
Simulating Fluids in Real-World Still Images
- Supplementary Material -

Siming Fan1, Jingtan Piao1,3*, Chen Qian1, Hongsheng Li2, 3,4�, Kwan-Yee Lin2,3�

1SenseTime Research, 2Shanghai AI Laboratory, 3The Chinese University of Hong Kong, 4CPII
{fansiming,qianchen}@sensetime.com, 1155116308@link.cuhk.edu.hk,

hsli@ee.cuhk.edu.hk, junyilin@cuhk.edu.hk

Input: A Still Image

Alpha Frame 1
Impervious Background Layer RGBA

Surface Fluid Layer RGBA Frame 1

Surface Fluid Layer RGBA Frame t

Alpha Frame t

Predict

Motion
Input: Mask and Arrows

Predict

Predict

Pr
ed

ict

Output: Animated Video Frame t

Dense Motion

Vortex Motion by SimulationRock Interation Region Input

Edit through Simulation

 

Warp

Warp

Figure 1. Overview. Given a still image and a coarse hint of motion as inputs, our model estimates fluid motion to generate animating
videos. To be able to represent complex scenes like transparent fluid shown in the figure, we propose to learn a single background RGBA
layer and per-frame surface fluid RGBA layer to compose each frame of the final animated video (solid arrows indicate the data flow).
Besides, a simulation-based motion editing method (dot arrow in the figure) is introduced to generate realistic effects like fluid-rock
interaction, which cannot be easily captured by the learning-based method only. The edited motion direction is represented as red arrows.

In this supplementary material, we provide: (1) detailed
discussion on the implementation details; (2) the details of
our newly collected CLAW dataset; (3) additional qualita-
tive and quantitative experiments to further investigate the
effectiveness of proposed designs; (4) the elaborate formula
derivation for surface-only simulation. In addition, we also
list a simplified framework overview at the beginning of the
supplementary material, as shown in Figure 1, for better re-
calling the key aspects in the main paper.

A. Implementation Details

A.1. Networks for SLR

In this subsection, we provide more details of the net-
work that predicting the Surface-based Layered Represen-
tation (SLR). Specifically, we first extent the detailed net-
work architecture implementation along side the main pa-
per. Then, we dive into the discussion about the challenges
we will meet during optimizing the network since there is

no oracle ground-truth supervision for fluid scene decompo-
sition, as well as how we solve the problems through several
losses and training strategy designs in practice.
Architecture. The network is under an encoder-decoder ar-
chitecture. It consists three major components, an Encoder
that maps the images to the corresponding background im-
age, fluid layer features, α channel and Z channel, a De-
coder that refines the warped features to final surface fluid
layer image and the warped alpha to final alpha, and a
Translator that refines the coarse velocity to the one with
fine-grain.

For the encoder, we use 8 ResNet Blocks, which is the
same as Synsin [11]. For the decoder, we use 8 ResNet
Blocks and replace the convolution operator with partial
convolution [6] along with mask input. The mask is vacated
region of warped features or warped alpha. Partial convolu-
tion helps inpaint irregular blank areas caused by warping.
For motion translator, we use U-net with 16 layers of convo-
lution and use SPADE layer [9]instead of batch-norm. The
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detailed structure can refer to Figure 2.
Optimizing the SLR As mentioned in the main paper, the
training process is divided into three stages: (1) training
the surface fluid branch; (2) training the background branch
and (3) jointly training them together with α learning and
surface fluid/ background branches finetuning.

For the first stage, we train the surface fluid branch with
reconstruction losses at hand:

Limage =|I(Ti)− Igt(Ti)|+
λ0∥VGG(I(Ti))− VGG(Igt(Ti))∥+
λ1Disc(I(Ti)) (1)

where Disc denotes discriminative loss using a spectral
normalized network updating simultaneously to distinguish
the facticity of the output fluid image. The target of this
stage is to enable the decoder to have the ability to mem-
orize the texture of the fluids and hallucinate the texture in
blank areas caused by warping. The background is viewed
as black in this stage.

