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1. Datasets
1.1. Sports datasets

Sports-related videos are one of the most numerous
videos in human visual records. Sports videos could contain
a variety of different action patterns; they can be as simple
as jogging and jumping, or as more complicated as some
professional actions like cross-over in basketball games, all
of which could be qualified learning samples for various
action recognition models. In our sports datasets section,
we selected three representative datasets: Sports1M [11],
MOD20 [16], and FineGym[21]. Sports1M is one of
the biggest sports video datasets in the vision community,
which contains 487 categories and has been well-annotated.
Considering the fact that some of its URLs are no longer
available as well as its huge amount (the original version
contains over 1 million videos), we construct a mini ver-
sion of it, which only includes 50 samples per class, 40 for
training, and 10 for testing. MOD20 is a multi-viewpoint
outdoor dataset collected from both YouTube videos and a
drone camera, which alleviates the dataset scarcity in terms
of viewpoint. Specifically, there are totally four types of
views in MOD20, three of which are above the person and
the fourth is an elevation view. Furthermore, these two
datasets only contain coarse sports categories, ignoring the
analysis of sub-actions within a sports event, which may
weaken the scope of our benchmark. Considering this, we
include a recently released fine-grained dataset, FineGym.
In practice, we use one of its versions – FineGym99, which
is composed of 99 fine-grained gymnastic actions from top-
level world competitions.

1.2. Daily datasets

We construct our daily action datasets based on two
rules: abundant first-person-video data and diverse activ-
ity categories. Studies on egocentric video analysis could
help us to forge an in-depth understanding of the interac-
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tions between humans and surroundings, which is essen-
tial for many cutting-edge AI technologies such as em-
bodied AI. CharadesEgo [22] is a large-scale dataset with
paired first- and third-person videos to facilitate the inves-
tigation of the intrinsic correspondence between different
views for the same action. In our benchmark, we choose to
only carry out the evaluation using its 1st person part, since
we do not focus on the correlations between two different
views. Based on its official temporal annotations, we man-
age to segment the original videos into 43,594 short clips.
HACS [28], human action clips and segments, is a large-
scale dataset for both action recognition and temporal action
localization. We only leverage HACS clips for our action
recognition studies; likewise, considering its scale, we ran-
domly sample 50 videos per class to form mini-HACS, 40
for training and 10 for testing. In addition, we also include
two more self-collected datasets based on videos captured
from real daily events participants, Toyota Smarthome [3]
and MPII Cooking [19]. Toyota Smarthome is a 3rd view
dataset containing videos from different cameras deployed
in an apartment, whose subjects are 18 senior people. The
videos are collected from 7 cameras in the dining room,
kitchen, and living room. We use the cross-subject train-
test split in our evaluation, i.e., the training data are from 11
subjects and the rest are utilized for testing. MPII Cook-
ing dataset is a fine-grained cooking activity dataset, which
is originally built for action detection. In our benchmark,
we obtain action clips containing one action label given the
official temporal annotation. The raw videos are recorded
based on 12 participants, and we use videos from 10 sub-
jects as the training set.

1.3. Anomaly datasets

Action analysis for anomaly or crime-related videos is an
important real-world application, and one of the objectives
of our proposed benchmark is to provide practical guidance
for the application scenario of human action recognition
models. Hence, we build the anomaly track with three rep-
resentative datasets to evaluate the performance of various



models in such a realistic case. UCF-Crime [23] is a chal-
lenging anomaly video dataset collected from surveillance
cameras. We select 12 human-related crime categories from
its original 14-class recognition version as we only focus on
human actions. XD-violence [27] is another video anomaly
dataset that includes data from various sources such as ac-
tion movies, sports videos, and CCTV cameras. This results
in a more extensive collection of video samples, enriching
our anomaly datasets track. Specifically, the original XD-
violence has a multi-label text set with temporal annotation,
according to which we segment the test videos into single-
label clips. We also include a recently released fall detection
dataset MUVIM [5] (Multi Visual Modality Fall Detection
Dataset), which consists of visual data from multiple sen-
sors: infrared, depth, RGB, and thermal cameras. Consider-
ing the data consistency, we only utilize their RGB version.

