
Supplementary material
This supplementary material is for the paper, Spacetime

Surface Regularization for Neural Dynamic Scene Recon-
struction, namely 4DRegSDF. We will further provide de-
tails of architecture design, visual examples of spacetime
surface sampling, and qualitative reconstruction results in
Dycheck dataset. Note that the reference numbers including
tables and figures are equivalent to those in the manuscript.

A. Reconstruction results
We provide the reconstruction results from Dycheck

dataset [22] as in Fig. 7. It demonstrate that while the pre-
vious study (TiNeuVox [19]) properly renders the color in-
formation. However, it turns out that the surface geome-
try has severe artifacts. As this dataset states, this dataset
is traeted as a challenging dataset due to the lack of effec-
tive multi-view factor [22]. However, our method outper-
forms the color rendering and surface geometry estimation
as in Fig. 7.

B. Visualization of surface samples
We illustrate our spacetime surface sampling process as

in Fig. 10. In Fig. 10-(a), we visualize the 3D surface sam-
ple results from [12, 39, 73], which is formulated as below:

p = pi − s · ∂s
∂pi

, (11)

where p is the location of the point and s is the SDF value
at p. In contrast to this 3D surface sampling, in Fig. 10-(b),
we apply our spacetime surface sample method that takes
gradient steps along the temporal axis as well as spatial axis
along the Signed Distance Function ‘hills’ as below,

[p; t] = [pi; ti]− s · ∂s

∂[pi; ti]
, (12)

This equation clearly indicates that our method can up-
date the time information such that we can sample the
surface in various spatio-temporal domain as illustrated
in Fig. 10-(b).

Based on the 4D gradient step, we iterate the 4D surface
sampling for 5 times as visualized in Fig. 10-(c). While the
sampled points at the first step are remarkably close to the
surface, we are able to obtain the refined surface samples
after a few iterations.

C. Implementation details
For fair comparison, architecture and hyper-parameter

setup is crucial to verify the effectiveness of our spacetime
surface regularization for neural scene reconstruction.
Architecture. we utilize the same network architecture de-
signed by the NeuS [70] for Eq. 3. Also, we exploit the
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Figure 7. Qualitative results in the Dycheck dataset [22].
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Figure 8. Qualitative results on uniform surface sampling.

Bouncing balls Chickens Haru-sit
PSNR (↑) 41.12 (↑ 0.23) 30.10 (↑ 0.30) 30.89 (↑ 0.23)
SSIM (↑) 0.994 (-) 0.855 (↑ 0.120) 0.870 (↑ 0.070)
MS-SSIM (↑) 0.998 (↑ 0.002) 0.967 (↑ 0.020) 0.939 (↑ 0.012)
LPIPS (↓) 0.021 (↓ 0.010) 0.077 (↓ 0.011) 0.051 (↓ 0.015)
RMSE (↓) - - 0.283 (↓ 0.007)

Table 7. Ablation study for uniform surface sampling.

D-NeRF dataset HyperNeRF dataset Dycheck dataset
Bouncing balls Hook Mean Chicken Mean Sriracha-tree Mean

D-NeRF [50] 0.10 0.11 0.06 0.15 0.205 0.18 0.251
TiNeuVox [17] 0.02 0.05 0.04 0.18 0.144 0.06 0.222
NeuS+D [64] 0.03 0.13 0.05 0.13 0.221 0.15 0.262
Ours 0.02 0.04 0.04 0.07 0.135 0.08 0.213

Table 8. LPIPS evaluation. Mean is average metric of all scenes.

deformation network by D-NeRF [54] for the inverse defor-
mation network (Eq. 6). The minor difference is that our
network f(·) infers the deformation displacement ∆p. As
stated in Sec. 4.1 of the manuscript, we do not explicitly
define the deformation network, instead, the network f(·)
jointly infers deformation displacement ∆p as well as the
SDF value s. Except such minor differences, we do not
change any additional hyper-parameters for our architec-
tural setup.
Training. For training, the size of the batch is 1024. For
each ray, we sample 64 points with hierarchically samples
64 points following NeuS [70], a.k.a. PDF sampling. Also,
we follow the training scheme by D-NeRF [54] which takes
800k iterations which takes 48 hours in total. However,
to initiate our spacetime surface regularization, we need to
have warm start for 10k iterations without applying our reg-
ularization loss (Eq. 9). This is to sample surface which
is estimated from our warm-started networks. After 10k
iteration, our networks, f(·) and g(·), are optimized with
the all combinations of the loss as stated in Eq. 10 of the
manuscript.
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Figure 9. Qualitative results of our method in (a) HyperNeRF dataset, (b) D-NeRF dataset, and (c) dycheck dataset.
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Figure 10. Visualization of the surface sample process. Our spacetime surface sample (Eq. 5) takes 5 iteration steps for refinement.

D. Uniform surface sampling

To make samples uniform, we follow the rejection sam-
pling presented in [73] as visualized on Fig. 9-(c). We also
re-train our method and present the results in Table 7. Over-
all, we observed that performance improved in all metrics.
We will include these results as an ablation study in the final
manuscript.

E. LPIPS metric
For SSIM and MS-SSIM, we follow the official metrics

provided by the original papers, SSIM by D-NeRF [50] and
MS-SSIM by HyperNeRF [48]. Meanwhile, for LPIPS, we
provide our results in Table 8.


