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We supplement the main paper by adding an ablation
study on several features of the diffusion process, provid-
ing further insights into the conditioning strategies of our
method, and qualitatively illustrating the inference diffu-
sion process, the generated distribution manifolds and pic-
tograms of input poses with various corrupting types of
noise. The following table of contents outlines how the sup-
plementary material is organized.
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A. Diffusion Process
A.1. Background on Diffusion Models

A denoising diffusion probabilistic model (DDPM) [7,
22] exploits two Markov chains: i.e., a forward process and
a reverse process. The forward process q(xt|xt−1) corrupts
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the data x = x0 gradually adding noise according to a vari-
ance schedule βt ∈ (0, 1) for t = 1, . . . , T , transforming
any data distribution q(x0) into a simple prior (e.g., Gaus-
sian). The forward process can be expressed as

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

To shift the data distribution q(x0) toward q(xt|xt−1) in one
single step, equation 1 can be reformulated as

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (2)

with αt := 1− βt and ᾱt :=
∏t

s=1 αs.
The reverse process leans to roll back this degradation.

More formally, the reverse process can be formulated as

pθ(xt−1|xt) = N
(
xt−1;µθ(xt, t), βtI

)
(3)

where µθ(xt, t) is a deep neural network that estimates the
forward process posterior mean. [7] has shown that one
obtains high-quality samples when optimizing the objective

Lsimple = E
t,x0,ε

[∣∣∣∣ε−εθ
(√

ᾱtx0+
√
1− ᾱt ε, t

)∣∣∣∣2
2

]
(4)

where ε ∼ N (0, I) is the noise used to corrupt the sample
x0, and εθ is a neural network trained to predict ε.

During inference, the sampling algorithm of [7] is used
to iteratively denoise random Gaussian noise xT ∼ N (0, I),
to generate a sample from the learned distribution. [15, 16]
have shown that one may condition DDPMs on a signal h
by feeding it to the neural network ϵθ.

A.2. Diffusive steps

Sec. 3 in the main paper delineates a gradual corruption
technique that employs a displacement map in accordance



Table 1: AUC-ROC performance variation of MoCoDAD
on the number of employed diffusive steps t of the variance
scheduler βt.

Diffusive steps HR-UBnormal UBnormal

2 65.0 64.7
5 66.3 65.9
10 68.4 68.3
25 64.70 64.6
50 64.4 64.4

with a variance scheduler βt ∈ (0, 1) to corrupt the in-
put. The degree of displacement applied is determined by
βt which follows a schedule based on the parameter t.

To further investigate the relationship between the diffu-
sive steps and performance, we evaluate the impact of vary-
ing t on the performance of MoCoDAD. As shown in Table
1, we consider five different steps t ∈ {2, 5, 10, 25, 50}.
Our results demonstrate that optimal performances occur
with 10 diffusive steps while deteriorating for any higher
or lower value.

Note that this optimal T value is significantly smaller
than those used in other diffusion approaches [7, 11, 14, 18]
which require a large number of steps to turn a noisy sample
xT ∈ N (0, I) into a semantically significant one.

On the contrary, our model’s strong inductive bias to-
wards poses, together with its ability to leverage the in-
variant relationships and dependencies between intra-pose
joints allows it to transform a set of random joint positions
xT ∈ N (0, I) into a pose-like structure in just one step,
as illustrated in Figure 3. Furthermore, we highlight that a
small T can push the model to improve the quality of nor-
mal poses while failing to refine abnormal ones. Thereby,
employing a T = 10 we allow MoCoDAD to foster this
trade-off and obtain optimal performances.

Additionally, to highlight the effectiveness of the itera-
tive diffusion process we evaluate the model with T = 2,
that is, the case where the model only receives either clean
or completely corrupted input poses: this means that during
inference the model performs the denoising non-iteratively,
e.g. in one single step. The resulting model underperforms
w.r.t. MoCoDAD, confirming the importance of a multi-
step diffusion process.

B. Weaker forms of conditioning

In Table 2, we complement the experiments in Sec. 5.3
of the main paper with an additional discussion on the forms
of conditioning. Following the approach proposed by [21],
we investigate two aspects: applying an alternative sam-
pling strategy and using a different corruption function in-
stead of the Gaussian one. We also evaluate the effective-

Table 2: Impact of different noise distributions and sam-
pling strategies on performance in terms of AUC-ROC.
MoCo refers to Motion Condition; T represents the dif-
fusion step at which samples are completely corrupted; γ
represents the step up to which samples are corrupted dur-
ing inference. The last row illustrates our proposed method,
MoCoDAD.