1.4. Instructional datasets

Instructional videos are captured in order to guide people
to accomplish particular operations, e.g., assembling some
objects with the components, operating a clinical surgery,
or other necessary tasks which require additional knowl-
edge. Accurate video analysis for such instructional videos
is an important and irreplaceable phase for many practi-
cal applications, such as intelligent robots for industrial or
medical usage. COIN [24] dataset is a large-scale dataset
built for comprehensive instructional video analysis based
on videos collected from YouTube. It consists of 180 tasks
in 12 different domains related to tasks about daily living,
e.g., ’change the car tire’ and ’replace the door knob’. In-
HARD [2], Industrial Human Action Recognition Dataset,
is collected in a human-robot collaboration scenario. 16 dis-
tinct subjects are invited to finish an assembly task with the
guidance of a robotic arm. The classes contain the specific
actions during this operation, such as ’put down measuring
rod’ and ’put down component’. Similarly, we include an-
other instructional dataset MECCANO [17], which is also
related to an assembly operation but collected with wear-
able cameras. The target task is to build a toy motorbike
given all the components and the booklet, and the whole as-
sembly process is precisely divided into 61 action steps. To
cover scenarios as much as possible, we add two medical in-
structional datasets MISAW [10] (Micro-Surgical Anasto-
mose Workflow) and PETRAW [9] (PEg TRAnsfer Work-
flow). Both two datasets are collected in simulated environ-
ments. The whole process is constructed by step-wise pro-
fessional clinical operations, such as ’suturing’ and ’knot
tying’. Both two datasets provide frame-wise annotation in
terms of phase, step, and action labels for the left hand and
right hand and MISAW additionally provides the target and
tool annotations. To generate segment-level action annota-
tion, for MISAW, we view the action label of the left hand
and the corresponding target as a whole, when any of them

Table 1: The training details of our supervised pre-training.

HyperParams TSN TSM I3D NL TimeSformer VideoSwin
Batch Size 64 64 64 64 64 64

lr 0.05 0.05 0.01 0.01 5e-3 5e-4
lr policy StepLR StepLR StepLR StepLR StepLR CosineLR
lr step [20, 40] [20, 40] [20, 40] [20, 40] [10, 20] /

# Epoch 50 50 50 50 30 30
# WarmUp / / 10 10 / 2.5
Optimizer SGD SGD SGD SGD SGD AdamW

changes, we change the segment annotation. For instance,
if the annotation of the action and the target for the current
frame are ’Hold’ and ’Left artificial vessel’, we annotate the
segment where it belongs as ’Hold Left artificial vessel’; if
the annotation changes in the next frame into ’Catch’ and
’Needle’, we start a new segment and annotate it as ’Catch
Needle’ until the next change. Similarly, we segment PE-
TRAW videos based on the change of the left-hand action.

1.5. Gesture datasets

Gesture recognition is critical for application in human-
computer interfaces and has become an appealing topic in
recent years. In this track, we view all datasets whose data
semantic originated from symbols constructed by human
body parts as the generalized gesture datasets, e.g., gestures,
sign language, and other body language or pose. Jester [15]
is collected from 1,376 actors based on 27 gesture classes.
The categories contained in Jester include gestures that usu-
ally appear in interactions between humans and some smart
devices, such as “Zoom in with two fingers”. WLASL [12],
short for World-Level American Sign Language, is built for
sign language understanding, which could make progress
for the communications of the blind and deaf. Its origi-
nal version contains 2000 categories of common sign lan-
guage; in our benchmark, we use its subset WLASL100 for
our evaluation. Besides, UAV Human dataset [14] contains
videos captured from unmanned aerial vehicles, which also
includes body sign language, e.g., the victory sign posed
by two arms. For completeness, we also keep other regular
classes of this dataset.