For the second stage, we train the background branch
with warm-up supervision. ’Averaged image’ of the whole
sequence is used as guidance. The general idea behind this
implementation is that for static textures in the video, av-
eraging operation does not decline their quality. While for
flowing textures, averaging will lead to blurring as well as
mean static of texture, which is reasonable for under-surface
liquid, as shown in the Figure 3 in the main paper. The loss
could be written as:

Lbg = |Ib −
1

n

∑
i

I(Ti)| (2)

For the last stage, all the network components are trained
together to update the α channels that composite the two
layers, as well as to fine-tune other parts of the network.
Despite the loss mentioned in the previous stages, we also
make some restrictions on the predicted α that share a sim-
ilar spirit with [7]. Considering Igt(Ti) cannot be well
aligned with I(Ti) as motion is a pseudo ground truth,
only supervised with image reconstruction loss will mislead
alpha regressor to incorrectly prediction for scenes under
complex motion variation. For example, splashes will al-
ways appear in the first frame then disappear in the next
frame or do not exist in the first frame but appear in the next
frame under a fluid collision scenario, as shown in the white
splashes region in Figure 10(d). Such variation is hard to
infer from previous source frames. For this reason, we con-
strain α with two loss terms to form Lα as follows:

Lα =|
(

αf (Ti)

αf (Ti) + αb
− αlabel

)
⊙RM>γ |+

|(α′
f (Ti)− αf (Ti))⊙Rvalid|

(3)

The first term is a L1 Loss under moving region RM>γ

to provide a hint for alpha learning, where γ is a hyper-
parameter that specifies the boundary of moving pixels and
static pixels. ⊙ is an element-wise product, αlabel is gen-
erated with our newly labelled mask in the solid region and

αf (Ti)
αf (Ti)+αb

is called the composited alpha1 . The second
term is a temporal-wise α consistency loss, which is applied
between warped partial α′

f and its refinement complete re-
sult αf under valid non-hole pixel regions in the target im-
age . Then, the final loss terms in this stage is:

L = Limage + λbgLbg + λαLα (4)

As described in Section 3.1 in the main paper, we train
each part of the model separately and jointly train together
afterwards. For the first and second stages, the learning-rate
of the generator and discriminator is 5e−4 and 2e−3 , with
the loss weight of the components to be L1: 1.0, Perceptual:
10.0 and GAN: 1.0. For the final stage, with the previous
trained network prior, the learning rate is 2.5e−4 and 1e−3,
and a weighted L1 Loss with a weight 30.0 is added.

For training the translator network, we follow the train-
ing strategy in [8], but with some modifications. Specifi-
cally, we concatenate the source fluid image, initial dense
motion map and the moving fluid region mask to form
the input tensor and feed the tensor to the translator net-
work. The output of the network is supervised with pseudo-
ground-truth motion. The loss terms contain endpoint error,
with weights 10 and GAN loss, with weights 1 . We use a
learning rate of 5e − 4 and 2e − 3 to train the network and
finetune with a fluid layer with a learning rate of 2.5e − 4
and 1e− 3.
Generating Labels for Alpha Values As mentioned in
above, a few labels of transparency values are expected to
initialize the learning of α. Thus, we re-annotate around
600 masks in the Holynski training set(note: we pick one
image frame per scene). The definition of these masks is
that the pixels contain solids that are overlapped with fluid
regions. Then, for these masked regions, we set labels as
αgt
bg = 0.25. For fluid regions with motion value greater than

0.1× mean of motion speed, we set the labels as αgt
fluid =

1. The weight of this supervision gradually decays to zero
during alpha training.

1It is abbreviated as “alpha” in the later experiment section for conve-
nience, unless otherwise specified.
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(a) Encoder Structure (b) Decoder Structure (c) Translator Structure

Figure 2. Architectures. (a) The structure of the encoder network, with 8 res-blocks. Each consists of a pair of convolutions, batch-
normalization and relu layer. No upsampl or downsample is used here. The number in the bracket shows the output channels (b) The struc-
ture of the decoder network, with 8 partial res blocks. Each consists of a pair of convolutions, region-based batch-normalization(normalized
on regions with positive mask), and relu layers. The upsample(U) and downsample(D) are done with strided convolutions or deconvolu-
tions on the second unit of the res-block. (c) The structure of the translator transfers an image and guided flow map to a refined flow map.
Each conv-block is built with a convolution, an adaptive instance normalization, with mean and variance acquired from guided dense flow
needed to be refined. The activation is set to be Leaky-Relu to smooth the network.