γ/T Corruption MoCo HR-UBnormal UBnormal

3/10 Simplex × 53.0 52.0
3/10 Gaussian × 57.4 57.3

10/10 Gaussian × 55.0 54.1
10/10 Gaussian ✓ 68.4 68.3

ness of MoCoDAD in the absence of conditioning past mo-
tion frames.

Regarding the alternative sampling strategy, we train our
diffusion model to denoise a corrupted sample xt, where
t ∈ {1, . . . , T} and T = 10, while, during inference, we
perform sampling starting from partially corrupted samples
xγ where γ < T . The partially corrupted signal acts as a
weaker form of conditioning, i.e., generating by denoising
the signal. Hence, the reverse diffusion process does not
need to be conditioned on past frames.

The first column of Table 2 refers to the timesteps used
at inference time (γ) and the ones used at training (T ). Fol-
lowing [21], we set γ to be equal to a third of T . When the
denoising process begins with a partially corrupted image
(first and second rows), the results degrade to 52 and 57.35,
respectively. We explain this since, even in the absence of
prior motion, the starting point of the denoising process is
more similar to the target signal, reducing the reconstruc-
tion error for both normal and abnormal samples.

We investigate this intuition by comparing two different
noise distributions to randomly corrupt the poses, namely
Gaussian and Simplex noise [13]. Fig. 2 compares the joint
displacement at t ∈ {3, 6, 9} for both these noise distri-
butions. We see that Gaussian corrupts the input motion
more since every joint is translated with a random intensity,
whereas, Simplex acts as a weaker perturber maintaining a
significant amount of information from the original motion.
This reflects in performance. Table 2 shows that adding
Simplex noise is not effective with motion sequences, de-
teriorating the overall performances to 52 (see row 1).

Next, we consider generating future motions without
conditioning on the past. In the absence of conditioning
past frames, the model is expected to provide samples from
the learned training normal distribution. Therefore, it still
makes sense to consider this approach for anomaly detec-
tion by comparing similarities of generated and true futures.
In fact, the generated future frames will be normal, more
similar to normal true futures, and less similar to abnormal
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Figure 1: Anomaly detection performance trend when as-
suming a diversity metric as the anomaly score. It is worth
noting that the rF metric yields results that are below the
chance level.

true futures. Note, however, that missing to condition on
the past will result in general futures unrelated to the spe-
cific past, just normal. The results in Table 2 support this
observation, i.e. the performance reduces to 54.11, close to
the chance level (50%).

To sum up, neither the Gaussian nor the Simplex noise
provide comparable performance with MoCoDAD con-
firming the need for a conditioning signal to govern the dif-
fusion process.

C. MoCoDAD Algorithms

In this section, we outline the algorithms designed for
both the training and inference phases of our proposed
model (cf. Sec. 3.2 of the main paper). In algorithms 1
and 2, we employ the following notation: ·̄ denotes the ob-
jects that are encoded in a latent space, whereas ·̂ signifies
the predictions of our model.
Train. In Alg. 1 we describe the training process on a sin-
gle sequence of poses X1:N . The algorithm only requires
the input sequence, the current timestep t, the parameters
λ1 and λ2 governing the importance of the two losses, and
the MoCoDAD modules introduced in Sec. 3.3 of the main
paper.
Inference. Alg. 2 depicts how our proposed method assigns
the anomaly score to each frame of a video. For readabil-
ity purposes, we only examine the case of a single window
W , which encompasses the frames f1, f2, ..., fN . We then
adopt a sliding window procedure to analyze each video so
that Alg. 2 can be further extended to assess all the frames of
a video. First, we extract the poses of all the subjects whose
motion lies in all the frames of W , resulting in the set A.
Then, starting from random noise ε, we iteratively leverage
MoCoDAD to draw m possible futures in T steps, which
we subsequently compare with the GT future to distill m

scores for each sample X1:N
a (collected in the set G). As

discussed in Sec. 3.2 of the main paper, we then aggregate
these scores in a single value (Ha, which we interpret as the
anomaly score of the subject a for the frames inW). Note
that, when considering multiple overlapping time windows