2. Training Details

2.1. Supervised pre-training

We pre-train all of the 6 models on Kinetics400. Specif-
ically, the total training epochs for CNNs and transform-
ers are 50 and 30, respectively. For VideoSwin, we utilize
AdamW as the optimizer, while we use SGD for the rest
of the models. In testing, we adopt single-view evaluation
for all datasets. The frame sampling strategy is sampling 8
frames in total and sampling 1 frame per 16 frames. The
weight decay is 1e-4 and momentum is 0.9 for all models.
The complete training details are shown in Table 1.



Table 2: The training details of our self-supervised pre-
training.

HyperParams TSN TSM I3D NL TimeSformer VideoSwin
Batch Size 64 64 64 64 64 64

lr 0.05 0.05 0.1 0.01 5e-4 5e-4
lr policy CosineLR CosineLR CosineLR CosineLR CosineLR CosineLR
# Epochs 50 50 50 50 50 50
# WarmUp 10 10 10 10 10 10
Optimizer SGD SGD SGD SGD AdamW AdamW

2.2. Self-supervised pre-training

We utilize ρMoCo [6], which is an extension of
MoCo [7] in the video domain, as our self-supervised pre-
training method. Specifically, ρMoCo, where ρ stands for
the number of temporal views for contrastive learning, aims
at learning an encoder that could generate invariant features
for different clips of the same video. In our pre-training, we
set ρ=2. The weight decay is 1e-4 and momentum is 0.9.
The complete training details are presented in Table 2.

2.3. Standard Finetuning

Similarly, we adopt the same training settings in super-
vised pre-training for our standard finetuning experiments
except for the frame interval. Considering the average
frame number of the clips could vary across datasets, we
select different frame intervals for each dataset according to
its average frame number. The details are shown in Table 3.
Other training settings are the same as standard finetuning.

Table 3: Sampling frame interval of different datasets.

Dataset Avg. # Frames Frame Interval
XD-Violence 517 16
UCF-Crime 402 16

MUVIM 194 16
WLASL100 68 8

Jester 36 4
UAV Human 133 16
CharadesEgo 298 16

Toyota Smarthome 248 16
MPII Cooking 78 8
Mini-Sports1M 711 16

FineGym99 74 8
MOD20 216 16
COIN 160 16

MECCANO 21 2
INHARD 71 8
PETRAW 65 8
MISAW 117 16

2.4. Few-shot learning

Since different training sample choices can have a large
impact on few-shot learning, we randomly generate 3 train-

ing splits for all datasets and report the average performance
to reduce such variation. And there are some datasets that
contain categories that only have 1 or 2 samples, we ignore
the training number shortage. The training setting is the
same as the standard finetuning.

3. Standard finetuning
We showcase the complete finetuning results in Table 4

and Table 5, which include both top-1 and top-5 accuracy
based on both supervised pre-training and self-supervised
pre-training. We only provide top-1 results in the main pa-
per. Besides, we also attach existing SoTA results, if any,
for each dataset in BEAR for reference in Table 4. For MU-
VIM, MPII-Cooking, and InHARD, there are no existing re-
ported results for action recognition. For XD-Violence and
CharadesEGO, the original data contains multiple labels for
one long video, but we segment them into single-label clips
via their temporal annotation. Besides, the SoTA results of
Mini-HACS and Mini-Sports1M are actually from the com-
plete version, we only include them for reference.

4. Few-shot learning
We showcase the complete few-shot learning results in

Table 6, Table 8, Table 10, Table 7, Table 9 and Table 11,
which include both top-1 and top-5 accuracy for all the 3
training split based on both supervised pre-training and self-
supervised pre-training.



Table 4: Top-1 and top-5 accuracy of finetuning based on supervised pre-training and SoTA results for each dataset.

