
A. Full results of training on ImageNet and ImageNet+, compared with Knowledge Distillation
Table 11 provides the full results of training with ImageNet+ compared with ImageNet and Knowledge Distillation (KD).

We choose RRC+RA/RE that provides a balanced trade-off across architectures and training durations, and call it ImageNet+.
Results in Tab. 11 are without some state-of-the-art training features that are further improved in Tab. 12.

Table 12 provides improved results using state-of-the-art training recipes from the CVNets library [42]. We use the exact
same ImageNet+ variant and only write a new dataset class in CVNets, further confirming our minimal code change claim.
We note the training changes that help each model:
• Higher resolution training: EfficientNets, ViT-Base, Swin-Base. We observe that ImageNet+ reinforcements are resolution

independent and provide improvements even if the resolution is different from the one used to generate them.

• Variable resolution with variable batch size training (VBS): ViTs, EfficientNets, Swin.

• Mixed-precision: ViTs, Swin.

• Multi-node training: EfficientNets (resolution larger than 224).

• Exponential Model Averaging (EMA): MobileViTs.

• New results for MobileViT.

A.1. Aggregated improvements of ImageNet+ across models

To better demonstrate the scale of accuracy improvements, we plot the results of training on ImageNet+ (RRC+RA/RE)
from Tab. 11 in Fig. 6a (300 epochs). RRC+RA/RE balances the tradeoff between various architectures. Given prior knowledge
of architecture characteristics or enough training resources, we can select the dataset optimal for any architecture. Figure 6b
shows the best accuracy achieved for each model when we train on all 4 of our reinforced datasets for 300 epochs (maximum
of the four numbers). We observe that alternative reinforced datasets can provide 1-2% additional improvement, especially
for light-weight CNNs and Transformers. In practice, given the knowledge of the complexity of the model architecture, one
can decide to use alternative datasets (RRC for light-weight and RRC+M∗ +R∗for heavy-weight models or Transformers).
Otherwise, given additional compute resources, one can train on all 4 datasets and choose the best model according to the
validation accuracy.
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(a) ImageNet+ (RRC+RA/RE)
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(b) Maximum of 4 ImageNet+ variants
Figure 6: ImageNet+ training improves validation accuracy compared with ImageNet training (Epochs=300). To train
models using the ImageNet+ dataset, we use the same publicly-available ImageNet training recipes with no hyperparameter
tuning on ImageNet+. We use the same hyperparameters tuned for ImageNet with no hyperparameter tuning on ImageNet+.
ImageNet+ provides a balanced tradeoff with more improvements for Heavy-weight CNNs and Transformers. Figure 6b:
further improvements are achieved using the best out of our 4 proposed datasets (See Tab. 11b for details).



