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This supplementary material covers: network structures
and implementation details for both the Encoder-based
Transformer (Sec. A1) and Encoder-Decoder-based Trans-
former (Sec. A2); more comprehensive statistics on model
efficiency (Sec. B); visualization of hand vertex-joint in-
teractions (Sec. C); failure cases (Sec. D); visualization
of Self-Attention within body joints and vertices (Sec. E);
more qualitative comparisons with the state-of-the-art meth-
ods (Sec. F); more comparisons with existing token reduc-
tion methods (Sec. G) as well as discussion on pruning rate
in ITP (Sec. H).

A. Network Structure and Implementation De-
tails

A.1. Transformer Encoder Structure

Pipeline We present the Geometry Token Reduc-
tion (GTR) equipped Transformer Encoder Structure based
on METRO [8] in Figure A1. The Transformer (Xfmr) En-
coder structure is identical to that of METRO [8], with each
block comprising a Multi-Head Attention module consist-
ing of 4 layers and 4 attention heads. We employ progres-
sive dimension reduction to decrease the hidden embedding
dimensions gradually. However, note that when GTR is uti-
lized, only joint tokens are involved in dimension reduction,
and random masking over joint queries is also applied. To
query the mesh vertices, NSR uses the learned joint features
with 128 feature dimensions produced by the last Xfmr En-
coder block and recovers the mesh vertices. For more infor-
mation on the NSR structure, refer to Sec. A.2. The CNN
backbones [4, 16] are initialized with ImageNet-pretrained
weight, and extracted image feature size is 2048. The posi-
tional encoding is identical to that of [8].

†, ‡ denote equal contributions.

Figure A1. Encoder-based Transformer [8] with Geometry Token
Reduction using Neural Shape Regressor. H denotes the dimen-
sion of the feature vector.
A.2. Transformer Encoder-Decoder Structure

An overview of the TORE-equipped Transformer
Encoder-Decoder structure has been shown in Figure 1
in the main paper. To reduce dimensionality within the
Transformer structure, we follow the approach of Fast-
METRO [3], where we reduce the feed-forward dimension
and model dimension from 2048, 512 to 512, 128, respec-
tively. The camera token and joint tokens in the Trans-
former Encoder and Decoder have a dimension size of
512. The Transformer structure of FastMETRO and Fast-
METRO(S) has 3 and 1 layers, respectively. In the subse-
quent sections, we elaborate on the Neural Shape Regressor
(NSR) and Image Token Pruner (ITP).

Neural Shape Regressor Herein, we present the Neural
Shape Regressor (NSR) structure, which is implemented us-
ing a Transformer Encoder-Decoder as illustrated in Fig-
ure A2. Initially, the joint features FJ = {f j

1 , f
j
2 , ..., f

j
J},

where f j
i ∈ R128×1 and J = 14, are processed by a Multi-

Head Self-Attention module to improve their representa-



tion. Cross-Attention is then used to learn the interaction
between the vertex tokens TV = {tv1, tv2, ..., tvV }, where
f j
i ∈ R128×1 and V = 431, and the learned joint fea-

tures. Prior to Cross-Attention, Self-Attention is applied
among the vertex query tokens, and non-adjacent vertices
are masked out to enhance efficiency, as suggested by [3].
The NSR has a feed-forward dimension and model dimen-
sion of 512 and 128, respectively, and employs fixed sinu-
soidal positional encoding [1]. The learned non-local in-
teractions among joints and vertices can be visualized in
Sec. E7 and Sec. B4, respectively.

Figure A2. Network of Neural Shape Regressor.

Image Token Pruner Given an input monocular image,
the feature is extracted using CNN backbones [4, 16, 14],
resulting in a feature map FI ∈ RH×W×C , where H = 7,
W = 7, and C = 2048. After reducing the dimensionality
of FI from C to C ′ = 512, we obtain a dimension-reduced
feature map F ′

I ∈ RH×W×C′
. Subsequently, we flatten

F ′
I to F ′

I ∈ RHW×C′
to create HW tokens, which are

passed to our ITP module to reduce computational costs in
the transformer model.

Training Details TORE-equipped FastMETRO [3] uti-
lizes the same loss terms as described in Sec. A.1. The
AdamW optimizer is applied with a learning rate and weight
decay of 10−4. Gradient clipping is implemented with a
maximal gradient norm value of 0.3. As with METRO [8],
the weights of the CNN backbones [4, 16] are initialized
using ImageNet-pretrained weights. The low and high-
resolution meshes used for hand mesh recovery consist of
195 and 778 vertices, respectively.

B. More Statistics on Model Efficiency
B.1. Model Efficiency at Full Memory Usage

In order to thoroughly examine the capabilities of our
models, we perform a throughput analysis using the maxi-

mum batch size possible. Our approach involves attempting
to fit the largest possible batches into the VRAM of a GPU,
specifically an RTX3090 card with 24G VRAM, and con-
ducting a throughput analysis based on this setting. This
enables us to uncover the full potential of the models on a
consumer-grade graphics card.