W(1)[f1 : fN ],W(2)[f2 : fN+1], ...,W(N)[fN : f2N−1],

Ha is computed as max(H(1)
a , ...,H(N)

a ). Finally, we re-
peat this process for each actor appearing in the scene and
accumulate these local scores in the set S. We compute the
mean, the maximum, and the minimum of S and attribute
to each frame f1, ..., fN the anomaly score (AS) defined as
follows:

AS[f1 : fN ] = mean(S) + log
1 + max(S)
1 + min(S)

. (5)

While the mean(S) summarizes the distribution of the
maximum errors of all actors within each frame, the second
term takes into account the width of the errors range, as it is
mathematically equivalent to:

log (1 + max (S))− log (1 + min (S)) . (6)

This increases the anomaly score for spread distribu-
tions, which likely correspond to anomalous frames; the
logarithm function prevents this term from dominating the
final anomaly score.

Algorithm 1 MoCoDAD Train

Require: X1:N , t, λ1, λ2

// Divide past from future poses
P, F = X1:k, Xk+1:N

// Condition Encoding
P = E(P) ; P̂ = D(P)
τ = τθ(t)
// Forward Diffusion
Ft = q(F , t)
// Engender futures
F̂ = MoCoDAD(Ft; τ,P)
// Loss
Loss = λ1Lsmooth(F̂ ,F) + λ2Lrec(P̂,P)

D. Further notes on multimodality
We complement Sec. 5.2 of the main paper by showing

that multimodality cannot be exploited for separating nor-
mal and abnormal classes, since both have a similar degree
of diversity (cf. Sec. 3.2).

As for the diversity metrics, we employ the rF metric
[3, 12] (see Sec. 3.2) and the Multimodality metric proposed
in [6].
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Figure 2: Comparison of Gaussian (up) vs Simplex (down) noises applied to a sequence of future poses.

Algorithm 2 MoCoDAD Inference

Require: W = {f1, ..., fN},
A = {actors | actors ∈ fi ∀fi ∈ W},
m, T, G = ∅, S = ∅
for all a ∈ A do

// Extract and embed past poses
P, F = X1:k

a , Xk+1:N
a

P = E(P)
// Sample random noise
ε ∼ N (0, I)
// Engender futures
for j ← 0 to m do
Fj,T ← ε
// Reverse diffusion
for t← T to 1 do
τ = τθ(t)
F̂j = MoCoDAD(Fj,t; τ,P)
// Forward Diffusion
Fj,t−1 = q(F̂j , t− 1)

end for
// Get generation anomaly score
SCOREj = Lsmooth(F̂j ,F)
G ← G ∪ {SCOREj}

end for
// Aggregate generations
Ha = AGGREGATE(G)
S ← S ∪ {Ha}

end for
// Impute frames’ Anomaly Score

AS[f1 : fN ] = mean(S) + log 1+max(S)
1+min(S)

Multimodality measures the variance among generated
motions given the same conditioning sequence. For each
sample s, let S be the set of all generated motions; then, two
subsets A(s) = {a1, ...,aSm

} and B(s) = {b1, ...,bSm
}

are sampled from S. Finally, Multimodality is given by:

Multimodality(s) =
1

Sm

Sm∑
i=1

∥ai − bi∥2 (7)

Comparing with Fig. 4 (right) of the main paper, the plot
in Fig. 1 clearly shows that the anomaly detection perfor-
mance dramatically drops when assuming a diversity met-
ric as the anomaly score, nearly to random chance. It is
worth noting that the performance drops even below ran-
dom chance when evaluating with rF for a number of gen-
erations less than 10.

E. Implementation details
As in [4, 9, 10], we adopt a sliding window procedure for

dividing each agent’s motion history. We use a window size
of 6 frames for all the experiments, of which the first 3 are
taken for the condition and the rest for the diffusion process.
We adopt similar setups for the imputation proxy tasks (see
Sec. 5.4). We set λ1 = λ2 = 1. We train the network end-
to-end with the Adam optimizer [8] and a learning rate of
1e−4 with exponential decay for 36 epochs. The diffusion
process uses β1 = 1e−4 and βT = 2e−2, T = 10 and the
cosine variance scheduler from [11].