Model ImageNet KD RRC RRC+Mixing RRC+RA/RE RRC+M*+R*

MobileNetv1-0.25 54.5 56.5+2.0 56.5+2.0 55.2+0.7 55.7+1.2 53.9−0.6

MobileNetv1-0.5 66.3 66.3−0.0 67.6+1.3 67.1+0.8 66.9+0.6 66.3−0.0

MobileNetv1-1.0 73.6 74.6+1.0 75.2+1.6 75.0+1.4 75.0+1.4 74.3+0.7

MobileNetv2-0.25 54.3 56.9+2.6 55.8+1.5 54.1−0.2 53.8−0.5 52.5−1.8

MobileNetv2-0.5 65.3 66.2+0.9 66.0+0.7 65.7+0.4 65.8+0.4 64.0−1.3

MobileNetv2-1.0 72.7 72.8+0.1 73.8+1.1 73.5+0.8 73.5+0.8 72.9+0.2

MobileNetv3-Small 66.3 65.8−0.5 68.0+1.7 67.1+0.8 67.3+1.0 66.4+0.2

MobileNetv3-Large 74.7 75.5+0.9 76.0+1.4 76.0+1.4 76.2+1.6 75.5+0.8

ResNet-18 67.8 72.1+4.3 72.3+4.5 71.7+4.0 71.9+4.1 71.0+3.2

ResNet-34 73.2 76.4+3.2 76.2+3.0 76.3+3.1 76.2+3.0 75.8+2.6

ResNet-50 77.4 80.3+2.9 79.6+2.3 79.7+2.3 79.6+2.3 79.6+2.2

ResNet-101 79.8 81.7+1.9 81.2+1.4 81.7+1.8 81.5+1.7 81.3+1.5

ResNet-152 80.8 82.3+1.4 81.6+0.8 82.0+1.2 82.0+1.1 81.9+1.0

EfficientNet-B2 77.9 80.0+2.1 80.2+2.3 80.6+2.7 80.7+2.7 80.4+2.4

EfficientNet-B3 79.3 80.9+1.6 81.1+1.8 81.5+2.2 81.6+2.3 81.5+2.2

EfficientNet-B4 79.4 81.8+2.4 81.0+1.6 81.3+1.9 81.5+2.1 81.3+1.9

ViT-Tiny 71.5 72.0+0.5 71.5+0.0 74.1+2.6 74.0+2.6 74.6+3.1

ViT-Small 78.4 80.2+1.7 77.0−1.5 79.9+1.4 79.7+1.2 80.8+2.4

Swin-Tiny 79.9 81.7+1.7 81.3+1.4 82.1+2.2 82.0+2.1 82.2+2.2

Swin-Small 80.6 83.4+2.9 81.9+1.3 82.9+2.3 82.9+2.4 83.1+2.6

(a) 150 epochs
Model ImageNet KD RRC RRC+Mixing RRC+RA/RE RRC+M*+R*

MobileNetv1-0.25 55.7 57.4+1.8 56.8+1.2 56.2+0.5 55.9+0.3 55.1−0.6

MobileNetv1-0.5 67.1 67.5+0.4 68.0+1.0 67.7+0.7 68.0+0.9 66.9−0.1

MobileNetv1-1.0 74.0 75.9+1.9 75.6+1.6 75.8+1.8 75.9+1.8 75.4+1.3

MobileNetv2-0.25 54.8 57.7+2.9 56.2+1.4 55.2+0.4 54.9+0.1 53.1−1.7

MobileNetv2-0.5 66.0 66.9+0.9 67.2+1.3 66.5+0.5 66.4+0.5 65.3−0.7

MobileNetv2-1.0 73.3 74.3+1.0 74.8+1.5 74.2+0.9 74.5+1.2 73.9+0.6

MobileNetv3-Small 67.2 67.0−0.2 69.0+1.8 68.1+0.8 68.2+1.0 67.1−0.1

MobileNetv3-Large 74.9 76.4+1.5 76.6+1.7 76.9+2.0 77.0+2.1 76.5+1.6

ResNet-18 68.7 73.5+4.8 72.7+4.0 72.7+4.0 72.7+4.0 72.1+3.4

ResNet-34 74.3 77.9+3.6 76.9+2.6 77.3+3.0 77.2+2.9 76.9+2.6

ResNet-50 78.8 81.5+2.8 80.3+1.5 80.8+2.0 80.6+1.8 80.5+1.7

ResNet-101 80.9 83.0+2.1 81.8+0.9 82.3+1.4 82.3+1.4 82.4+1.5

ResNet-152 81.5 83.4+1.9 82.5+1.0 83.0+1.5 82.8+1.3 82.9+1.4

EfficientNet-B2 78.9 81.3+2.3 80.9+1.9 81.2+2.3 81.2+2.2 81.1+2.2

EfficientNet-B3 80.1 82.1+2.0 81.7+1.6 82.2+2.1 82.1+2.0 82.1+2.0

EfficientNet-B4 80.6 83.0+2.3 82.1+1.5 82.4+1.8 82.3+1.7 82.4+1.7

ViT-Tiny 74.1 75.5+1.4 73.5−0.6 76.2+2.0 75.8+1.7 76.9+2.7

ViT-Small 78.9 82.3+3.4 79.2+0.2 81.6+2.7 81.4+2.4 82.3+3.3

Swin-Tiny 80.9 83.0+2.1 82.4+1.5 83.1+2.2 83.0+2.1 83.2+2.3

Swin-Small 81.4 84.4+3.0 82.5+1.1 83.7+2.3 83.9+2.5 83.9+2.5

(b) 300 epochs
Model ImageNet RRC RRC+Mixing RRC+RA/RE RRC+M*+R*

MobileNetv1-0.25 56.7 57.6+0.9 57.1+0.4 57.1+0.4 56.3−0.4

MobileNetv1-0.5 67.8 69.2+1.4 68.8+1.0 68.5+0.7 68.0+0.2

MobileNetv1-1.0 74.1 76.4+2.2 76.7+2.6 76.7+2.5 76.4+2.3

MobileNetv2-0.25 55.7 56.7+1.0 55.8+0.1 55.2−0.5 55.0−0.7

MobileNetv2-0.5 66.8 68.2+1.4 67.3+0.5 67.1+0.3 65.9−0.9

MobileNetv2-1.0 73.9 75.4+1.5 75.3+1.4 75.5+1.6 74.7+0.8

MobileNetv3-Small 67.9 69.0+1.1 68.4+0.5 69.4+1.4 68.4+0.4

MobileNetv3-Large 75.1 77.2+2.1 77.4+2.3 77.9+2.9 77.5+2.4

ResNet-18 69.9 73.6+3.6 73.9+4.0 73.8+3.8 73.3+3.4

ResNet-34 75.6 77.8+2.2 78.4+2.8 78.4+2.8 78.1+2.6

ResNet-50 79.6 81.1+1.4 81.8+2.2 81.7+2.1 81.8+2.2

ResNet-101 81.4 82.7+1.3 83.6+2.2 83.2+1.8 83.4+2.0

ResNet-152 81.7 83.4+1.7 84.0+2.3 83.8+2.2 83.9+2.3

EfficientNet-B2 79.3 81.5+2.2 81.9+2.7 81.9+2.7 81.7+2.5

EfficientNet-B3 79.6 82.3+2.7 82.9+3.3 82.8+3.3 82.7+3.2

EfficientNet-B4 81.2 82.9+1.8 83.2+2.1 83.1+1.9 83.2+2.0

ViT-Tiny 75.9 76.6+0.7 78.5+2.6 78.1+2.1 78.7+2.8

ViT-Small 78.4 80.8+2.4 83.2+4.8 82.6+4.2 83.7+5.3

Swin-Tiny 80.9 83.4+2.5 84.1+3.1 83.8+2.8 84.0+3.1

Swin-Small 81.9 83.9+1.9 84.5+2.6 84.4+2.5 84.8+2.9

(c) 1000 epochs

Table 11: Comparison of training different models using knowledge distillation and different ImageNet/ImageNet+ datasets.
Subscripts show the improvement on top of the ImageNet accuracy. We highlight the best accuracy on each row from our
proposed datasets and any number that is within 0.2 of the best. Knowledge distillation results are not reported for E=1000
(Tab. 11c) as it is computationally very expensive.