Dataset TSN TSM I3D NL TimeSFormer VideoSwin SoTA
XD-Violence 85.54/NA 82.96/NA 79.93/NA 79.91/NA 82.51/NA 82.40/NA −
UCF-Crime 35.42/77.78 42.36/79.17 31.94/77.08 34.03/81.94 36.11/76.39 34.72/77.78 28.4[23]

MUVIM 79.30/NA 100/NA 97.80/NA 98.68/NA 94.71/NA 100.00/NA −
WLASL 29.63/62.96 43.98/77.31 49.07/78.70 52.31/78.24 37.96/73.61 45.37/75.46 83.30[8]

Jester 86.31/99.66 95.21/99.77 92.99/99.68 93.49/99.66 93.42/99.61 94.27/99.68 98.15[26]
UAV-Human 27.89/50.82 38.84/61.47 33.49/59.74 33.03/54.21 28.93/51.14 38.66/61.42 37.98 [1]

CharadesEGO 8.26/30.38 8.11/29.49 6.13/21.86 6.42/22.03 8.58/29.96 8.55/29.86 −
Toyota Smarthome 74.73/95.95 82.22/96.74 79.51/95.60 76.86/94.52 69.21/93.30 79.88/97.13 71.0 [4]

Mini-HACS 84.69/98.04 80.87/96.48 77.74/95.17 79.51/95.17 79.81/96.48 84.94/97.58 95.5 [13]
MPII Cooking 38.39/71.17 46.74/74.96 48.71/74.05 42.19/70.11 40.97/68.44 46.59/80.88 −
Mini-Sports1M 54.11/80.74 50.06/76.57 46.90/72.85 46.16/72.77 51.79/77.15 55.34/80.18 75.5 [25]

FineGym 63.73/94.60 80.95/98.49 72.00/96.14 71.21/95.94 63.92/93.88 65.02/92.89 80.4 [21]
MOD20 98.30/99.86 96.75/100 96.61/100 96.18/100 94.06/99.72 92.64/99.72 74.0 [16]
COIN 81.15/96.19 78.49/95.24 73.79/92.58 74.30/92.07 82.99/96.70 76.27/93.53 88.02 [24]

MECCANO 41.06/75.20 39.28/70.88 36.88/67.45 36.13/66.63 40.95/75.17 38.89/72.19 42.85 [17]
InHARD 84.39/98.99 88.08/98.99 82.06/98.63 86.31/98.99 85.16/99.23 87.60/99.11 −
PETRAW 94.30/99.92 95.72/99.97 94.84/99.92 94.54/99.85 94.30/99.87 96.43/99.90 88.51 [9]
MISAW 61.44/94.34 75.16/97.17 68.19/96.08 64.27/95.64 71.46/96.65 69.06/97.17 63.4 [10]

Table 5: Top-1 and top-5 accuracy of finetuning based on self-supervised pre-training.

Dataset TSN TSM I3D NL TimeSFormer VideoSwin
XD-Violence 80.49/NA 81.73/NA 80.38/NA 80.94/NA 77.47/NA 77.91/NA
UCF-Crime 37.50/83.33 35.42/81.94 34.03/80.56 34.72/83.33 36.11/77.78 34.03/80.56

MUVIM 99.12/NA 100/NA 66.96/NA 66.96/NA 99.12/NA 100/NA
WLASL 27.01/50.22 27.78/53.70 29.17/65.74 30.56/62.50 25.56/59.44 28.24/65.28

Jester 83.22/99.23 95.32/99.78 87.23/99.46 93.89/99.68 90.33/99.41 90.18/99.40
UAV-Human 15.70/35.89 30.75/55.07 31.95/56.69 26.28/51.09 21.02/44.28 35.12/59.47

CharadesEGO 6.29/23.52 6.59/23.81 6.24/22.25 6.31/22.74 7.59/27.81 7.65/27.41
Toyota Smarthome 68.71/91.61 81.34/96.63 77.82/95.53 76.16/93.58 61.64/91.44 80.18/97.00

Mini-HACS 64.60/90.38 63.24/90.38 70.24/92.20 60.57/86.05 73.92/95.73 75.58/95.62
MPII Cooking 34.45/66.16 50.08/75.42 42.79/72.08 40.36/70.56 35.81/64.34 47.19/76.33
Mini-Sports1M 43.02/71.23 43.59/70.86 46.28/73.12 45.56/72.07 44.60/72.44 47.60/73.88

