation for the same dorsal muscles. Finally, the top right
corner visualizes the “recommended” motion, reconstructed
from the edited predicted muscle activation, in cyan, on top

of the ground truth.
For Example A in the “Scaled Editing” folder, we scale

the quads and the hamstrings by a factor of 3. For Example
B, we scale the biceps by a factor of 2 and the laterals by
a factor of 5. For example C, we scale the hamstrings by a
factor of 1

5 . Finally, for Example D, we scale the laterals by
a factor of 3.

Muscle Stitching Editing. For each video, the organiza-
tion of the composed video follows that of the scaled editing
videos, as previously explained in ’Scaled Editing’.

For Example A in the ”Muscle Stitching Editing” folder,
we replace the predicted muscle activation for the quads
and hamstrings for a hook punch exercise with the predicted
muscle activation for a kick-back exercise.

For Example B, we do the converse, we replace the pre-
dicted muscle activation for the biceps and laterals in a
kick-back exercise with the biceps and laterals from a hook
punch exercise.

For Example C, we replace the predicted muscle activa-
tion for the quads and hamstrings for a front punch exercise
with the predicted muscle activation for a side lunge exer-
cise.

For Example D, we do the converse, we replace the pre-
dicted muscle activation for the biceps and laterals in a
side-lunge exercise with the biceps and laterals from a front
punch exercise.

D. Architecture Implementation Details
The majority of the architectural details are included in

the main paper. The remaining details are mainly with re-
spect to conditioning in the paragraph below. Otherwise, it
should be noted that after the convolutional layer, we imple-
ment a positional encoding layer. After computing the posi-
tional encoding p, where p ∈ RT×D, we add the positional
embedding to the features produced after our convolutional
layer.

E. Conditioning Implementation Details
For the conditioning versions of our model, we modify

the architecture as follows. The first convolutional layer for
both the encoder and decoder have 126 channels. The out-
put is a sequence of embeddings of length T, with each em-
bedding di ∈ RT×D, where D=126. Therefore, each em-



bedding di has a channel dimension of 126. We concatenate
a unique tensor y ∈ R2×T along the channel axis.

F. Electrode/Sensor Placement

We did our best to position the sensor placement in the
vertical middle of each of the following muscles per per-
son: the left and right biceps brachii (biceps), the left and
right latissimus dorsi (laterals), both quadriceps (quads),
and both biceps femoris (hamstrings). As per standard prac-
tice [1], to optimize for low signal noise, we shaved the ar-
eas for each subject, wiped the area with alcohol, and patted
the area down with paper towel until completely dry, prior
to electrode placement.

G. sEMG-Video Alignement (Further Details)

We leverage the timestamps on both video and the sEMG
data from the Bluetooth sensors to align the two modalities.

There are two cases. In the first case, if the sEMG
recording begins before the video, we simply remove all
data prior to the video’s origin time, and the first sEMG
value that is larger or equal to the starting time gets rounded
down to the nearest 10 millisecond interval. The rest of the
sEMG data is timestamped by adding 10ms to each data
point. In the second case, if the sEMG recording begins
after the video, we remove the frames up until we reach a
frame for which the timestamp is larger than the starting
sEMG value. Then we repeat the processing steps for the
first case. To summarize, the maximum alignment error be-
tween the video and the sEMG data is less than 10ms.

H. Dataset Statistics

We share two plots to visualize the statistics of the MIA
dataset. In Figure 1, we illustrate the box plot of the max-
imum sEMG value per muscle, across subjects. We notice
that there is a great range in maximum sEMG values per
muscle across subjects. This is expected, as people vary
largely in their morphology, and slight variations in sensor
placement can make the range of sEMG data vary largely.

In Figure 2, we perform visual clustering. To do this,
given a set of exercises Si, where i corresponds to a given
exercise, we perform nearest neighbor on the entire dataset
Sj , ∀j ̸=i. If the retrieved nearest neighbor is an exercise k,
we increment the matrix element m(i,k). We chose an or-
dering of rows and columns that maximizes self-similarity
across the diagonal, in order to visualize which exercises
are most similar to one another through clusters.

I. Subject OOD

Figure 1: Box Plot of Maximum sEMG Value per
Muscle. We visualize the maximum sEMG value per
muscle, across subjects. We notice that there is a significant
range of values per muscle across subjects.

Figure 2: Nearest Neighbor. We perform visual clustering
by taking advantage of the exercise labels in the dataset as
well. We notice that the kicks and punches are clustered
together, as well as the aerobic exercises (running and
shuffle), and the strength training exercises (side lunges
and squats).

In-Distribution Out-of-Distribution
Subject NN. C-NN Ours C-Ours NN Ours C-Ours

Mean Subject 12.7 12.3 9.9 9.8 23.4 15.8 15.6

Table 1: RMSE per Subject for the Encoder.
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In-Distribution Out-of-Distribution
Subject NN. C-NN Ours C-Ours NN Ours C-Ours

Subject 1 12.3 11.7 9.3 9.6 22.5 15.8 15.6
Subject 2 12.8 12.2 9.3 9.3 23.9 18.6 18.2
Subject 3 8.4 8.1 6.4 6.4 20.6 12.7 13.8
Subject 4 10.4 10.7 8.6 8.6 21.5 17.3 17.6
Subject 5 20.9 20.1 16.0 16.0 29.3 26.7 27.2
Subject 6 10.9 10.4 8.7 8.8 25.5 18.2 18.1
Subject 7 10.2 10.3 7.6 7.7 21.9 16.3 16.4
Subject 8 11.3 11.0 8.8 8.9 20.6 16.8 16.7
Subject 9 11.9 11.3 8.9 8.9 21.2 17.3 17.1
Subject 10 18.6 17.4 14.0 14.3 27.4 23.7 23.9

Table 2: RMSE per Subject for the Encoder.

In-Distribution Out-of-Distribution
Subject NN. C-NN Ours C-Ours NN Ours C-Ours

Subject 1 0.065 0.061 0.042 0.043 0.107 0.080 0.080
Subject 2 0.062 0.054 0.038 0.040 0.113 0.092 0.089
Subject 3 0.061 0.060 0.038 0.038 0.112 0.090 0.092
Subject 4 0.053 0.052 0.038 0.038 0.115 0.098 0.095
Subject 5 0.075 0.074 0.068 0.068 0.109 0.078 0.075
Subject 6 0.055 0.050 0.039 0.039 0.104 0.083 0.081
Subject 7 0.069 0.062 0.048 0.047 0.112 0.087 0.086
Subject 8 0.054 0.048 0.036 0.037 0.107 0.085 0.083
Subject 9 0.052 0.046 0.033 0.035 0.103 0.085 0.083
Subject 10 0.073 0.064 0.045 0.046 0.115 0.093 0.092

Table 3: RMSE per Exercise for the Decoder.
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