Model Base Recipes (Tab. 11) CVNets CVNets-EMA

ImageNet ImageNet+ ImageNet ImageNet+ ImageNet ImageNet+

MobileNetV1-0.25 54.5 55.7+1.2 55.2 55.4+0.2 55.4 55.4+0.0

MobileNetV1-0.5 66.3 66.9+0.6 66.2 67.1+0.9 66.4 67.1+0.7

MobileNetV1-1.0 73.6 75.0+1.4 73.5 75.1+1.5 73.6 75.1+1.5

MobileNetV2-0.25 54.3 53.8−0.5 54.7 54.2−0.5 54.7 54.2−0.5

MobileNetV2-0.5 65.3 65.8+0.4 65.7 65.7−0.0 65.7 65.7+0.0

MobileNetV2-1.0 72.7 73.5+0.8 72.8 73.8+1.0 72.8 73.9+1.1

MobileNetV3-Small 66.3 67.3+1.0 66.6 67.7+1.1 66.7 67.7+1.1

MobileNetV3-Large 74.7 76.2+1.6 74.7 76.5+1.8 74.8 76.5+1.7

MobileViT-XXSmall - - 66.0 67.4+1.5 66.7 67.9+1.2

MobileViT-XSmall - - 72.6 74.0+1.4 73.3 74.7+1.3

MobileViT-Small - - 76.3 78.3+2.0 76.7 78.6+1.9

ResNet-18 67.8 71.9+4.1 69.9 73.2+3.3 69.8 73.2+3.4

ResNet-34 73.2 76.2+3.0 74.6 76.9+2.3 74.7 76.9+2.3

ResNet-50 77.4 79.6+2.3 79.0 80.3+1.3 79.1 80.3+1.2

ResNet-101 79.8 81.5+1.7 80.5 81.8+1.3 80.5 81.9+1.3

ResNet-152 80.8 82.0+1.1 81.3 82.2+1.0 81.3 82.3+0.9

EfficientNet-B2 77.9 80.7+2.7 79.5 81.5+2.1 79.5 81.6+2.1

EfficientNet-B3 79.3 81.6+2.3 80.9 82.4+1.6 80.8 82.5+1.6

EfficientNet-B4 79.4 81.5+2.1 82.7 83.6+1.0 82.7 83.7+1.0

ViT-Tiny 71.5 74.0+2.6 72.1 74.3+2.2 72.1 74.4+2.3

ViT-Small 78.4 79.7+1.2 78.4 79.8+1.4 78.7 79.9+1.2

ViT-Base - - 79.5 81.7+2.3 80.6 81.7+1.1

ViT-384-Base - - 80.5 83.0+2.5 81.9 83.1+1.1

Swin-Tiny 79.9 82.0+2.1 80.5 82.1+1.6 80.3 81.9+1.6

Swin-Small 80.6 82.9+2.4 82.2 83.6+1.4 81.9 83.3+1.4

Swin-Base - - 82.7 83.9+1.2 82.2 83.7+1.4

Swin-384-Base - - 82.6 83.2+0.6 82.4 83.0+0.6

(a) 150 epochs
Model Base Recipes (Tab. 11) CVNets CVNets-EMA

ImageNet ImageNet+ ImageNet ImageNet+ ImageNet ImageNet+

MobileNetV1-0.25 55.7 55.9+0.3 56.0 56.5+0.6 56.1 56.6+0.5

MobileNetV1-0.5 67.1 68.0+0.9 67.0 68.0+1.0 67.0 68.1+1.1

MobileNetV1-1.0 74.0 75.9+1.8 74.0 76.0+2.0 74.1 76.0+1.9

MobileNetV2-0.25 54.8 54.9+0.1 55.4 55.1−0.3 55.5 55.1−0.4

MobileNetV2-0.5 66.0 66.4+0.5 65.8 66.5+0.7 65.9 66.6+0.7

MobileNetV2-1.0 73.3 74.5+1.2 73.7 74.5+0.8 73.7 74.5+0.8

MobileNetV3-Small 67.2 68.2+1.0 67.4 68.6+1.2 67.4 68.5+1.1

MobileNetV3-Large 74.9 77.0+2.1 74.9 77.2+2.3 75.1 77.2+2.1

MobileViT-XXSmall - - 67.5 68.8+1.3 68.6 69.7+1.1

MobileViT-XSmall - - 74.0 75.6+1.6 74.9 76.3+1.4

MobileViT-Small - - 77.3 79.6+2.3 77.9 80.1+2.2

ResNet-18 68.7 72.7+4.0 71.2 74.2+3.0 71.1 74.2+3.1

ResNet-34 74.3 77.2+2.9 75.6 77.8+2.1 75.6 77.8+2.2

ResNet-50 78.8 80.6+1.8 79.6 81.2+1.6 79.7 81.2+1.6

ResNet-101 80.9 82.3+1.4 81.3 82.6+1.3 81.3 82.7+1.4

ResNet-152 81.5 82.8+1.3 81.8 83.1+1.3 81.8 83.1+1.3

EfficientNet-B2 78.9 81.2+2.2 80.7 82.1+1.4 80.8 82.1+1.3

EfficientNet-B3 80.1 82.1+2.0 81.8 83.3+1.5 81.8 83.3+1.5

EfficientNet-B4 80.6 82.3+1.7 82.8 84.4+1.6 82.7 84.4+1.7

ViT-Tiny 74.1 75.8+1.7 74.8 76.0+1.2 74.9 76.0+1.1

ViT-Small 78.9 81.4+2.4 79.1 81.4+2.3 79.9 81.5+1.5

ViT-Base - - 78.6 84.1+5.5 81.0 84.1+3.1

ViT-384-Base - - 80.0 84.5+4.6 82.6 84.5+1.9

Swin-Tiny 80.9 83.0+2.1 81.2 83.2+2.1 80.8 82.8+2.0

Swin-Small 81.4 83.9+2.5 82.4 84.4+2.0 82.2 84.1+1.9

Swin-Base - - 82.7 84.7+2.0 82.5 84.4+1.9

Swin-384-Base - - 83.9 84.4+0.5 83.7 84.2+0.5

(b) 300 epochs
Model Base Recipes (Tab. 11) CVNets CVNets-EMA

ImageNet ImageNet+ ImageNet ImageNet+ ImageNet ImageNet+

MobileNetV1-0.25 56.7 57.1+0.4 56.9 57.1+0.2 56.9 57.1+0.2

MobileNetV1-0.5 67.8 68.5+0.7 68.1 68.7+0.6 68.1 68.8+0.7

MobileNetV1-1.0 74.1 76.7+2.5 74.1 76.8+2.7 74.4 76.8+2.4

MobileNetV2-0.25 55.7 55.2−0.5 55.7 55.7−0.0 55.8 55.7−0.1

MobileNetV2-0.5 66.8 67.1+0.3 66.8 67.1+0.3 66.8 67.2+0.4

MobileNetV2-1.0 73.9 75.5+1.6 74.0 75.5+1.5 74.1 75.6+1.5

MobileNetV3-Small 67.9 69.4+1.4 68.1 69.6+1.5 68.1 69.6+1.5

MobileNetV3-Large 75.1 77.9+2.9 74.8 77.9+3.1 75.8 77.9+2.1

MobileViT-XXSmall - - 68.6 69.5+0.9 70.3 71.5+1.2

MobileViT-XSmall - - 74.8 76.2+1.4 76.1 77.5+1.4

MobileViT-Small - - 77.7 80.5+2.8 79.2 81.4+2.2

ResNet-18 69.9 73.8+3.8 72.3 75.0+2.7 72.2 75.1+2.9

ResNet-34 75.6 78.4+2.8 76.6 78.8+2.2 76.6 78.9+2.3

ResNet-50 79.6 81.7+2.1 80.0 82.0+1.9 80.1 82.0+1.9

ResNet-101 81.4 83.2+1.8 80.9 83.5+2.6 81.4 83.5+2.1

ResNet-152 81.7 83.8+2.2 81.3 83.9+2.6 82.0 83.9+2.0

EfficientNet-B2 79.3 81.9+2.7 81.1 83.1+2.0 81.3 83.2+1.9

EfficientNet-B3 79.6 82.8+3.3 81.7 83.9+2.2 82.1 83.9+1.8

EfficientNet-B4 81.2 83.1+1.9 82.2 85.0+2.9 83.4 85.0+1.6

ViT-Tiny 75.9 78.1+2.1 76.7 77.9+1.2 76.9 78.0+1.1

ViT-Small 78.4 82.6+4.2 78.5 82.8+4.2 80.6 82.9+2.3

ViT-Base - - 76.8 85.1+8.3 80.8 85.1+4.3

ViT-384-Base - - 79.4 85.4+6.0 83.1 85.5+2.5

Swin-Tiny 80.9 83.8+2.8 81.3 84.0+2.7 80.5 83.5+3.0

Swin-Small 81.9 84.4+2.5 81.3 85.0+3.7 81.9 84.5+2.6

Swin-Base - - 81.5 85.4+3.9 81.8 85.2+3.5

Swin-384-Base - - 83.6 85.8+2.2 83.8 85.5+1.7

(c) 1000 epochs

Table 12: Improved results with state-of-the-art training recepies in CVNets library. Subscripts show the improvement on
top of the ImageNet accuracy. We highlight the best accuracy on each row from our proposed datasets and any number that is
within 0.2 of the best.



B. Expanded study on what is a good teacher?
In this section we provide additional results and studies such as super ensembles as teachers.

B.1. Additional results of knowledge distillation with pretrained Timm models

Figure 7 (E=150) complements Fig. 3 (E=300) demonstrating the validation accuracy using knowledge distillation for a
variety of teachers from the Timm library [63]. Table 13 shows the results in detail. For both 150 and 300 epoch training
durations, we observe that ensembles of the state-of-the-art models in the Timm library perform best as the teachers across
different student architectures. We choose the IG-ResNext ensemble for dataset reinforcement.
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Figure 7: Knowledge distillation accuracy of representative student architectures (ResNet-50, ViT-Small, MobileNetV3) for
pretrained teachers from Timm library. We train for 150 epochs and Fig. 3 shows results for 300 epoch training.



Teacher Name Teacher Accuracy Student Top-1 Accuracy

ResNet-50 ViT-Small MobileNetv3-Large

300 150 300 150 300 150

beit_large_patch16_512 88.58 41.76 41.45 37.03 35.87 — —
convnext_tiny_in22ft1k 82.90 80.13 79.08 80.82 79.71 75.41 74.37
convnext_large + convnext_base +
convnext_small + convnext_tiny +
convnext_nano

84.34 80.34 78.94 80.73 79.82 — —

convnext_small_in22ft1k 84.59 80.63 79.41 81.16 79.59 75.70 74.60
convnext_base_in22ft1k 85.81 80.56 79.13 81.36 79.54 75.44 74.30
convnext_large_in22ft1k 86.61 80.17 79.07 80.77 79.04 75.35 74.16
convnext_xlarge_in22ft1k +
convnext_large_in22ft1k +
convnext_base_in22ft1k +
convnext_small_in22ft1k +
convnext_tiny_in22ft1k

86.78 80.78 79.48 81.67 80.18 75.82 74.51

convnext_xlarge_in22ft1k 86.96 80.07 79.07 80.69 78.98 75.26 74.28
convnext_xlarge_384_in22ft1k 87.53 79.67 78.50 79.92 78.38 — —
deit3_small_patch16_224_in21ft1k 83.07 79.60 78.65 81.23 79.72 75.04 73.93
deit3_huge_patch14_224 +
deit3_large_patch16_224 +
deit3_base_patch16_224 +
deit3_small_patch16_224

85.30 79.69 78.82 80.25 79.55 — —

deit3_base_patch16_224_in21ft1k 85.71 79.98 78.57 81.24 79.89 75.16 73.98
deit3_large_patch16_224_in21ft1k 86.98 79.61 78.37 80.81 79.00 75.08 74.02
deit3_huge_patch14_224_in21ft1k 87.18 79.52 78.44 80.59 79.14 74.79 73.73
deit3_huge_patch14_224_in21ft1k +
deit3_large_patch16_224_in21ft1k +
deit3_base_patch16_224_in21ft1k +
deit3_small_patch16_224_in21ft1k

87.39 80.25 78.78 81.26 80.19 75.28 74.24

deit3_large_patch16_384_in21ft1k 87.73 79.06 78.00 79.71 78.80 — —
ig_resnext101_32x8d 82.70 80.32 79.10 80.30 78.91 76.03 74.75
ig_resnext101_32x16d 84.17 80.78 79.43 80.93 78.74 76.37 75.19
ig_resnext101_32x32d 85.10 81.04 79.75 81.03 79.17 76.42 75.11
ig_resnext101_32x48d 85.43 80.93 79.77 80.67 78.77 76.01 74.88
ig_resnext101_32x48d + ig_resnext101_32x32d
+ ig_resnext101_32x16d + ig_resnext101_32x8d

86.10 81.30 80.08 82.01 80.00 76.70 75.39

ig_resnext101_32x48d +
convnext_xlarge_in22ft1k + volo_d5_224 +
deit3_huge_patch14_224

87.39 80.71 79.63 81.65 80.00 — —

resnet18 69.74 71.29 71.29 71.29 71.18 — —
resnet34 75.11 76.46 76.06 76.36 75.85 73.90 73.32
resnet50 80.38 79.83 78.82 79.81 78.65 75.63 74.98
resnet101 81.94 80.07 79.10 80.82 79.26 74.92 74.03
resnet152 82.82 79.88 78.85 79.72 79.56 74.82 73.87
resnet101d 83.02 79.75 78.32 78.92 77.71 72.78 71.19
resnet152d 83.67 79.62 78.19 78.77 78.58 73.05 71.10
resnet200d 83.97 79.40 77.92 80.18 78.19 73.10 71.22
resnetv2_152x2_bitm 84.46 79.57 78.63 80.04 78.52 75.12 73.87
resnetv2_152x4_bitm 84.94 — 78.09 — 78.97 — 73.69
swinv2_cr_tiny_ns_224 81.79 79.41 78.47 80.56 79.29 74.23 73.43
swinv2_tiny_window8_256 81.83 79.30 78.12 80.32 78.94 74.46 73.40
swinv2_tiny_window16_256 82.82 79.43 78.31 80.59 79.30 74.31 73.57
swinv2_cr_small_224 83.12 79.15 78.33 79.78 78.64 74.59 73.42
swinv2_cr_small_ns_224 83.48 79.43 78.62 80.38 78.94 74.56 73.62
swinv2_small_window8_256 83.84 79.66 78.61 80.35 79.19 74.44 73.39
swinv2_small_window16_256 84.22 79.21 78.41 80.00 78.30 74.84 73.45
swinv2_base_window8_256 84.25 79.57 78.52 80.32 79.11 74.73 73.37
swinv2_base_window16_256 84.59 78.94 78.30 79.50 78.32 74.50 73.63
swinv2_base_window12to16_192to256_22kft1k 86.27 79.76 78.51 80.80 79.01 74.35 73.68
swinv2_large_window12to16_192to256_22kft1k 86.94 79.31 78.38 79.86 78.43 74.39 73.51
swinv2_base_window12to24_192to384_22kft1k 87.14 79.18 77.96 80.01 78.87 — 73.10
swinv2_large_window12to24_192to384_22kft1k 87.47 78.48 77.65 78.33 78.38 — 73.07
tf_efficientnet_b0 76.85 — 75.10 — 75.97 73.68 72.93
tf_efficientnet_b0_ns 78.67 77.27 76.47 77.96 77.11 74.94 73.94
tf_efficientnet_b1 78.83 — 77.45 — 77.97 75.48 74.69
tf_efficientnet_b2 80.08 — 78.17 — 78.88 75.97 75.01
tf_efficientnet_b1_ns 81.38 79.52 78.47 80.38 79.18 76.14 75.14
tf_efficientnet_b3 81.65 — 78.88 — 79.56 76.39 75.38
tf_efficientnet_b2_ns 82.39 80.17 78.97 80.94 79.69 76.43 75.20
tf_efficientnet_b4 83.03 — 78.91 — 78.56 75.64 74.65
tf_efficientnet_b5 83.81 — 79.20 — 79.18 76.01 75.06
tf_efficientnet_b3_ns 84.05 80.71 79.60 81.72 80.17 76.44 75.35
tf_efficientnet_b6 84.11 — 78.92 — 79.21 75.58 74.41
tf_efficientnet_b7 84.93 — 79.16 — 79.24 75.42 74.43
tf_efficientnet_b4_ns 85.14 80.83 79.25 81.51 78.62 75.81 74.92
tf_efficientnet_b8 85.35 — 78.84 — 78.17 75.15 73.86
tf_efficientnet_b5_ns 86.08 80.71 79.27 81.05 79.43 75.57 74.47
tf_efficientnetv2_xl_in21ft1k 86.41 11.58 12.46 8.40 7.69 — —
tf_efficientnet_b6_ns 86.44 80.21 79.02 80.91 79.16 75.36 74.20
tf_efficientnet_b7_ns 86.83 80.34 78.79 80.89 78.97 74.93 73.91
tf_efficientnet_l2_ns_475 88.24 — 78.94 — 78.96 — 74.11
vit_large_patch16_384 87.09 79.63 78.45 80.48 78.88 — —
volo_d5_224 + volo_d4_224 + volo_d3_224 +
volo_d2_224 + volo_d1_224

