Supplement Material for Foreground-Background Separation through Concept
Distillation from Generative Image Foundation Models

1. Evaluation Strategy

We evaluate the accuracy of our masks by training a plain
U-Net on the task of binary classification, following an ap-
proach close to the one proposed by [7]. For CUB we use
the provided segmentation masks as ground-truth. For all
the other datasets, we use the provided bounding boxes. We
train the U-Net for 12,000 steps using a batch size of 32 and
Adam optimizer with a learning rate 0.001. During training,
we crop images randomly to 128 x 128 pixels and during
inference, we employ center-cropping.

2. Finetuning

We fine-tune the diffusion models on the datasets by tak-
ing the avenue provided by [6]. Fine-tuning for foreground
generation is straightforward by training the model to per-
form full image synthesis. For background generation, we
select a random rectangular patch from the image, exclude
any pixels covered by the preliminary mask, and train the
model to reproduce the remaining background pixels in the
background (see Fig. | for examples). The diffusion mod-
els are trained on foreground and background generation si-
multaneously, with each objective being trained in an equal
proportion.

Computation of the refined masks, which requires the
computation of the preliminary masks, takes 7.5 seconds
for a batch of three samples on a single GPU.

3. Empirical Proof of Simplified Equation

In this section, we show empirically that it is not nec-
essary to repeat single diffusion steps in order to achieve
better results on preliminary masks. Formally we evaluate
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and show that it can be simplified to

To
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by computing accuracy metrics on CUB for the case of
Th = 1.
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Figure 1. Illustration of how we extract rectangular patches for
background inpainting during finetuning.
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Figure 2. AUCROC of CUB over an increasing number of monte
carlo samples NV.

The motivation behind this is that the computation of the
preliminary masks is the bottleneck of our pipeline, and we
want the computation time to remain reasonable. The ex-
ecution time increases linearly with the number of repeti-
tions. We estimate the expectation in Equation (1) using
monte carlo sampling and denote the number of samples as
N and compute the AUCROC as a function over it. The
results are shown in Fig. 2. These results suggest that in-
creasing IV also slightly increases the absolute AUCROC



value, while simultaneously decreasing the variance. How-
ever, these improvements are within a very small margin.
Intuitively this means that the diffusion model is quite ro-
bust towards different latent inputs z;. We conclude from
this that it is unreasonable to compute attention masks over
multiple steps and therefore perform all experiments using
Eq. (2).

1.0

°
1500000005115592200001
”li L T
0.8 4 e
® o
O
O 0.6
~
O °
Ro4i o
°
0.2 A
[ ]
0 10 20 30 40 50 60 70

Index of token in input prompt

Figure 3. AUCROC values of the preliminary masks extracted for
every token using the prompt “a photo of a bird”. The language
model is inherited from [6] and uses a BERT-tokenizer [3]. There-
fore a “startofstring” token is added to the beginning of the input
and the length is padded to a length of 77. The peak is at the “bird”
token.

Initially, we also experimented using only the object to-
ken or using a list of objects as an input prompt but both
approaches result in more noisy preliminary masks and in-
ferior AUCROC values.

4. Outlier Cases

Since our method is self-supervised it can be prone to
some errors, as the model has never seen an example of
a real segmentation. In Fig 4 we show examples of rare
selected failure cases that we have observed during testing.

The first is that branches on which birds are sitting are
often segmented as part of the bird. This is a result of the
preliminary masks which sometimes include these branches
into objects. Consequently, the U-Net is uncertain about
these areas. We observe that this only happens to birds that
are clinging to branches, as can be seen in the left image in
Fig. 4. In rare occasions, very low contrast also leads the
model to accidentally predict parts of the image as back-
ground (such as in the right two bird examples). This is
likely because the pixel intensity distribution of the bird is
too close to that of the background, causing the image dif-
ference when computing the refined masks to be too small,
resulting in it being misclassified as background.

In the dog dataset, the method often struggled if humans
were holding the dog (see left-most dog example). In these

cases, the final segmentation only excludes parts of the hu-
man in the background but not all of it. One possible cause
of this is that the model struggles to reconstruct the hu-
man when performing background inpainting, due to fea-
ture complexity, causing it to have a high-intensity differ-
ence when computing the refined masks. We observed that
this did not happen if the humans were positioned further
back in the background, as can be seen in the third exam-
ple in Figure 4. Finally, the method also struggled with dogs
that are only black and white. We believe that this is because
of a bimodal pixel distribution assumption. If we perform
inpainting for mask refinement for these dogs the white and
black parts have very different contrasts compared to the
background and are consequently assigned different modes
of the bimodal Gaussian mixture model.