B. Dataset

B.1. Holynski Dataset

The dataset proposed by [4] includes a variety of flu-
ids under natural scenes, such as waterfalls, oceans, and
fogs. We regard all the training samples (949 scenes, 5 short
video clips for each scene on average) as the training set
and perform testing on the validation set2 (31 scenes). The
main statistics of this dataset can be seen in Figure 3 and
Figure 4 . Although diverse real-world fluids are covered in
this dataset, most of the scenes are opaque.

B.2. Our Proposed CLAW Test Set

To further quantitatively evaluate our method on more
complex scenes(e.g., semi-/full transparent fluids) and facil-
itate future research of fluid animation, we collect a new test
set named Complex Liquid Animation in-the-wild (CLAW)
from StoryBlocks3 with key words fluid, waterfall, river

2since [4] does not release ground-truth videos for their test set, we use
the validation set for evaluation.

3https://www.storyblocks.com/

etc. and filter them manually to exclude unrelated videos.
Videos from 122 scenes are finally provided. We follow
two rules to select these videos. First, there must have
transparent/semi-transparent fluid regions in the scene. Sec-
ond, the motion of transparent fluid should be predicted rea-
sonably by a pre-trained optical flow estimator, such that
we can provide pseudo-ground-truth motion fields for net-
work learning. We use flownet2 [5] in practice. The main
statistic of our dataset are shown in Figure 6. Compared to
the Holynski validation set, more challenging context rela-
tions with fluids are provided in the CLAW dataset, and the
type of fluids and transparent regions are more balanced in
CLAW. Some image samples of our test set are presented in
Figure 7 .

C. More Experiments

Quantitative Ablation. Table 1 shows the quantitative ab-
lation among each training stage of our SLR model. Net-
work input resolution is 768 × 768 to get higher resolution
results during inference. For evaluation, We resize these
768 × 768 images to the size of the ground truth image(or



Figure 3. Main statistics of Holynski’s training set.

Figure 4. Main statistics of Holynski’s validation set.

S1 S2 S3 S4 S5

Figure 5. Evaluated scenes for components of motion calculation.

half of it in Holynski common validation set). The Ours
(stage 1) is trained under the same setting as the model

Figure 6. Main statistics of our proposed CLAW test set.

(Modified Holynski(Baseline) in Table 1 in the main pa-
per but with lesser epochs. The prediction of Ours (stage
2) model is a uniform blending of the surface fluid image
from the stage 1 model and background image from the
background extractor trained in stage 2, telling us a naive
combination will lead to blurry fluid synthesis in the non-
transparent fluid region of the animating videos. The Ours
is the final SLR model, which has comparable results with
the best ones of Ours (stage 2) or Ours (stage 1) model
in Holynski common validation set, and improves signifi-
cantly in our CLAW testset.

Dataset Methods
All Region Fluid Region

LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
Holynski
Common

Validation Set

Ours(Stage 1) 0.0782 25.11 0.7772 0.0650 25.96 0.8026
Ours(Stage 2) 0.0929 25.03 0.7612 0.0718 26.59 0.8144

Ours 0.0834 25.14 0.7795 0.0657 26.10 0.8030
Our

CLAW
Testset

Ours(Stage 1) 0.2143 20.28 0.5926 0.2100 20.37 0.5933
Ours(Stage 2) 0.2411 21.09 0.5674 0.2294 21.06 0.5738

Ours 0.2040 20.79 0.6080 0.1975 20.80 0.6077

Table 1. Quantitative Abalation. (a) Quantitative evaluation on
Holynski’s common validation set [4]. (b) Quantitative evaluation
of CLAW test set. Unless otherwise specified, all settings are the
same as Table 1 in the main paper.

Quantitative Ablation of Motion. Tab 2 shows the ab-
lations for different motion representations in terms of end-
point error metric (lower is better). Specifically, we conduct
the ablation on a smaller test set, which contains representa-
tive scenarios such as collision, translucence, and different
depths (as illustrated in Fig 5). The user input is restricted
to one sparse annotation to justify the robustness of differ-
ent motion representations under minimal input. The refine-



Figure 7. Samples in our proposed CLAW test set. We show some representative samples in our collected dataset. The CLAW covers
diverse fluid scenes with different proportions of transparency, such as fluid, waterfall, river, and etc.

ment stage is not used in this setting 4. The 2.5D simulation
achieves the best performance on average. As for different
types of scenes, in S1, differences are mainly centered on
the small rock. In S2-S3, the 2.5D SFS outperforms 2D
SFS and dense motion due to the ability to handle perspec-
tive distortion. In S4-S5, 2.5D SFS slightly falls behind
the motion due to inconsistent depth estimation on multiple
fluid surfaces.