86.09 80.45 79.31 80.81 79.16 — —

volo_d5_512 87.04 — 78.04 — 76.61 — —

Table 13: Effect of distillation from pretrained teachers (Timm library) on the performance of MobileNetV3-large, ResNet-50,
ViT-Small trained for 150 and 300 epochs. This table includes the details of Figs. 3 and 7.



B.2. Super ensembles on ImageNet

It is common to limit the number of models in an ensemble to less than 10 members and typically only 4. The reason is
partly that larger ensembles are more expensive to evaluate at test time as well as training with knowledge distillation. Dataset
reinforcement allows us to consider expensive teachers such as super ensembles with significantly more than 10 members. In
Tab. 14 we present results for super ensembles on CIFAR-100 and in Fig. 8 we present results on ImageNet. On CIFAR-100
we create super ensembles by training 128 models in parallel for ResNet-18, ResNet-50, and ResNet-152 architectures. To
increase diversity, we train models with 16 choices of enable/disable 4 augmentations (CutMix, MixUp, RandAugment, and
Label Smoothing) and train with 8 different random seeds for each choice. In total we train 8× 16 = 128 models. Tab. 15
shows the accuracy of the super ensembles while Tab. 14 shows the accuracy of distillation with the super ensembles. We
observe that the best student accuracy is achieved with the largest ensemble 128xR152. Interestingly, super ensembles of small
models (128xR50) are better than standard ensembles of large models (10xR152). With super ensembles we achieve strong
accuracies for ResNet-50 at 86.30 and ResNet-152 at 87.03.

We also consider super ensembles for ImageNet using dataset reinforcement. Knowledge distillation with super ensembles
of larger than 10 members on ImageNet becomes challenging and resource demanding. Fig. 8 shows the validation accuracy of
the ensemble and Fig. 9 shows the accuracy of student training with the reinforced ImageNet dataset using the super ensemble.
We observe that the entropy and confidence of the teacher on the validation set are not more correlated with the distillation
accuracy than the accuracy of the validation teacher. In particular, large ensembles are more accurate but not necessarily better
teachers. In summary, we observe that the optimal ensemble size for KD is around 4.

10xR18 128xR18 10xR50 128xR50 10x152 128xR152

ResNet-18 83.57 84.24 83.43 84.07 83.65 84.25
ResNet-50 84.40 85.16 84.33 86.38 86.03 86.30
ResNet-152 85.01 85.74 85.00 86.80 86.85 87.03

Table 14: Distillation on CIFAR-100 with super diverse ensembles.

Single best Ensemble (128x)

ResNet-18 81.57 85.88
ResNet-50 83.43 87.29
ResNet-152 84.44 87.92

Table 15: Accuracy of super diverse ensem-
bles on CIFAR-100.

Figure 8: ImageNet accuracy of super ensembles as the size of the ensemble is increased. OR means the ensemble is created
from diverse augmentation choices while Best means only the random seed is different between models.

Figure 9: ImageNet super ensemble distillation accuracy for ResNet-50 facilitated by dataset reinforcement.
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(b) Heavy-weight CNN (ResNet-50)
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Figure 10: Light-weight CNNs prefer easy while Transformers prefer difficult reinforcements and we balance the
tradeoff. ImageNet validation accuracy of three representative architectures trained on reinforcements of ImageNet. We use
ConvNext-Base-IN22FT1K as the teacher and train for 150 epochs. The x-axis is the number of augmentations stored per
original sample in the ImageNet training set. In favor of dataset reinforcement, we observe that training with 25− 50 samples
provides similar gains to training with more samples. The baseline augmentation is Fixed Resize-RandomCrop and horizontal
flip (CropFlip). In addition we consider the following augmentations for reinforcement: Random-Resize-Crop and horizontal
flip (RRC), MixUp and CutMix (Mixing), RandomAugment/RandomErase (RA/RE) and Mixing+RA/RE (M∗+R∗). We add
these augmentations on top of RRC and for clarity add + as shorthand for RRC+.

C. Expanded study on reinforcing ImageNet

In this section, we provide ablations on the number and type of augmentations using a single relatively cheap teacher
(ConvNext-Base-IN22FT1K) that still provides comparatively good improvements across all students.

C.1. What is the best combination of augmentations for reinforcement?

To recap, using our selected teachers from Sec. 2.1, we investigate the choice of augmentations for dataset reinforcement.
Utilizing Fast Knowledge Distillation [55], we store the sparse outputs of a teacher on multiple augmentations. For efficiency,
we store top 10 probabilities predicted by the teacher, along with the augmentation parameters and reapply augmented images
in the data loader of the student. We observe that light-weight CNNs perform best on easier reinforcements while transformers
perform best with difficult reinforcements. We balance this tradeoff using a mid-difficulty reinforcement.

We refer to the combination of baseline augmentations fixed resize, random crop and horizontal flip by CropFlip. In
addition, we consider the following augmentations for dataset reinforcement: Random-Resize-Crop (RRC), MixUp [72] and
CutMix [70] (Mixing), and RandomAugment [14] and RandomErase (RA/RE). We also combine Mixing with RA/RE and refer
to it as M∗+R∗. We add all augmentations on top of RRC and for clarity add + as shorthand for RRC+. Except for mixing
augmentations, reapplying all augmentations has zero overhead compared to standard training with the same augmentations.
For mixing augmentations, our current implementation has approximately 30% wall-clock time overhead because of the extra
load time of mixing pairs stored with each reinforced sample. We discuss efficient alternatives in Appendix C.3. Our balanced
solution, RRC+RA/RE, does not use mixing and has zero overhead.

Figure 10 shows the accuracy of various models trained on reinforced datasets. We observe that the light-weight CNN
performs best with RRC as the most simple augmentation after CropFlip while the transformer performs best with the most
difficult set of reinforcements in RRC+M∗ +R∗. This observation matches the standard state-of-the-art recipes for training
these models. At the same time, we observe that RRC+RA/RE provides nearly the best performance for all models without the
extra overhead of mixing methods in our implementation.

Consistent across three models and reinforcements, we observe that even though we train for 150 epochs, at most 25− 50
different augmentations of each training sample is enough to achieve the best accuracy for almost all methods. This gives at
least ×3 reduction in the number of samples we can take advantage of given a fixed training budget. Based on this observation
and following [6], in Sec. 3 we train models for up to 1000 epochs while reinforce datasets with 400 augmentation samples.

C.2. Augmentation: invariance vs imitation

Data augmentation is crucial to train generalizable models in various domains. The key objective is to make the model
invariant to content-preserving transformations. In knowledge distillation, however, it is not clear whether the student benefits
more from being invariant to data augmentations as in Eq. (2) or from imitating teacher’s variations on augmented data as in



Eq. (3). The training objective for each case is as follows:

(Invariance) min
θ

Ex∼D,x̂∼A(x)L(fθ(x̂), g(x)) (2)

(Imitation) min
θ

Ex∼D,x̂∼A(x)L(fθ(x̂), g(x̂)) (3)

where, D is the training dataset, A is augmentation function, fθ is the student model parameterized with θ, g is the teacher
model, and L is the loss function between student and teacher outputs.