Table B1. Comparison for throughput on maximum batch size for
monocular 3D human mesh recovery on Human3.6M [6]. We test
with ResNet-50 [4] and HRNet-W64 [16] as backbones.

Method Max BS GFLOPs ↓ Throughput ↑
METRO-H64 16 56.5 141
METRO-H64+GTR 32 30.3 246.6
FastMETRO-H64 800 35.7 249.7
FastMETRO-H64+GTR+ITP@20% 1248 30.2 302.3
METRO-R50 24 31.6 247
METRO-R50+GTR 80 5.4 982.5
FastMETRO-R50 1024 10.9 634.2
FastMETRO-R50+GTR+ITP@20% 1120 5.3 1086.4

As shown in Table B1 demonstrates that using TORE
results in enhanced model effectiveness and increased in-
ference throughput. Our approach enables larger batch
sizes, higher computational throughput, and lower GFLOPs
in computation when the GPU capabilities are maximized,
owing to fewer tokens. This renders our approach more
practically useful than the prior approach [8, 3].

B.2. Training Memory Cost Comparison

We conducted experiments on the training cost per GPU
VRAM to demonstrate our superiority in training resource
efficiency. As presented in Table B2 and Table B3, the mod-
els that integrate our proposed TOken REduction (TORE)
methods display significantly reduced GPU VRAM con-
sumption. Specifically, with TORE, the Transformer En-
coder structures [8] with ResNet-50 (R50) [4] and HRNet-
W64 (H64) [16] as backbones demonstrate memory savings
of 58.3% and 44.2%, respectively. Similarly, the Trans-
former Encoder-Decoder structures [3] with TORE using
ResNet-50 and HRNet-W64 as backbones exhibit reduced
memory costs of 27.4% and 17.9%, respectively.

Table B2. Comparison on Training GPU VRAM Cost of the Trans-
former Encoder structure [8]. The model is trained on 8 GPU cards
with a batch size to be 32.

Model GPU Memory Cost
METRO-H64 32.8GB
METRO-H64+GTR 18.3GB (-44.2%)
METRO-R50 24.7GB
METRO-R50+GTR 10.3GB (-58.3%)
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Figure B3. Cross-Attention among hand joints and hand vertices.

Table B3. Comparison on Training GPU VRAM Cost of the Trans-
former Encoder-Decoder structure [3]. The model is trained on 4
GPU cards with a batch size to be 16.

Model GPU Memory Cost ↓
FastMETRO-H64 13.4GB
FastMETRO-H64+GTR+ITP@20% 11.0GB (-17.9%)
FastMETRO-R50 8.4GB
FastMETRO-R50+GTR+ITP@20% 6.1GB (-27.4%)

B.3. Run-time Performance
The run-time performance statistics of our models are

presented in Table C4, under the same hardware configura-
tion as Sec. 4.3 in the Main paper.

Notably, we evaluated system performance using estab-
lished metrics such as throughput and GFLOPs, as utilized
in PPT [10], DynamicViT [11], TokenLearner [13], Evit [7],
and CrossVit [2], among others. For system performance
investigation, Unlike the FPS, which considers the process-
ing of a single instance, throughput is typically used since
it measures the maximum number of input instances that
the network can process in a given time unit, evaluating the
parallel processing of multiple instances [10].

We further discuss the following instance:
Top-Down Human Mesh Recovery During the inference
process of the top-down approach in multi-person HMR,
an object detector locates multiple human instances in a
given input image, which are typically cropped, resized, and
grouped into a minibatch for faster inference. The resulting
minibatch is then fed into the pose detector. In this common
case, we consider throughput a more appropriate metric for
evaluating the performance of top-down HMR tasks.
Multi-Camera System In practical use of a multi-camera

system, e.g., surveillance, sports analysis, and crowd man-
agement, multiple camera feeds are sent to a centralized
server for analysis. To efficiently process the aggregated
images from multiple cameras, high throughput is required.
A high throughput ensures that the system can simultane-
ously process the camera feeds without any lag or delay in
these scenarios. For those offline applications where real-
time performance is not highly demanded, a high through-
put system also saves time and cost.

C. Vertex-Joint Interactions in Hand Mesh Re-
covery

Figure B3 demonstrates the interactions modeled by the
Neural Shape Regressor (NSR) on Hand Mesh Recovery.
To obtain attention scores, we average the scores across all
heads of the multi-head cross-attention between query ver-
tices and joint features. The interactions between mesh ver-
tices and joints in the hand model exhibit a shape-blending
style similar to MANO [12]. This observation aligns
with the human body model and validates the effective-
ness of our proposed methods. We used the FastMETRO-
H64+GTR+ITP@20% model for visualization.

Table C4. Running time Performance (FPS).

Method FPS
METRO-H64+GTR 22
FastMETRO-H64+GTR+ITP@80% 26

METRO-R50+GTR 53
FastMETRO-R50+GTR+ITP@80% 61



Figure B4. Visualization of Self-Attention within the body vertices.

(a) (b)

Figure C5. Failure cases when the inputs are outside of the training data distribution.