Methods S1 S2 S3 S4 S5 Avg.
DenseMotion1Hint 3.287 1.061 3.356 0.959 2.118 2.118
+2D Simulation 3.463 1.649 3.205 1.957 2.244 2.244
+2.5D Simulation 3.184 0.816 2.749 0.994 1.963 1.963

Table 2. Quantitative Motion Ablation Study. We use end-point
error metric to evaluate the performance.

Decomposition Results. To help understand the network
estimation for proposed representation in a more straight-
forward manner, we visualize a complex fluid case with
each component predicated from our model, as shown in
Figure 8. In the almost transparent fluid region (left side of
dotted line in the figure), the surface fluid layer (g-h) carries
more high-frequency fluid textures above rock compared
with single-layer method (f), and the background layer re-
moves most surface fluid textures compared with input im-

4The refinement network is a plug-in module, that performs well at
average. We exclude this module in Table 5)’s setting to concretely analyze
the differences among Dense Motion, 2D simulation, and 2.5D simulation
versions.

age(a). alpha(i-j) is small but not zero in the region, asso-
ciated with the static background and moving foreground,
combines to meaningful transparency. As shown with pink
arrow, the movement of rock under fluid is suppressed in
our final prediction (d), while single-layer method (f) [4]
animates improperly with both rock textures and fluid tex-
tures moving.

Influence of Different Losses to α Learning. As shown
in Figure 10, for the learning of alpha factors, our labelled
mask indicating the transparent region helps the alpha fac-
tors to converge to a semantic result. An absolute error
(L1) on the output alpha with the labelled mask may extract
sharp transparent factors than the squared mean (MSE). We
can also find that total variance restriction strengthens the
smoothness of the alpha channel to fill holes caused by
warping, and warping consistency makes the alpha learn-
ing more aligned with input image textures, lessening the
ghosting effects and blur in the final output.

Influence of Different Motion Hints. As shown in Figure
12, our system is not limited by the sparse velocities’ qual-
ity. The reasons are two folds – First, it is not sensitive to
the sparse number of velocity hints, as the sparse motion
could be diffused (3rd column of the Figure) and further
refined (4th column of the figure) to a reasonable dense mo-
tion field. Second, our system can rather generate diverse
and realistic animations from different velocity inputs (Fig-
ure 12(a-b) and Figure 11). However, the mask quality is
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Figure 8. Visualization of decomposition results. The figure shows all components of our final prediction, explaining how our SLR
leads to realistic fluid animation even under a complex transparent scene, with only moving fluid textures above rocks. (a-b)Ground-truth
frames I(T0) and I(Ti). (c-d) Ours final prediction for (Ti). (e) Background layer prediction. (f) Single-layer method [4] prediction. (i-j)
Composited alpha prediction, alpha is 1 at surface fluid textures only region and is small at rock textures region. Pink arrows and dotted
line point out the boundary of the transparent solid region and non-transparent fluid region. We can see the rock is moving in the single
surface fluid layer (f) and (h), but keep static in Ours (d).
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Figure 9. Self-occlusion. From left to right are the input image, the depth image predicted from MegaDepth, and the visualization of the
corresponding fluid-solid collision scenario in point could form. Better zoom in for more details.

essential to delimit animation regions (Fig 12(b-c)). Since
the dense motion is the diffusion result of sparse motion in-
side the mask region.
Influence of Depth Estimation. Since the 2.5D method
relies highly on a depth estimation of fluid, we discuss two
scenarios:

• Transparent fluids. The influence of depth error in this
scenario is limited to final animated results in most
cases. This is because transparent fluids are the most
shallow water without visually distinct depth measure-
ment differences, and the physics-based simulation is
calculated on the fluid surface without considering the
thickness.

• Self-occlusion. This exists in fluid-solid collision sce-
narios. Here we list a specific example for discussion.

In Figure 9, part of fluid is occluded by collided rock,
making real 3D fluid-solid boundary unseen in input
view. However, as long as input view’s depth around
rock is reasonable and distinctive (as shown in the fig-
ure), the occluded fluid will be inpainted with isotropic
remeshing. Thus, self-occlusion will not affect the fi-
nal animation. In contrast, if depths of solid and fluid
are contiguous, the 3D boundary will be shifted.