In Fig. 11, we compare the above training objectives for a wide range of augmentations in computer vision. For most
augmentations, we observe imitation is more effective than invariance. This is consistent with observation in [6]. Therefore, in
our setup we use augmentations only for imitation (and not invariance).
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Figure 11: ImageNet top-1% accuracy improvement when distilling knowledge from a ConvNext (Base-IN22FT1K) teacher
to a ViT-tiny student using a single augmentation with training objectives in Eq. (2) and Eq. (3). No augmentation top-1%
accuracy is 54%.

C.3. Library size: Can we limit the mixing pairs?

Mixing augmentations have the extra overhead of the load time for the corresponding pair in each mini-batch. Standard
training does not have such an overhead because the mixing is performed on random pairs within a mini-batch. In dataset
reinforcement, the pairs that have been matched in the reinforcement phase are limited to the number of samples stored and do
not always appear in the same mini-batch during the student training time. This means, we have to load the matching pair
for every sample in the mini-batch that doubles the data load time and becomes an overhead for CPU-bound models. This
overhead in the smallest models we consider is at most 30%. Even though much lower than the cost of knowledge distillation,
it is still more than our desiderata would allow.

We consider an alternative where the pairing is done only with a library of selected samples from the training set. The
library can be loaded in the memory once and reduce the additional cost incurred during the training. Fig. 12 shows the
performance as we vary the library size. Even a relatively large library does not cover the accuracy drop caused by the reduced
randomness in the mixing. The reason is that to reduce the cost, we can only have one augmentation per sample in the library
which reduces the randomness from the mixing substantially and negatively affects knowledge distillation.

We also consider variations of mixing in Fig. 13. We consider two variations: Double-mix and Self-mix. In double-mix, for
every augmented pair, we store two outputs with two sets of mixing coefficients. This means for every mini-batch we can load
half the mini-batch along with a random pair for each sample, perform the stored augmentation on each and get two different
mixed samples. As a result the overhead is zero. Second alternative, self-mix, mixes every image only by itself. As such, there
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Figure 12: Library of mixing pairs reduces wall-clock overhead for mixing methods but negatively impacts accuracy.
We plot the validation accuracy for models trained with ImageNet+ as we vary the library size. The teacher is ConvNext-Base-
IN22FT1K. See Appendix C.3 for details. (E=150)
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(b) Heavy-weight CNN (ResNet-50)
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(c) Transformer (ViT-Small)
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Figure 13: Alternative Mixing Augmentations. Accuracy of three representative architectures trained on reinforcements
of ImageNet. We use ConvNext-Base-IN22FT1K as the teacher and train for 150 epochs. The x-axis is the number of
augmentations stored per original sample in the ImageNet training set. Augmentations used are Fixed Resize-RandomCrop
and horizontal flip (CropFlip), Random-Resize-Crop and horizontal flip (RRC), MixUp and CutMix (Mixing), RandomAug-
ment/RandomErase (RA/RE) and Mixing+RA/RE (M*+R*). Alterantive mixing augmentations: Double-mix (Dmix) and
Self-mix (Smix).

is no data load time, but there is still an extra overhead of preprocessing the input twice. Fig. 13 shows that neither of the
considered alternatives provide a better tradeoff compared with RRC+RA/RE. Therefore, we use RRC+RA/RE in our paper
and call it ImageNet+.

C.4. What is the best curriculum of reinforcements?
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(b) Heavy-weight CNN (ResNet-50)
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Figure 14: Tradeoff in augmentation difficulty can be further reduced with curriculums. Using random samples of the
optimal augmentation is the best (‘All’). If we have access to one reinforcement dataset or we want to only keep a subset
of data for efficiency, then it is better to use ‘easy’ curriculums for CNN based architectures and ‘hard’ curriculums for
Transformers. Full table in Appendix C.5.



The one-time cost of reinforcing a dataset allows us to generate as much useful information as we need and store it for
future use. An example is various metrics that can be used to devise learning curriculums that adapt to specific students. In this
section we consider a set of initial curriculums we get for free with our dataset reinforcement strategy. Specifically, the output
of the teacher on each sample also incorporates the confidence of the teacher on its prediction. We can use the confidence or
the entropy of its predictions to make curriculums.

Given p ∈ Rc the set of predicted probabilities of the teacher for c classes, we define confidence as maxpj . For every
sample, we order its augmentations by the confidence value from 0 to #samples. During training, at each iteration we only
sample from a range of augmentations with indices between [a, b], where 0 ≤ a, b < #samples. We devise curriculums by
smoothly changing a, b during the training using a cosine function between specified values of initial and final values for a, b.

Fig. 14 shows the performance of various Easy, Hard, and All curriculums. Easy curriculums start from [0, 10] (the 10%
easiest samples), hard samples start from [90, 100] (the 10% hardest samples), and All curriculums start from [0, 100] (all the
samples). We observe that the curriculum provides an alternative knob to control the difficulty of reinforcements that we
can use adaptively during the training of the student. For example, the best performance of the light-weight CNN is with
RRC combined with the All curriculum, but similar performance can be achieved with RRC+RA/RE combined with an Easy
curriculum. Similarly, the transformer achieves its best performance with RRC+M∗ +R∗ combined with the All curriculum,
while a similar performance can be achieved with RRC+Mixing and a Hard curriculum.

In Appendix C.6, we study various objectives for choosing most useful samples during the reinforcement process. We
consider storing on the most informative samples according to a number of metrics such as entropy, loss, and clustering. We
make similar observations to the behaviour of curriculums that the objectives that increase hardness benefit the transformer
while the easy objectives benefit the light-weight CNN.

C.5. Additional details of curriculums

We study reinforcements on curriculums shown in Fig. 15. Table 16 provides the full results for the effect of dataset
reinforcement curriculums. We summarized these results in Fig. 14 where we compared ‘*→all’ curriculums that end with
‘all’ of the data. We observe that the beginning of the curriculum has much more impact on the generalization than the end of
the curriculum. We observe that ‘all→*’ curriculums perform the best while ‘hard→*’ curriculums perform near optimal
for ViT-Small and ‘easy→*’ performs best for MobileNetV3-Large. At the same time, we observe clearly that the hard and
easy curriculums result in significantly worse generalization when used to train the opposite architecture, i.e., ‘easy→*’ for
ViT-Small and ‘hard→*’ for MobileNetV3-Large. This result clearly demonstrates the tradeoff in the architecture independent
generalization controlled by the difficulty of reinforcements.

Curriculum MobileNetV3-Large ResNet50 ViT-Small

RRC +RA/RE +Mixing +M*+R* RRC +RA/RE +Mixing +M*+R* RRC +RA/RE +Mixing +M*+R*

easy->all 75.5 75.9 73.6 74.4 79.0 79.0 77.8 78.1 72.9 75.9 73.2 75.9
easy->easy 75.2 75.7 74.3 74.5 79.0 79.2 77.7 78.0 72.6 75.9 73.1 75.9
easy->hard 75.6 75.8 74.1 74.6 79.0 79.2 77.8 78.0 72.6 76.2 72.9 76.0

all->all 76.0 75.5 75.2 74.7 79.4 79.0 79.3 78.7 75.4 78.1 78.3 79.3
all->easy 75.7 75.5 75.2 74.6 79.5 79.2 79.3 78.9 75.2 78.4 78.2 79.2
all->hard 75.8 75.5 75.3 74.6 79.4 79.3 79.2 78.9 75.3 77.8 78.5 79.3

hard->all 72.6 71.1 68.8 67.7 76.7 75.6 76.7 75.5 74.2 76.1 79.0 78.7
hard->easy 72.5 71.3 68.7 67.7 76.7 75.9 77.0 75.3 74.2 76.2 78.8 78.6
hard->hard 72.2 71.4 68.9 67.7 76.8 75.7 76.9 75.7 73.9 76.2 79.0 78.6

Table 16: The effect of curriculum. We observe that the beginning of the curriculum has much more impact on the
generalization than the end of the curriculum (accuracy within the groups of three rows is similar). Accuracies within 0.2% of
the best accuracy in each column are highlighted.

