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method COCO val COCO test-dev
MIMDET-B 51.7 APbox/ 46.1 APmask 51.8 APbox/ 46.3 APmask

MIMDET-L 54.3 APbox/ 48.2 APmask 54.5 APbox/ 48.7 APmask

Table 1: COCO object detection and instance segmentation
results using Mask R-CNN on COCO val & test-dev set re-
spectively. Their results are consistent.

backbone params (M) FLOPs (T) ft epochs APbox APmask

Li et al.-B 111 0.8 100 50.3 44.9
MIMDET-B 128 0.9 36 51.7 46.1
Li et al.-L 331 1.9 100 53.3 47.2
MIMDET-L 349 2.1 36 54.3 48.2

Table 2: Params, FLOPs & ft epochs comparisons with Li et
al. [5] using Mask R-CNN.

A. Appendix

Architecture of ConvStem. We adopt a minimalist Con-
vStem design, i.e., by simply stacking 3×3 regular convolu-
tions with a stride of 2 and doubled feature dimensions. Each
convolutional layer is followed by a layer normalization [1]
and a GELU activation [4]. The detailed configurations are
given in Architecture 1.

Hyper-parameters and Model Configurations. Hyper-
parameters and model configurations for fine-tuning on the
COCO dataset are shown in Table 3. Since the vanilla ViT
encoder is already pre-trained while the task layer is trained
from scratch, the learning rate of the ViT encoder part is
divided by a “lr multiplier” and the learning rate for the task
layer is multiplied by a “lr multiplier”.

Compared with Li et al., MIMDET achieves better results
with a much shorter training schedule & similar complexity,
as shown in Table 2.

Optimization. The loss function of MIMDET keeps the
same as the canonical Mask R-CNN [3, 5], i.e., explicit
reconstruction loss for ViT encoder is not needed during
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Architecture 1 -ConvStem for ViT-Base (PyTorch Style), which
can help preserve low-level details, produce higher resolution hi-
erarchical features for FPN, and introduce 2D inductive biases for
the ViT encoder & detector.

# Number of Parameters: 4.1M.
ConvStem(
ModuleList(
(0): Sequential(
(0): Conv2d(3, 96, kernel_size=(3, 3), stride=(2,

2), padding=(1, 1), bias=False)
(1): LayerNorm2d(96, eps=1e-06, affine=True) &

GELU()
)
(1): Sequential(
(0): Conv2d(96, 192, kernel_size=(3, 3), stride

=(2, 2), padding=(1, 1), bias=False)
(1): LayerNorm2d(192, eps=1e-06, affine=True) &

GELU() # Input for FPN P2.
)
(2): Sequential(
(0): Conv2d(192, 384, kernel_size=(3, 3), stride

=(2, 2), padding=(1, 1), bias=False)
(1): LayerNorm2d(384, eps=1e-06, affine=True) &

GELU() # Input for FPN P3.
)
(3): Sequential(
(0): Conv2d(384, 768, kernel_size=(3, 3), stride

=(2, 2), padding=(1, 1), bias=False)
(1): LayerNorm2d(768, eps=1e-06, affine=True) &

GELU()
(2): Conv2d(768, 768, kernel_size=(1, 1), stride

=(1, 1)) # Input for ViT-Base Enc.
)))

the fine-tuning, even though the encoder only receive partial
observations. The implicit reconstruction process of ViT
encoder is driven by the supervision from the Mask R-CNN
detector.

Results on COCO test-dev set and comparisons with
COCO val set results are shown in Table 1, which imply
that our models & settings are not biased towards val set.

Feature Visualizations Figure 1 and 2 visualizes some
backbone & FPN feature maps with a stride of 4 for both [5]
and our MIMDET. The stride-4 backbone feature of [5] is ob-
tained from a stride-16 ViT encoder feature via upsampling



hyper-parameters model configs
backbone lr lr multiplier weight decay drop path ft epochs params (M) FLOPs (G) inf. time (s)

MIMDET-Base 8e−5 2 0.1 0.1 36 128 933 0.29
MIMDET-Large 8e−5 3.5 0.1 0.1 36 349 2082 0.58

Table 3: Hyper-parameters and model configurations for COCO fine-tuning with Mask R-CNN. We report the average number of
FLOPs and inference time for the first 100 images in the COCO val set following [2] on a V100 GPU. Hyper-parameters for Cascade Mask
R-CNN and RetinaNet are same as Mask R-CNN.
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Figure 1: Feature visualizations and comparisons of some stride-4 backbone and FPN feature maps. The feature maps of [5] is obtained
from our re-implementation which successfully reproduces its reported results.

using two stride-2 transposed convolutions with 2×2 kernel.
The resulting features suffer from very strong “checkerboard
artifacts [6]”. If we look closer, the evidence of ViT atten-
tion’s window partition emerges. Thanks to FPN, the noise
can be mitigated to some extent. However, many low-level
details are still fuzzy. On the other hand, our ConvStem in
MIMDET can always produce clear and tidy features, which
is beneficial to both the ViT encoder as well as the Mask
R-CNN detector.



Li et al. Our MIMDet

Backbone Backbone FPN FPN

Figure 2: Feature visualizations and comparisons of some stride-4 backbone and FPN feature maps. The feature maps of [5] is obtained
from our re-implementation which successfully reproduces its reported results.
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