Influence of Different α to insert-object editing. In the
main paper, we show a naive editing application for insert-
ing objects. The visual quality could be further improved.
One solution is that we can manually adjust the alpha blend-
ing weight of the inserted 3d object (Fig 14). The other
alternative is to apply advanced shading techniques to the
recovered 3D mesh for more realistic results. However, this



(e)Alpha w/o TVLoss (f)Alpha w/o Warping Consistency Loss

(c)Alpha w/ MSE Loss(a)GT Video (b)Ours Alpha

(d)w/o Mask Loss

Figure 10. Influence of Different Losses to α Learning. From (b,c) can tell that L1 loss gives a more accurate alpha than MSE loss in
our experiments. (d)Training alpha with reconstruction loss cannot predict an accurate alpha in the spray and splash region. (e)Alpha total
variation loss alleviates alpha noise. (f)Training without alpha warping consistency loss cannot guarantee a temporally consistent output.
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Figure 11. Animations with different motion hints. Our system generates different animations with realistic effects.

problem is beyond the scope of our current research.

Test on Fully Transparent Fluid Scenario. We also test
our methods in dataset [10]. Note that, this dataset is orig-
inally used for evaluating undistort dynamic refractive ef-
fects, which captures images from above of a glass tank full
of waved water and textured image under the tank. We test
on this dataset to further probe the flexibility of our frame-
work to scenarios with different scene scales. We did not

fine-tune on this dataset. Fig 13 visualized the results of
our method, where reasonable animation could be obtained.
Moreover, we also find it is sufficient to use a simplified
pipeline5 to animate such in-door datasets from a single im-
age. Since the wave patterns are relatively onefold.
Additional Qualitative Comparisons. Figure 15 shows

5Firstly, we generate wave-shape motion displacement (we use
flownet2 in Fig 13). Then, we warp the image and inpaint holes.



 GT Motion Input Mask &
 Arrows

Sparse to
 Dense Motion

Refined 
Motion

SLR Rendered
 Image 0.4s

(a)

(b)

(c)

Input Img

Figure 12. Input quality. (a) Input with GT mask and one hint. (b) Use three input hints. (c) Use an incorrect mask.
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Figure 13. Animating in the fully transparent fluid scenario. To
probe the flexibility of our framework to scenarios with different
scene scale, we further evaluate our method on an in-door hand-
made dataset.

more comparisons between the baseline (single-layer
method) and our two-layer models. Our model success-
fully decouples rock textures and fluid textures above the
rock. In this way, when the liquid moves after a period,
the texture beneath the liquid could appropriately stay still
in our representation, rather than moving with fluids in the
single-layer model [4]. Moreover, we present more com-
parisons with the other two state-of-the-art methods [2, 3]
in Figure 16. As shown in the Figure, Endo’s method [2]
struggles in predicting reasonable motion. For Tavi’s re-
sults, although the per-image texture is visual-appealing, the
temporal realism is lost in video sequences. The underlying
reason is that Tavi’s methods average motions from input
hints rather than prediction. This design will also lead to
ghosting effects (e.g., rock moves underwater). Please refer
to our supplementary video for better dynamic visual effect
comparisons.

D. Editing Pipeline

As described in Section 5 in the main paper, one of
byproducts of our work is interactive editing. We list an
example in the main paper that editing the fluids with imag-
inary objects and changing the flow of the liquid regions.

Original Animation (with predicted alpha)

 After Manually Adjusting Alpha×0.5

 After Manually Adjusting Alpha×0.25

Figure 14. 3D object editing with the different alpha values of
inserted 3d object.

We detail the implementation process of such an editing ap-
plication in this subsection.

As shown in Figure 4 in the main paper, the fluid mask
(step 2) and monocular depth (step 4) is generated directly
from the input image, and the initial dense velocity map
(step 4) is generated with the user interactive sparse la-
belling (step 2). With the mesh (step 5) built upon the depth
map and isotropic triangularization, we insert the cad model
of the target object into the 3D scene at a proper position
that crosses with the scene mesh(step 9). Then a Z-buffer al-
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transparent fluid region. Two methods show comparable results in non-transparent region. While, for the transparent one, Holynski [4]’s
method leads the texture of the intertidal zone to move with the fluid flow. In contrast, our method properly keeps the background still.
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Figure 16. More qualitative comparisons with state-of-the-art methods.We compare our method with Endo [2], and Tavi [3] on three
representative fluid scenes.