C.6. Optimal augmentation sample selection

We discussed that augmentations used to reinforce the dataset are sampled from a pool of augmentation operations and that
we apply the augmentations with a predetermined application probability. The setup of dataset reinforcement allows us to
optimize for the most informative augmentation samples. For example, we can generate a large set of candidate augmentations
and choose a subset with maximum or minimum values of ad-hoc metrics. We considered selecting samples according to
metrics such as confidence, entropy, and loss. Given p ∈ Rc, the set of predicted probabilities of the teacher for c classes,
we define confidence as maxpj , the entropy as −

∑
j pj log pj , and the loss as − log py where y is the ground-truth label.
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Figure 15: Illustration of curriculums. The x-axis shows the percentage of training epochs while the y-axis shows the index
of augmentation samples in percentages as we order them from easy to hard by the confidence of the teacher. Highlighted
regions show the subset of indices of reinforcements to uniformly draw from at each epoch.

To encourage diversity, we also considered selecting samples based on the clustering of the predicted probability vectors by
performing KMeans on p vectors of the candidates and selecting one sample per cluster. Figure 16 shows the performance of a
subset of sample selection methods we considered.

Generally we observe that max-entropy/min-confidence objectives demonstrate similar behaviors better than min-
entropy/max-confidence. So we only show the min-confidence variant. We observe that overall random samples (blue
lines) provides the best validation accuracy if used with the right augmentations (RRC+RA/RE for light-weight CNNs and
RRC+M∗ +R∗ for transformers). Using min-confidence (orange) with RRC+M∗ +R∗ (dashed orange), leads to similar
generalization on transformers while hurting the generalization on CNNs. This matches our observations with the complexity
of augmentations and curriculums that transformers prefer difficult samples. We observe that diversified samples using
KMeans clustering (green) provide similar behavior to random samples (blue) while for transformers provide more consistent
improvements at varying number of samples (dashed green compared with dashed blue). We identify this potential for
future work and investigate reinforced datasets with random samples in the rest of the paper. Note that the curriculums are a
generalization of the objective-based metrics that are adaptive to the student (See Appendix C.4 and Appendix C.5).
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Figure 16: Optimal augmentation sample selection. ImageNet+ accuracy for varying objectives and number of samples.
The teacher is ConvNext (Base-IN22FT1K) (E=150)



D. Additional pretraining/finetuning/transfer learning results

In Tab. 17 we provide results for various combinations of pretraining and fine-tuning on reinforced/non-reinforced datasets.
We observe that the best results are achieved when both pretraining and fine-tuning are done using reinforced datasets. We also
observe that the improvement is significant compared to when only one of the pretraining/fine-tuning datasets is reinforced.
The idea of training and fine-tuning on multiple reinforced datasets is unique to dataset reinforcement and would be challenging
to replicate with standard data augmentations or knowledge distillation.

We train models for 100, 400, 1000 epochs on CIFAR-100, Food-101 and 1000, 4000, and 10000 epochs on Flowers-102
and report the best accuracy for each model. Models pretrained/fine-tuned on non-reinforced datasets tend to overfit at longer
training while models trained on reinforced datasets benefit from longer training.

For future tasks and datasets, additional task-specific information could be considered as reinforcements. For example, an
object detection dataset can be further reinforced using the teacher’s uncertainty on bounding boxes, occlusion estimate, and
border uncertainty. Multi-modal models such as CLIP are an immediate future work that can provide variety of additional
training signal based on the relation to an anchor text.

Model Pretraining dataset Fine-tuning dataset

CIFAR-100 CIFAR-100+ Flowers-102 Flowers-102+ Food-101 Food-101+

MobileNetV3-Large None 80.2 83.6 68.8 87.5 85.1 88.2
ImageNet 84.4 87.2 92.5 94.1 86.1 89.2
ImageNet+ (Ours) 86.0 87.5 93.7 95.3 86.6 89.5

ResNet-50 None 83.8 85.0 87.3 85.0 89.1 90.2
ImageNet 88.4 89.5 93.6 94.9 90.0 91.8
ImageNet+ (Ours) 88.8 89.8 95.0 96.3 90.5 92.1

SwinTransformer-Tiny None 35.0 82.2 78.3 72.5 89.6 90.9
ImageNet 90.6 90.7 96.3 96.5 92.3 92.7
ImageNet+ (Ours) 90.9 91.2 96.6 97.0 93.0 92.9

Table 17: Pretraining/Finetuning/Transfer learning for fine-grained object classification.

E. Full table of calibration results

In Tab. 18 we provide the full results for Fig. 5. We see observe that validation ECE of ImageNet+ pretrained models is
lower than ImageNet pretrained models.

Model Method Epochs Train ECE Val ECE ECE gap Train Error Val Error Error gap

MobileNetV3-Large

ImageNet 300 0.1503 0.0727 0.0776 0.0934 0.2509 0.1575
ImageNet+ 300 0.0339 0.0309 0.0030 0.1400 0.2298 0.0898
ImageNet 1000 0.1489 0.0608 0.0881 0.0599 0.2491 0.1891

ImageNet+ 1000 0.0312 0.0323 0.0011 0.1218 0.2206 0.0988
KD 300 0.0303 0.0297 0.0006 0.1550 0.2358 0.0808

ResNet-50

ImageNet 300 0.1938 0.1513 0.0425 0.1239 0.2122 0.0883
ImageNet+ 300 0.0263 0.0362 0.0098 0.1115 0.1944 0.0829
ImageNet 1000 0.1887 0.1348 0.0539 0.0906 0.2036 0.1130

ImageNet+ 1000 0.0241 0.0360 0.0119 0.0936 0.1830 0.0894
KD 300 0.0250 0.0339 0.0089 0.1065 0.1846 0.0781

SwinTransformer-Tiny

ImageNet 300 0.1084 0.0663 0.0421 0.0734 0.1910 0.1176
ImageNet+ 300 0.0201 0.0381 0.0180 0.0818 0.1698 0.0880
ImageNet 1000 0.1042 0.0522 0.0519 0.0421 0.1905 0.1484

ImageNet+ 1000 0.0195 0.0397 0.0203 0.0743 0.1621 0.0877
KD 300 0.0206 0.0379 0.0173 0.0958 0.1701 0.0742

Table 18: Full calibration error and validation error for Fig. 5.



F. Cost of dataset reinforcement
In Appendix C.1, we observe that similar accuracy to knowledge distillation is reached with ×3 fewer samples than the

number of target epochs. This reduces the reinforcement cost. ImageNet+ took 2080 mins to generate using 64xA100
GPUs which is highly parallelizable and similar to training ResNet-50 for 300 epochs on 8xA100 GPUs. The parallelization
is another significant advantage to knowledge distillation because samples are reinforced independently while knowledge
distillation requires following a trajectory on training samples. For CIFAR-100, Flowers-102, and Food-101, the reinforcement
took 90, 40, and 120 minutes respectively. With pretrained teachers and extrapolating our ImageNet+ observations, we can
reinforce any new dataset and the cost is performing inference using the teacher on the dataset for approximately ×3 fewer
samples than the maximum intended training epochs. This is a one-time cost that is amortized over many uses.

We provide storage cost analysis for ImageNet+ in Tab. 2. Note that for variants with mixing, the storage of RRC+RA/RE
parameters doubles because each reinforcement consists of augmentations for a pair. The proposed ImageNet+ variant,
RRC+RA/RE, does not have that doubling cost. Also note that the storage can be further reduced using compression methods.
For example, ImageNet+ RRC+RA/RE with the compression from Python’s Joblib with compression level 3 can be reduced
to 55GBs instead of 61GBs. Even more compression is possible by reducing the number of stored logits for the teacher and
more aggressive compression methods.

The storage cost for CIFAR-100+, Flowers-102+, and Food-101+ uses the same set of formula given the number of
samples that amounts to approximately 4.8, 1.0, and 7.3GBs in basic compressed form as in Tab. 2. We have not explored
reducing the size of these datasets significantly as it is not a significant overhead for small datasets. For larger datasets such as
ImageNet, the reinforcement overhead is much smaller relative to the original dataset size because the bulk of the dataset is
taken by the inputs while our reinforcements only store the outputs.

We provide the breakdown of training time on MobileNetV3-Large, ResNet-50, and SwinTransformer-Tiny in Tab. 19.
Except for mixing augmentations, reapplying all augmentations has zero overhead compared to standard training with the
same augmentations. For mixing augmentations, our current implementation has approximately 30% time overhead because
of the extra load time of mixing pairs stored with each reinforced sample. This overhead only translate to extra wall-clock for
very small models where the bottleneck is on the CPU rather than GPU. We discuss efficient alternatives in Appendix C.3. Our
balanced solution, RRC+RA/RE, does not use mixing and has zero overhead.

Model Dataset Training Epochs

150 300 1000

MobileNetV3-Large ImageNet 1.00× 1.00× 1.00×
ImageNet+ (Ours) 1.13× 1.12× 1.12×

ResNet-50 ImageNet 1.00× 1.00× 1.00×
ImageNet+ (Ours) 1.04× 1.02× 0.97×

SwinTransformer-Tiny ImageNet 1.00× 1.00× 1.00×
ImageNet+ (Ours) 0.99× 0.99× 0.99×

Table 19: Training time for different models using ImageNet+ is similar to ImageNet dataset. Full results in Appendix A.