Our U-Net-GCN downscales the joints from 17 to 10 and
expands the channels from 2 to (32, 32, 64, 64, 128, 64).
The conditioning encoder has a channel sequence of
(32, 16, 32), with a bottleneck of 32 and a latent projector
of 16. We encode the timestep with the positional encoding
as defined in [20]. Our training took approximately 7 hours
on an Nvidia Quadro P6000 GPU.

F. Results on the UBnormal Validation set
Validation performance is not reported in the main pa-

per, as the validation set is used for hyperparameter fine-
tuning. For completeness purposes, as done in [1], we re-
port MoCoDAD’s performances vs SoA on the validation
set of UBnormal.



Figure 3: The iterative sampling process of our proposed method (cf. Sec. 3.2 in the main paper). At each step, MoCoDAD
generates a prediction (light orange dashed boxes) employing a pose (purple dashed boxes) displaced proportionally to the
current timestep t (when t = T we just sample from random noise), together with a prior motion encoding X1:k and the
current timestep t. The current prediction is then fed to the Forward Diffusion module, which adds a displacement map to it,
anew corrupting the pose proportionally to a smaller timestep. This process is iteratively repeated from T to 1, continuously
refining the prediction which is then compared with the actual future (orange box).

Table 3: Comparison of MoCoDAD against SoA in terms
of AUC-ROC on the validation set of UBnormal. OCC
skeleton-based techniques (∗) are directly comparable to
MoCoDAD. Supervised (†) and weakly supervised (‡)
methods are also reported, grayed-out since they leverage
extra annotations.

UBnormal

Sultani et al. [17] † 51.8
AED-SSMTL [5] † 68.2
TimeSformer [2] † 86.1
AED-SSMTL [5] ‡ 58.5

MPED-RNN [10] ∗ 61.2
GEPC [9] ∗ 47.0
COSKAD [4] ∗ 76.4
MoCoDAD ∗ 77.6

Table 3 shows that the validation set results are in line
with those on the test sets reported in Table 1 of the main
paper. Notice that MoCoDAD outperforms all the other
OCC approaches reaching an AUC of 77.6. Additionally,
considering (weakly) supervised approaches that require la-
beled data (anomalies included), MoCoDAD is only second
to TimeSformer [2].

G. Generating motion sequences

This section visually illustrates how a sample is gener-
ated using the reverse procedure (Fig. 3). This supplements
the discussion presented in Sec. 3 (main paper), providing
a visual explanation of Eq. 7. MoCoDAD generates motion
sequences depending on a particular conditioning signal, as
explained in Section 3 of the main paper. This process is
shown graphically in Fig. 3. Random noise xT in the di-
mensions corresponding to the desired motion is initially
sampled. The process then proceeds iteratively from step T
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Figure 4: MoCoDAD detects anomalies by synthesizing and statistically aggregating multimodal future motions, conditioned
on past frames. Red (right) and green (left) represent examples of anomaly and normality. At the bottom, 100 futures (2d
mapped via t-SNE) are generated (dashed-orange rectangles) via a diffusion probabilistic model, conditioned on the past
frames (blue-outlined rectangles). Within the distribution modes (highlighted contours), the red dots are the actual true
futures corresponding to the sequence of future poses (orange-outlined rectangles). In the case of normality, the true future
lies within a main distribution mode, and the generated predictions are pertinent. In the case of abnormality, the true future
lies in the tail of the distribution modes, which yields poorer predictions, highlighting anomalies.

to 1. MoCoDAD predicts a clean sample x0 at each step t,
then diffuses back to the previous Xt−1.

H. Qualitative results

Fig. 4 reveals that the generations produced with normal
conditioning are biased towards the true future. The figure
illustrates the t-SNE [19] 2D-embeddings of the generated
future frames (orange rectangles), conditioned on the past
(blue rectangles). Here, we present two groups of illus-

trations based on normal (green) and abnormal (red) past,
respectively. When the conditioning is normal, the genera-
tions (dashed-orange rectangles) are nearby the true motion
which lies at the center of the distribution. However, when
the past is anomalous, the true future is significantly dis-
tant from the center of the distribution produced. Since the
diffusion process can generate multiple plausible futures -
contoured shapes in the figure - this enforces our assertion
that MoCoDAD is multimodal in both normal and anoma-
lous contexts. In the former case, it is capable of generating



samples that are much more pertinent to the actual future;
while, in the latter, the generated samples yield poorer pre-
dictions, highlighting anomalies (e.g., the first generation
in the upper-right corner, and the second generation in the
lower-right corner).
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