gorithm is applied to detect the occluded region of the scene
mesh and the object (step 12). For velocity on mesh, we cut
the mesh with the occluded area viewing as a solid bound-
ary. The surface-only fluid simulation is performed with
updated boundary conditions on the new mesh to achieve
the effect of fluid colliding with solid, and the simulated ve-

locity is refined with the pre-trained translator (step 13) to
obtain the final motion fields. To obtain the final animated
video, we need to render the edited scene. Specifically, we
set the unoccluded region in front of the fluid layer to show
the immersion effect (step 10) and the occluded one of the
objects into the background layer (step 11). Then the warp-



ing is done the same as in the previous pipeline (step 14).
With the help of our two-layer model and simulated veloc-
ity, we can edit the fluid image with various effects. Please
refer to supplementary video for more details.

E. Formula for Surface-only Fluid Simulation
Traditional fluid simulations usually use grid-based sam-

pler and simulate the fluids according to Euler Equation
with no stickiness assumption. The overall equation is for-
mulated as

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ g

∇ · u = 0 (5)

where u is the fluid velocity, ρ is the density, p is the pres-
sure inside the fluid, and g is the external force, where only
gravity is considered here. The second equation presents
the incompressibility properties.

The PIC method [12] can be applied to solve equation
5. This equation can be splitted by three steps: advection,
apply forces and pressure projection(incompressibility) [1].
Since the key to our system is pressure projection and the
other steps are not necessary, we only introduce how to
solve this pressure projection equation:

∂u

∂t
= −1

ρ
∇p

∇ · u = 0 (6)

This equation can also be expressed as a Poisson’s equation
form, which is easier to solve . We addtionally add bound-
ary conditions to the Poisson’s equation [1]:

∇ · ∇p =
ρ

∆t
∇ · u

u · n = 0 at solid boundaries

p = 0 at free surfaces (7)

where n is the normal of labelled solid and ∆t is time step.
At the heart of our SFS is to solve this Poisson’s equa-

tion on mesh, which will be detailed later. After solving
the pressure p and its gradient ∇p, the velocity satisfying
incompression can be calculatad by:

u∗ = u− ∆t

ρ
∇p (8)

where u is the fluid velocity corresponding to the motion
map predicted by our translator network, and u∗ is the fluid
velocity after pressure projection. We use u∗ to update our
motion map.

Instead of performing previous steps on 2D or 3D grids
on vertex, we perform the same procedure on a mesh layer

representation, which has depth information, but only a
slice of the surface is simulated. A toy example of the dif-
ferences among proposed ones with traditional 2D and 3D
equations is shown in Figure 17.

Specifically, in our framework, the mesh is built for the
whole image with a mask region of fluids using mono-depth
estimation and perspective projection. The vertices are cal-
culated with depth as

x = (u− cx)/fx · d
y = −(v − cy)/fy · d
z = d (9)

where x,y,z is the extracted vertex position, u,v is the pixel
coordinate on the image, and camera parameters are set
to be fx,fy,cx,cy as a perspective camera with a field of
view(FOV) angle of 90 degrees in height.

With the given 3D surface and its projection informa-
tion, we need to estimate the initial flow of the scene. A
2D flow field is generated with the help of the users’ label,
as described in Section 3.2 in the main paper. Assuming
the projected velocity is consistent with input flow for each
triangular surface, the equation is set to be

v∆abc =
[
µ λ

] xb − xa xc − xa

yb − ya yc − ya
zb − za zc − za

 (10)

where abc is the vertex indices for each triangular face,
x, y, z is the 3D position, and v is the final velocity, the di-
rection of the velocity must be parallel to the plane defined
by ∆abc, therefore a linear combination of the edges. We
need to differentiate the projection equation , which is

d

dt

[
u
v

]
=

d

dt

([
fx 0 cx
0 fy cy

] [
x/z
y/z

])

=

[
fx 0
0 fy

] [
1/z 0 −x/z2

0 1/z −y/z2

]dx
dt
dy
dt
dz
dt

 (11)

where the velocity v =

dx
dt
dy
dt
dz
dt

 is restricted with 2 equations

concerned with estimated 3D flow du
dt ,dvdt , combining with

the parallel restrictions, we can derive the velocity for each
triangle, with pixel velocity bilinear interpolated on the cen-
ter of the projected position.