G. Hyperparameters and implementation details
We follow [42, 64] and use state-of-the-art recipes, including optimizers, hyperparameters, and learning. The details are

provided in Tab. 20. Because of resource limitations, we train EfficientNet-B3/B4 with KD using batch size 512. Overall, we
use the same hyperparameters on ImageNet and ImageNet+ with the exception of the data augmentations that are removed
from the training on ImageNet+ based on our observations in Appendix C.2. For KD, we use the KL loss with temperature 1.0
(no mixing with the cross-entropy loss) and shrink the weight decay by 10×.

In Tab. 21 we provide hyperparameters for training with CVNets. For higher resolution and variable resolution training,
we use the same metadata in ImageNet+ to create a random crop then resize it to the target resolution instead of the base
resolution of 224. In Tab. 22 we provide hyperparameters for training Detection/Segmentation models. In Tab. 23 we provide
hyperparameters for transfer learning on CIFAR-100/Flowers-102/Food-101 datasets.

Model Training Method Optimization Hyperparams Data augmentation methods

Optimizer Batch Size LR Warmup Weight Decay Label Smoothing RandAugment Random Erase (p) MixUp (α) CutMix (α)

MobileNetV1
ImageNet SGD+Mom=0.9 1024 0.8 3 4.0e−5 ✓ ✗ ✗ ✗ ✗
ImageNet+ SGD+Mom=0.9 1024 0.8 3 4.0e−5 ✓ ✗ ✗ ✗ ✗
KD SGD+Mom=0.9 1024 0.8 3 4.0e−6 ✗ ✗ ✗ ✗ ✗

MobileNetV2
ImageNet SGD+Mom=0.9 1024 0.4 3 4.0e−5 ✓ ✗ ✗ ✗ ✗
ImageNet+ SGD+Mom=0.9 1024 0.4 3 4.0e−5 ✓ ✗ ✗ ✗ ✗
KD SGD+Mom=0.9 1024 0.4 3 4.0e−6 ✗ ✗ ✗ ✗ ✗

MobileNetV3
ImageNet SGD+Mom=0.9 1024 0.4 3 4.0e−5 ✓ ✗ ✗ ✗ ✗
ImageNet+ SGD+Mom=0.9 1024 0.4 3 4.0e−5 ✓ ✗ ✗ ✗ ✗
KD SGD+Mom=0.9 1024 0.4 3 4.0e−6 ✗ ✗ ✗ ✗ ✗

ResNet
ImageNet SGD+Mom=0.9 1024 0.4 5 1.0e−4 ✓ ✓ ✓(0.25) ✓(0.2) ✓(1.0)
ImageNet+ SGD+Mom=0.9 1024 0.4 5 1.0e−4 ✓ ✗ ✗ ✗ ✗
KD SGD+Mom=0.9 1024 0.4 5 1.0e−5 ✗ ✓ ✓(0.25) ✓(1.0) ✓(1.0)

EfficientNet-B2
ImageNet SGD+Mom=0.9 1024 0.4 5 4.0e−5 ✓ ✓ ✓(0.25) ✓(0.2) ✓(1.0)
ImageNet+ SGD+Mom=0.9 1024 0.4 5 4.0e−5 ✓ ✗ ✗ ✗ ✗
KD SGD+Mom=0.9 1024 0.4 5 4.0e−6 ✗ ✓ ✓(0.25) ✓(1.0) ✓(1.0)

EfficientNet-B3
ImageNet SGD+Mom=0.9 1024 0.4 5 4.0e−5 ✓ ✓ ✓(0.25) ✓(0.2) ✓(1.0)
ImageNet+ SGD+Mom=0.9 1024 0.4 5 4.0e−5 ✓ ✗ ✗ ✗ ✗
KD SGD+Mom=0.9 512 0.2 5 4.0e−6 ✗ ✓ ✓(0.25) ✓(1.0) ✓(1.0)

EfficientNet-B4
ImageNet SGD+Mom=0.9 1024 0.4 5 4.0e−5 ✓ ✓ ✓(0.25) ✓(0.2) ✓(1.0)
ImageNet+ SGD+Mom=0.9 1024 0.4 5 4.0e−5 ✓ ✗ ✗ ✗ ✗
KD SGD+Mom=0.9 512 0.4 5 4.0e−6 ✗ ✓ ✓(0.25) ✓(1.0) ✓(1.0)

ViT
ImageNet AdamW (0.9, 0.999) 1024 0.001 5 0.05 ✓ ✓ ✓(0.25) ✓(0.2) ✓(1.0)
ImageNet+ AdamW (0.9, 0.999) 1024 0.001 5 0.05 ✓ ✗ ✗ ✗ ✗
KD AdamW (0.9, 0.999) 1024 0.001 5 0.005 ✗ ✓ ✓(0.25) ✓(1.0) ✓(1.0)

SwinTransformer
ImageNet AdamW (0.9, 0.999) 1024 0.001 5 0.05 ✓ ✓ ✓(0.25) ✓(0.2) ✓(1.0)
ImageNet+ AdamW (0.9, 0.999) 1024 0.001 5 0.05 ✓ ✗ ✗ ✗ ✗
KD AdamW (0.9, 0.999) 1024 0.001 5 0.005 ✗ ✓ ✓(0.25) ✓(1.0) ✓(1.0)

Table 20: Hyperparameters used for training different models. We use cosine learning rate schedule to zero.



Model Training Method Optimization Hyperparams Data augmentation methods
Optimizer Batch Size LR Warmup Weight Decay Mixed Precision Resolution Grad. Clip

MobileNetV1 ImageNet SGD+Mom=0.9 1024 0.8 3 4.0e−5 ✓ 224 ✗ LS+RRC+HF
ImageNet+ SGD+Mom=0.9 1024 0.8 3 4.0e−5 ✓ 224 ✗ ✗

MobileNetV2 ImageNet SGD+Mom=0.9 1024 0.4 3 4.0e−5 ✓ 224 ✗ LS+RRC+HF
ImageNet+ SGD+Mom=0.9 1024 0.4 3 4.0e−5 ✓ 224 ✗ ✗

MobileNetV3 ImageNet SGD+Mom=0.9 2048 0.4 3 4.0e−5 ✓ 224 ✗ LS+RRC+HF
ImageNet+ SGD+Mom=0.9 2048 0.4 3 4.0e−5 ✓ 224 ✗ ✗

MobileNetViT ImageNet AdamW (0.9, 0.999) 1024 0.002 20 0.01 ✓ VBS(160, 320, 256) ✗ LS+RRC+HF
ImageNet+ AdamW (0.9, 0.999) 1024 0.002 20 0.01 ✓ VBS(160, 320, 256) ✗ ✗

ResNet ImageNet SGD+Mom=0.9 1024 0.4 5 1.0e−4 ✓ 224 ✗ LS+RRC+HF+RA+RE+MU+CM
ImageNet+ SGD+Mom=0.9 1024 0.4 5 1.0e−4 ✓ 224 ✗ ✗

EfficientNet-B2 ImageNet SGD+Mom=0.9 2048 0.8 3 4.0e−5 ✓ VBS(144, 432, 288) ✗ LS+RRC+HF+RA+RE+MU+CM
ImageNet+ SGD+Mom=0.9 2048 0.8 3 4.0e−5 ✓ VBS(144, 432, 288) ✗ ✗

EfficientNet-B3 ImageNet SGD+Mom=0.9 2048 0.8 3 4.0e−5 ✓ VBS(150, 450, 300) ✗ LS+RRC+HF+RA+RE+MU+CM
ImageNet+ SGD+Mom=0.9 2048 0.8 3 4.0e−5 ✓ VBS(150, 450, 300) ✗ ✗

EfficientNet-B4 ImageNet SGD+Mom=0.9 2048 0.8 3 4.0e−5 ✓ VBS(190, 570, 380) ✗ LS+RRC+HF+RA+RE+MU+CM
ImageNet+ SGD+Mom=0.9 2048 0.8 3 4.0e−5 ✓ VBS(190, 570, 380) ✗ ✗

ViT-Tiny ImageNet AdamW (0.9, 0.999) 2048 0.002 10 0.05 ✓ 224 ✓(1.0) LS+RRC+HF+RA+RE+MU+CM
ImageNet+ AdamW (0.9, 0.999) 2048 0.002 10 0.05 ✓ 224 ✓(1.0) ✗

ViT-Small/Base ImageNet AdamW (0.9, 0.999) 2048 0.002 10 0.2 ✓ 224 ✓(1.0) LS+RRC+HF+RA+RE+MU+CM
ImageNet+ AdamW (0.9, 0.999) 2048 0.002 10 0.2 ✓ 224 ✓(1.0) ✗