FineGym 54.62/91.21 75.87/97.84 69.62/95.57 68.79/95.70 47.60/85.76 58.94/92.56
MOD20 91.23/98.87 92.08/99.29 91.94/99.58 92.08/99.58 90.81/99.43 92.36/99.58
COIN 61.48/88.52 64.53/89.85 71.57/92.20 72.78/92.58 67.64/89.97 68.78/89.28

MECCANO 32.34/65.92 35.10/65.99 34.86/66.99 33.62/66.03 33.30/67.87 37.80/72.30
InHARD 75.63/97.68 87.66/99.46 82.54/98.87 80.81/98.63 71.28/97.38 80.10/98.87
PETRAW 93.18/99.87 95.51/99.92 95.02/99.92 94.38/99.87 85.56/99.38 91.46/99.90
MISAW 59.04/90.20 73.64/97.82 70.37/96.73 64.27/94.55 60.78/97.39 68.85/97.39
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5. Unsupervised domain adaptation

In BEAR, we construct two different types of transfer for
unsupervised domain adaptation (UDA): inter-dataset trans-
fer and intra-dataset transfer. We construct paired source-
target with different datasets for inter-dataset, while we
build paired data within one dataset according to similar
or same actions for intra-dataset. The main challenge in
our UDA benchmark could be caused by viewpoint change
(e.g., ToyotaSmarthome-MPII-Cooking), long-tail problem
(PHAV-Mini-Sports1M), etc.

5.1. Inter-dataset

ToyotaSmarthome-MPIICooking One of the features of
our benchmark is that we collect several datasets with ob-
vious viewpoint shifts, and we also leverage this when
we build our UDA datasets. As shown in Fig. 1, Toyota
Smarthome and MPII-Cooking consists of videos from dif-
ferent viewpoints. Specifically, as shown in Table 12, we se-
lect 6 common categories in Toyota Smarthome and MPII-
Cooking to construct the new Toyota Smarthome-MPII-
Cooking dataset. As shown in Fig. 3, the video numbers can
be imbalanced across source data and target one, for action
class ’eat(drink)’, there are a total of 3317 videos in Toy-
ota Smarthome, since 7 original classes are merged; while
there are only 21 samples from the original class ’taste’ in
MPII-Cooking. The number of videos is 5,233 and 943 for
Toyota Smarthome and MPII-Cooking, respectively.

Mini-Sports1M-MOD20 Similarly, as shown in Ta-
ble 13, for Mini-Sports1M and MOD20, we select 15 cat-
egories to build the UDA dataset. The statistic is shown in
Fig. 4. In contrast to Toyota Smarthome-MPII-Cooking, the
data distribution in Mini-Sports1M-MOD20 is much more
balanced. There are 1,650 videos for Mini-Sports1M and
1,767 for MOD20.

UCF-Crime-XD-Violence Similarly, UCF-Crime and
XD-Violence share three classes: abuse, fighting, and
shooting. As shown in Fig. 5, sample numbers of fighting
and shooting showcase an obvious imbalance distribution,
which makes the UDA task here much more challenging.

PHAV-Mini-Sports1M We also consider the synthetic-
to-real transfer and we leverage an existing dataset
PHAV [18]. As shown in Table 14, we combine 15
classes from Mini-Sports1M into 6 categories (playing soc-
cer, playing golf, playing baseball, shooting gun, shooting
archery and running) existing in PHAV to build the paired
dataset. We also illustrate the class-wise distribution of this
dataset in Fig. 6. PHAV contains much more samples than
Mini-Sports1M due to it is easily generated.

5.2. Intra-dataset

Jester(S-T) We also include existing Jester(S-T)[20] in
BEAR. The category information is shown in Table 15 that
each identical action with a contrary direction is merged
into one category. For completeness, we also include its
class-wise distribution in Fig. 7.

InHARD(Left-Top-Right) InHARD naturally contains
three different views and each frame contains the top, left,
and right views, respectively as shown in Fig. 2. We simply
split the frames and the category is the same as the original
dataset, and the samples in each category are also the same
in Fig. 8.