In the case of the cars our method seemed to have lim-
ited performance if the input image had a plain white back-
ground. We believe this is because during the refinement
stage the model does not expect the image to be entirely
empty, and therefore always tries to inpaint something in
the image center. However, the problem of segmenting cars
in front of white background can be solved using trivial
methods. The predictions for Human3.6m were consistent
throughout the whole dataset, with the exception of occa-
sional under-segmentation of the legs, as explained in the
main paper.

S. Inpainting Ablation

To verify that our inpainting strategy does not make our
proposed pipeline unnecessarily complicated, we try to re-
fine the masks using a simpler approach that crops regions
of the background and uses them to inpaint. We do this by
extracting the largest background region according to the
preliminary masks and then flipping it into the region of the
foreground object.

6. Prompt Engineering

To further justify the choice of our text-conditioning y
we compute the AUCROC for every token of the prompt
“a photo of a bird”. Internally this prompt is preceded
by a fixed “startofstring” token. The results are shown in
Fig. 3. We can clearly observe that the highest response
happens if we compute M for the token “bird”. After that,
the AUCROC remains high, albeit not at the same level
as before. We decide against incorporating the prelimi-
nary maps of different tokens into the pipeline because they
slightly decrease the AUCROC value for the preliminary
masks while simultaneously reducing the interpretability of
our approach. The same holds true for the “startofstring” to-
ken, which has very low activation on all the bird pixels. By
inverting the attention scores we could therefore also locate
objects. However, this observation is a direct consequence
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Figure 4. Examples of failure cases of the U-Net model.

of the computation of the attention probabilities. Attention
is computed for every pixel as a probability of belonging to
a token using softmax normalization on the attention scores.
Since this probability has to sum up to one, the activations
of non-object pixels have to be high for some tokens. Fur-
thermore, we analyzed the stability of the extracted prelim-
inary masks in terms of minor changes to the input prompt.
In Fig. 5, we show the difference of the segmentation masks
if we integrate more prior knowledge by describing the im-
age composition in the prompt. From these images, we can
see that there are only minor changes to the silhouette of
the human and, consequently, that the results are mostly in-
dependent of the prompt. We made the same observation
when prompting on “person” instead.

Figure 5. Preliminary masks computed on the prompt “A photo of
a human standing in a room” (left) and on the prompt “A photo of
a human” (right).

7. Classifier-free Guidance

We use classifier-free guidance as proposed by [4]:

gg(Zt,yf) = UJ€9(Zt7yf) - (w - l)ee(ztay)y (3)

where w denotes the classifier-free guidance scale, and ¢
the update term of the diffusion process. In our case, we
assume that the latent space representation of the images z;
conditioned on the prompts is reduced to the background
and the foreground clusters. Consequently, we can replace
the unconditional prompt with the background prompt from
the equation, which changes it to

€9(Zt7yf) = ’l,UGg(Zt, yf) - ('UJ - 1)69(Zt7yb)~ (4)

Finally, we can also perform classifier-free guidance for
background generation by setting the scale to w = —1
which is equivalent to switching the prompts and setting
w = 2.

To verify this, Fig. 6 shows the influence of w in more
detail. Images with high guidance towards the background
(i.e., low w) do not show any signs of the object. By in-
creasing this value, we can see a bird growing from a part
of the image. To further illustrate this process we added a
few video samples of this to the supplements. Judging from
these images we concluded that our assumption of the clus-
tering is correct and that the model has indeed learned what
background information is.

8. Medical Image Analysis

To analyze whether LDMs are interpretable after being
adapted to domain-specific tasks, we evaluate our proposed
extraction method on an LDM fine-tuned on MIMIC [5]
following an approach similar to the one suggested by [2].



from -6.5 to 6.5 and is increased in steps of 1.

Fine-tuning is done for 60k steps over ~160000 images and
the impression section of the radiology reports correspond-
ing to the images. The learning rate is set to 5 x 10~°, and
the language encoder is kept frozen. We set the batch size
during fine-tuning to 256, spread over 16 80GB A100 GPUs
during roughly 470 hours of computation. To evaluate the
localization accuracy, we take the impressions of the MS-
CXR subset [ 1], which we left as a hold-out set during train-
ing. Then, we use the impressions from [ 1] and compute M
and M. on the tokens corresponding to the eight differ-
ent diseases of the dataset, and compare the predicted re-
gion with the ground-truth bounding boxes. Because some
words are unknown to the language encoder, they were split
into different tokens. In this case, we compute the sum over
the attention maps of all tokens.
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