After 3D velocity is calculated, we sample 4 points on
each triangular face to mimic as material points. Then we
step one time interval to have the updated positions of each
point. Since some of the points may move out of their initial
position, we have to re-project the points back onto the fixed
mesh surface. The projection is calculated as the minimal



(a) 2D Differential (b) Surface Mesh Differential (c) 3D Differential

Figure 17. A toy example of different formula settings. Here we show the different formulas for gradient and divergence calculation
in 2D/Mesh/3D. The sampled material points are regularly distributed on each unit. For 2D/3D version, the differentials are easy to be
discretized as finite subtraction, while on the mesh-based surface, we need to use the vertex position to formulate a connection between the
differential and the vector field. When the mesh grid is flattened on a 2D plane, we can derive the formula to be proportional.

position, which is

xn+1

yn+1

zn+1

 =

xa xb xc

ya yb yc
za zb zc

λ0

λ1

λ2


(12)

and:

λ0

λ1

λ2

 = min
∆abc

min∑
λi=1,λi≥0∥∥∥∥∥∥

xn + dx
yn + dy
zn + dz

−

xa xb xc

ya yb yc
za zb zc

λ0

λ1

λ2

∥∥∥∥∥∥ (13)

where we search for all ∆abc to find the nearest pro-
jection in the face to the updated points, formulated by a
positive homogeneous combination coefficients λ0, λ1, λ2.

After the 3D locations of material points were updated,
we calculated the velocity on each face as the average of
each material point. Then we calculate the pressure on each

vertex position as the divergence of the velocity as

v∆abc =

xb − xa xc − xa

yb − ya yc − ya
zb − za zc − za

[
µ∆abc

λ∆abc

]
pa = divva

=
∑
∆abc

µ∆abc + λ∆abc

S∆abc
(14)

where we express the velocity v as the linear combination
of triangle’s edges and the coefficients are then added for all
the triangles adjacent to a certain vertex a to calculate the
divergence. S∆abc represents the area of the triangle. The
formula is consistent for discrete Gauss theorem

∑
divva =∑

v∆abc · x⃗bc.

After vertex pressure is calculated, we apply the advec-
tion procedure to assure the velocity field is of no diver-
gence, subscribing to the gradient operator of the pressure,



which is to solve the equation.

∇pabc =
[
µp λp

] xb − xa xc − xa

yb − ya yc − ya
zb − za zc − za


papb
pc

 = ∇pabc ·

xa xb xc

ya yb yc
za zb zc

+ c⃗p (15)

The pressure value on each vertex is estimated as a linear
function of their position, with linear coefficients parallel
to the triangle face, we can solve the parameter µp, λp to
get the gradient value for that face, then the velocity is sub-
scribed with this velocity as what we do in 2D projection.

F. RunTime

For a fair comparison, we list Modified Holynski, which
has the same backbone network as our model, as the ref-
erence baseline. The tests are under a video length of 60
frames and run on a V100. Runtime/GFLOPS of the base-
line are 5.3s/1.63, and ours are 7.5s/3.52. The 2.5D sim-
ulation takes additional 3.5s. Our system designs increase
limited cost, while ensuring plausible performance and flex-
ible downstream applications.

G. Limitation

Although our method could handle challenging scenar-
ios (such as transparent fluids) and enable animating still
images in physically plausible fluid behavior, there are sev-
eral improvements that could be further explored in the fu-
ture. (1) For splatting and inpainting, visual artifacts are
non-negligible when the motion speed is too fast. Since it
would raise too large holes to be inpainted. Any improve-
ment in the splatting method or simply replacing the in-
painting network with a larger receptive field design would
ease the issue. (2) For SLR, alpha prediction sometimes
might not be accurate enough due to imbalanced data dis-
tribution over transparent fluid scenes, which will result in
frozen fluid textures in some cases. In these cases, a coarse
mask of the non-transparent regions is required to reach
the best visual effects. (3) For SFS, The 2.5D method re-
quires at least a roughly accurate depth estimation of fluid,
while depth estimation is sometimes inaccurate enough. We
have included the detailed disscusion in Sec C. (4) The in-
put masks might be inconvenient for users to draw when
the scene context is sophisticated. To avoid the need for
manual input, one possible way is to apply a segmentation
model such as SAM with fine-tuning on real/synthesized
fluid data, to segment fluid/rock regions to replace the mask
input. Please refer to the project page to see how these is-
sues affect the final animation results.
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