Figure 1: Example frames of Toyota Smarthome and MPII-
Cooking. The left frame is from Toyota Smarthome, in
which the videos are captured from 7 different cameras; the
right one is from MPII-Cooking and is recorded by a fixed
down view camera.

Figure 2: Examples of InHARD(Left-Top-Right). The
shown frames are from the left, top, and right views, re-
spectively. The left view can be severely occluded, making
it much more challenging to transfer knowledge from this
view to others.



Table 12: Action classes in Toyota Smarthome-MPII-Cooking.

Toyota Smarthome-MPII-Cooking Toyota Smarthome MPII-Cooking
stir Cook.Stir stir

wash objects Cook.Cleandishes wash objects

cut
Cook.Cut
Cutbread

cut out inside
cut apart

cut in
cut dice

cut slices
cut off ends
cut stripes

eat(drink)

Eat.Snack
Eat.Attable

Drink.Fromcan
Drink.Frombottle
Drink.Fromcup

cut off ends
Drink.Fromglass

taste

pour

Pour.Fromkettle
Pour.Fromcan

Pour.Frombottle
Makecoffee.Pourwater
Makecoffee.Pourgrains

pour

cleaning up Cook.Cleanup wipe clean

Table 13: Action classes in Mini-Sports1M-MOD20.

Mini-Sports1M-MOD20 Mini-Sports1M MOD20

backpacking
backpacking(wilderness)

hiking backpacking

diving
diving

free-diving
cuba diving

clif jumping

cycling cycling cycling

boxing
boxing

shoot boxing
kick boxing

motorbiking

figure skating figure skating figure skating
jetsprint jetsprint jetskii
kayaking kayaking kayaking

motor biking

motorcycle racing
grand prix motorcycle racing

motorcycle speedway
motorcycle drag racing

motorbiking

football
American football
Canadian football nfl catches

rock climbing rock climbing rock climbing

running

free running
running

sprint (running)
cross country running

running

skateboarding
freeboard (skateboard)

skateboarding skateboarding

skiing

skiing
alpine skiing

cross-country skiing
freestyle skiing
nordic skiing

telemark skiing

skiing

surfing surfing surfing
windsurfing windsurfing windsurfing



Table 14: Action classes in PHAV-Mini-Sports1M.

PHAV-Mini-Sports1M PHAV Mini-Sports1M

playing soccer kick ball
indoor soccer
beach soccer

playing golf golf golf
playing baseball swing baseball baseball

shooting gun shoot gun

shooting sports
practical shooting

cowboy action shooting
clay pigeon shooting

skeet shooting
trap shooting

shooting archery shoot bow archery

running run

free running
running

sprint (running)
cross country running

Table 15: Action classes in Jester(S-T).

Jester Jester Source Jester Target

Push and Pull
Pushing Hand Away

Pushing Two Fingers Away
Pulling Hand Away

Pulling Two Fingers Away
Rolling Hand Rolling Hand Forward Rolling Hand Backward

Sliding Two Fingers
Sliding Two Fingers Left
Sliding Two Fingers Up

Sliding Two Fingers Right
Sliding Two Fingers Down

Swiping
Swiping Left
Swiping Up

Swiping Right
Swiping Down

Thumbs Up and Down Thumbs Up Thumbs Down

Zooming In and Out
Zooming Out with Full Hand

Zooming Out with Two Fingers
Zooming In with Full Hand

Zooming In with Two Fingers
Turning Hand Turning Hand Counterclockwise Turning Hand Clockwise



Figure 3: Class-wise distribution of videos in Toyota Smarthome-MPII-Cooking. There is a severe long-tail distribution in
Toyota Smarthome.

Figure 4: Class-wise distribution of videos in Mini-Sports1M-MOD20. Video numbers in this dataset are much more bal-
anced for source and target.



Figure 5: Class-wise distribution of videos in UCF-Crime-XD-Violence.

Figure 6: Class-wise distribution of videos in PHAV-Mini-Sports1M.



Figure 7: Class-wise distribution of videos in Jester(S-T).

Figure 8: Class-wise distribution of videos in InHARD(Left-Top-Right).
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