D. Failure Cases
Since Geometry Token Reduction recovers human mesh

hierarchically, the quality of the recovered vertices by NSR
depends on the learned body features. We conducted
two experiments by adding Gaussian noise ϵ ∈ RK (at
5%, 7.5%, 10%) to NSR to the body features for mesh ver-

tex regression. K is the dimension of input features. As
shown in Figure D6, when the body features are unreliable,
e.g., 10% noise level, the performance of human mesh re-
covery by GTR drops.

Additionally, when the input image is outside of the
training data distribution, such as a photo of an infant’s
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Figure D6. Human mesh recovery results at different noise levels
to NSR during GTR. We showcase human mesh recovery at four
noise levels: 0%, 5%, 7.5% and 10%.

hand, the recovered mesh’s quality may diminish, as shown
in Figure C5 (a). Moreover, when the model encounters ex-
tremely challenging partial observation, such as an image
capturing only one thumb, it cannot recover the hand mesh
accurately; see Figure C5 (b). The model used for this study
was FastMETRO-H64+GTR+ITP@20%.

E. Self-Attention within Joints and Vertices
In this section, we investigate the interactions be-

tween joints and vertices within the Self-Attention mod-
ule. Specifically, joint interactions are analyzed by aver-
aging attention scores from all Multi-Head Self-Attention
modules within the Transformer Encoder, while vertex in-
teractions are assessed by averaging scores from all heads
of Multi-Head Self-Attention within the Transformer De-
coder. The resulting Self-Attention visualizations for joints
and vertices are presented in Figure E7 and Figure B4, re-
spectively. As depicted in Figure E7, Self-Attention effec-
tively models non-local interactions among joints, thus im-
proving model robustness to partial observation and self-
occlusion in challenging monocular observations. Simi-
larly, Figure B4 shows that non-local interactions among
vertices enhance mesh recovery performance when learned
joint features are employed. Visualization was performed
using FastMETRO-H64+GTR+ITP@20%.

F. More Qualitative Comparisons
The introduction of TORE greatly saves the computa-

tional cost, i.e., GFLOPs and improves the throughput while
enabling the model to produce competitive or even better
mesh recovery from monocular images. We further con-

Figure E7. Visualization of Self-Attention within the body joints

Table G5. TCFormer [17] v.s. TORE (Ours) for HMR on Hu-
man3.6M.

Method Throughput↑ 3DPW Human3.6M
MPJPE↓ PAMPJPE↓ MPJPE↓ PAMPJPE↓

TCFormer [17] 230.9 80.6 49.3 62.9 42.8
METRO+TORE (Ours) 210.1 75.5 46.6 57.6 37.1
FastMETRO+TORE (Ours) 249.2 72.3 44.4 59.6 36.4

ducted qualitative comparisons with existing methods such
as [8, 9, 3] for human mesh recovery on 3DPW [15] and
Human3.6M [6]. Our results are summarized in Figure H8
and Figure H9, respectively. All methods utilized HRNet-
W64 [16] as the CNN backbone, and our model setting is
FastMETRO-H64+GTR+ITP@20%.

We also conduct qualitative comparisons with existing
methods [5, 9, 3] for human mesh recovery on 3DPW [15]
and Human3.6M [6], which are summarized in Figure H8
and Figure H9, respectively. All methods use the HRNet-
W64 [16] as a CNN backbone, and our model setting is
FastMETRO-H64+GTR+ITP@20%.

G. More Comparisons with Existing Methods

G.1. Comparison with TCFormer [17].

We conduct a comparison between TORE and another
token clustering method for HMR. Compared with TC-
Former [17], we have 1) Different architectures. TCFormer
is a much more complicated multi-stage method for to-
ken clustering, while ours only requires a single pass; 2)
Different body representation. There is no consideration
of body representation in TCFormer while we propose
NSR for GTR to reduce redundancy; 3) Different perfor-
mance. Compared with TCFormer with the same setting
in Tab G5, where our method surpasses TCFormer on both
two datasets.



G.2. Comparison with PPT [10]

We compared with PPT [10] that prunes tokens by locat-
ing human visual tokens according to attention score; see
Tab G6 where ours is more competitive.

Table G6. PPT [10] v.s. TORE (Ours). We test with FastMETRO-
Eb0 on Human3.6M.

Method GFLOPs↓ Throughput↑ MPJPE↓ PAMPJPE↓
PPT 1.6 862.1 68.4 46.2
Ours 1.6 870.4 63.2 43.9

H. Influence of Pruning Rate in ITP
The influence of different pruning rates is shown in

Tab H7. In this paper, we empirically set the pruning rate to
20% based on extensive experiments.

Table H7. Influence of pruning rates. We test with FastMETRO-
Eb0 on Human3.6M.

Pruning rate PAMPJPE ↓ MPJPE ↓ GFLOPS ↓
No Pruning 45.8 69.2 7.1
0.2 43.9 63.2 1.6
0.5 44.0 64.2 1.4
0.75 44.7 65.3 1.2
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Figure H8. Qualitative Comparison with existing Transformer-based methods [8, 9, 3] on 3DPW [15].
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Figure H9. Qualitative Comparison with existing Transformer-based methods [8, 9, 3] on Human3.6M [6].
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