ViT-Base ↑384 ImageNet AdamW (0.9, 0.999) 2048 0.002 20 0.2 ✓ VBS(192, 576, 384) ✓(1.0) LS+RRC+HF+RA+RE+MU+CM
ImageNet+ AdamW (0.9, 0.999) 2048 0.002 20 0.2 ✓ VBS(192, 576, 384) ✓(1.0) ✗

SwinTransformer ImageNet AdamW (0.9, 0.999) 1024 0.001 20 0.05 ✓ 224 ✓(5.0) LS+RRC+HF+RA+RE+MU+CM
ImageNet+ AdamW (0.9, 0.999) 1024 0.001 20 0.05 ✓ 224 ✓(5.0) ✗

SwinTransformer-Base ↑384 ImageNet AdamW (0.9, 0.999) 1024 0.001 20 0.05 ✓ VBS(192, 576, 384) ✓(5.0) LS+RRC+HF+RA+RE+MU+CM
ImageNet+ AdamW (0.9, 0.999) 1024 0.001 20 0.05 ✓ VBS(192, 576, 384) ✓(5.0) ✗

Table 21: Hyperparameters used for training different models in CVNets. LS: Label Smoothing with 0.1, RRC: Random-
Resize-Crop, HF: Horizontal Flip, VBS(min-res, max-res, crop-size): Variable Batch Sampler with variable resolution. RA:
RandAugment, RE: Random Erase with 0.25, MU: MixUp with alpha 0.2, CM: CutMix with alpha 0.1. We use cosine-learning
rate schedule to 0.

Model Training Method Optimization Hyperparams Data augmentation methods
Optimizer Epochs Batch Size LR BackBone LR Mul. Warmup iter. Weight Decay Mixed Precision Resolution Grad. Clip

MobileNetV3-Large Detection SGD+Mom=0.9 36 64 multi-step-lr(0.1, [24, 33]) 0.1 500 4.0e−5 ✗ VBS(512, 1280, 1024) ✗ ✗
Segmentation SGD+Mom=0.9 50 16 cosine-lr(0.02, 0.0001) 0.1 0 1.0e−4 ✗ 512 ✗ RC+RSSR+RR+PD+RG

ResNet-50 Detection SGD+Mom=0.9 100 64 multi-step-lr(0.1, [60, 84]) 0.1 500 4.0e−5 ✗ VBS(512, 1280, 1024) ✗ ✗
Segmentation SGD+Mom=0.9 50 16 cosine-lr(0.02, 0.0001) 0.1 500 4.0e−5 ✗ 512 ✗ RC+RSSR+RR+PD+RG

SwinTransformer-Tiny Detection SGD+Mom=0.9 100 64 multi-step-lr(6.0e−4, [60, 84]) 1.0 500 0.05 ✗ VBS(512, 1280, 1024) ✗ ✗
Segmentation SGD+Mom=0.9 50 16 cosine-lr(6.0e−4, 1.0e−6) 0.1 500 0.05 ✗ 512 ✗ RC+RSSR+RR+PD+RG

Table 22: Hyperparameters of detection/segmentation using CVNets. RC: Random Crop, RSSR: Random Short-Size
Resize, RR: Random Rotate by maximum 10 degrees angle. VBS(min-res, max-res, crop-size): Variable Batch Sampler with
variable resolution. PD: Photometric Distortion, RG: Random Gaussian noise

Model Pretrained Optimization Hyperparams Data augmentation methods
Optimizer Batch Size LR Warmup Weight Decay

MobileNetV3-Large
✗ SGD+Mom=0.9 256 0.2 0 5.0e−4 ✗
✓ SGD+Mom=0.9 256 0.002 0 5.0e−4 ✗
✓+ SGD+Mom=0.9 256 0.002 0 5.0e−4 ✗

ResNet-50
✗ SGD+Mom=0.9 256 0.2 0 5.0e−4 RA+MU+CM
✓ SGD+Mom=0.9 256 0.002 0 5.0e−4 RA+MU+CM
✓+ SGD+Mom=0.9 256 0.002 0 5.0e−4 ✗

SwinTransformer-Tiny
✗ AdamW (0.9, 0.999) 256 0.0001 5 0.05 RA+MU+CM
✓ AdamW (0.9, 0.999) 256 0.00001 5 0.05 RA+MU+CM
✓+ AdamW (0.9, 0.999) 256 0.00001 5 0.05 ✗

Table 23: Hyperparameters used for CIFAR-100/Flowers-102/Food-101. We use cosine learning rate schedule to zero. We
resize the inputs for all datasets to 224 including CIFAR-100 where we pad the input by 16. We also use label smoothing.



H. CLIP, ViT, and Mixed Architecture Teachers
In this section, we evaluate the effectiveness of CLIP-pretrained models fine-tuned on ImageNet as teachers. We evaluate

various ensembles teachers mixed with non-CILP pretrained teachers and a variety of ViT-based models. We provide the model
names in Tab. 24. Table 25 shows the accuracy of various student models trained on reinforced datasets with our selection of
ensembles. We observe 1) Ensembles are consistently better teachers 2) CLIP-pretrained teachers are at best on-par with the
IG-ResNext ensemble 3) ViT-based teachers are not good teachers for CNN-based models, regardless of their training method.

Teacher Name Timm name of Ensemble Member

1 2 3 4

CLIP vit_large_patch14_clip_224.openai_ft_in12k_in1k vit_large_patch14_clip_224.openai_ft_in1k vit_base_patch16_clip_224.openai_ft_in12k_in1k vit_base_patch16_clip_224.openai_ft_in1k
ViT vit_base_patch16_224 vit_base_patch8_224 vit_large_patch16_224 vit_small_patch32_224
Mixed (RCVDx4). ig_resnext101_32x48d convnext_xlarge_in22ft1k volo_d5_224 deit3_huge_patch14_224
Mixed (RCCVx4). ig_resnext101_32x48d convnext_xlarge_in22ft1k vit_large_patch14_clip_224.openai_ft_in1k vit_base_patch16_224

Table 24: CLIP, ViT, Mixed architecture teacher ensemble names.

Model Prev. Mixed Archs CLIP ViT

IN IN+ IN+-RCVDx4 IN+-RCCVx4 IN+-CLIPx1 IN+-CLIPx2 IN+-CLIPx4 IN+-ViTx1 IN+-ViTx4

MobileNetV3-Large 74.7 76.2+1.6 75.9+1.2 75.9+1.2 75.5+0.8 75.5+0.8 75.5+0.8 74.3−0.4 74.0−0.6

ResNet-50 77.4 79.6+2.3 79.5+2.1 79.4+2.0 79.2+1.8 79.2+1.8 79.3+2.0 77.8+0.4 78.0+0.6

Swin-Tiny 79.9 82.0+2.1 81.9+2.0 82.0+2.1 81.6+1.7 81.6+1.7 81.8+1.9 80.0+0.0 80.2+0.3

(a) 150 epochs

Model Prev. Mixed Archs CLIP ViT

IN IN+ IN+-RCVDx4 IN+-RCCVx4 IN+-CLIPx1 IN+-CLIPx2 IN+-CLIPx4 IN+-ViTx1 IN+-ViTx4

MobileNetV3-Large 74.9 77.0+2.1 76.6+1.7 76.7+1.7 76.2+1.3 76.3+1.4 76.4+1.5 75.1+0.2 75.0+0.1

ResNet-50 78.8 80.6+1.8 80.6+1.9 80.4+1.7 80.0+1.2 80.1+1.3 80.3+1.5 78.5−0.3 78.6−0.1

Swin-Tiny 80.9 83.0+2.1 82.9+2.0 82.9+2.0 82.5+1.6 82.6+1.7 82.9+2.0 80.7−0.2 81.0+0.1

(b) 300 epochs

Model Prev. Mixed Archs CLIP ViT

IN IN+ IN+-RCVDx4 IN+-RCCVx4 IN+-CLIPx1 IN+-CLIPx2 IN+-CLIPx4 IN+-ViTx1 IN+-ViTx4

MobileNetV3-Large 75.1 77.9+2.9 77.7+2.6 77.4+2.3 77.2+2.1 77.0+1.9 77.2+2.1 76.0+0.9 75.8+0.7

ResNet-50 79.6 81.7+2.1 81.4+1.7 81.5+1.8 81.1+1.5 81.0+1.4 81.1+1.4 79.3−0.3 79.6−0.1

Swin-Tiny 80.9 83.8+2.8 83.7+2.8 83.8+2.8 83.5+2.5 83.6+2.6 83.7+2.7 81.3+0.3 81.7+0.8

(c) 1000 epochs

Table 25: CLIP, ViT, Mixed architecture teachers. Subscripts show the improvement on top of the ImageNet accuracy. We
highlight the best accuracy on each row from our proposed datasets and any number that is within 0.2 of the best.


