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In the supplementary materials, we further validate the
proposed LAE framework by providing the following:

• Section A: Additional Experimental Details.

• Section B: Additional Experimental Results.

• Section C: Investigation on Prompt Learning and Se-
lection from Pool in Prompt-Pool-based Approaches.

A. Additional Experimental Details
Data Augmentation. We adopt a very simple data augmen-
tation strategy for training, following L2P [14] and Dual-
Prompt [13]. 1) Images are randomly resized to 224 × 224
using the bilinear interpolation algorithm. 2) Images are
normalized by min-max (for ViT [1]) or standard deviation
(for Swin Transformer [7] and ConvNeXt [8]) normaliza-
tion. 3) Images are randomly flipped from horizontal. Dur-
ing inference, images are resized to 256× 256 and cropped
to 224 × 224 from central. All other approaches take the
same data augmentation strategy as ours for fair compar-
isons. The PyTorch-like code is present in Algorithm 1.
Hyper-Parameter. Our LAE introduced two additional
hyper-parameters, i.e., the weight decay α of the Exponen-
tial Moving Average (EMA) algorithm and freezing epochs
of the online Parameter-Efficient Tuning (PET) module. We
did not intentionally search for these parameters and set α
to a value very close to 1, such as the default value 0.9999
we used. The number of freezing epochs can be determined
by the change in loss after freezing the online PET module
and is typically set to the value where the loss no longer
decreases. We set this value to 3 for CIFAR100 and scaled
it proportionally for ImageNet-R, on all of which our LAE
achieved superior performance than other competitors.
Training, Inference and Evaluation. The training and in-
ference of our LAE framework are very easy to implement,
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the PyTorch-like pseudocode is provided in Algorithms 2.
It is important to note that our evaluation metric A10 (Equa-
tion 15 in the paper) is slightly different from the following
metric used by original L2P and DualPrompt:
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where Dtest
j is the test set of the jth task. We train and eval-

uate on three different class orders, while L2P, DualPrompt,
and ESN [12] only evaluate on one class order in their orig-
inal papers. Additionally, ESN uses a different pre-trained
checkpoint from L2P and DualPrompt, but we correct this
issue when using its code. The above differences lead to
slightly different experimental results reported in their orig-
inal papers from the data reported by us.

B. Additional Experimental Results

20-Task Benchmark Results. To further validate the effi-
cacy of our LAE in longer-term Continual Learning sce-
narios, we split the CIFAR100 [4] and ImageNet-R [10]
datasets into 20 tasks, each containing 5 (for CIFAR100)
or 10 (for ImageNet-R) classes. We then conducted experi-
ments and reported the mean and standard deviation of three
runs in different class orders in Tables I and II. Similar to
the 10-task experiments in the paper, we plot the task-by-
task evaluation results in Figure Ia and Ib for the 20-task
experiments on CIFAR100 and ImageNet-R. From these ta-
bles and figures, we can observe a wider performance gap
between our LAE and other competitors compared to the
10-task experiments, suggesting that our LAE is more effec-
tive at mitigating forgetting and achieving a better stability-
plasticity balance in longer-term Continual Learning.

Comparison with CODA-Prompt. The contemporary
CODA-Prompt [11] approach demonstrates remarkable
performance. Nevertheless, upon reviewing the authors’

1

https://github.com/gqk/LAE


Algorithm 1 Data Augmentation Code (PyTorch-like)

def build_train_transform(model):
transforms = [T.RandomResizedCrop(224), T.RandomHorizontalFlip(), T.ToTensor()]
if not isinstance(model, VisionTransformer):

transforms.append(T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD))
return T.Compose(transforms)

def build_inference_transform(model):
transforms = [T.Resize(256), T.CenterCrop(224), T.ToTensor()]
if not isinstance(model, VisionTransformer):

transforms.append(T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD))
return T.Compose(transforms)

Algorithm 2 Training and Inference Code (PyTorch-like)

# model: the pre-trained model; pet_on: online PET module; pet_off: offline PET module;

def train(model, pet_on, pet_off, dataloader, optimizer, task_id, alpha):
model = attach(model, pet_on)
for e in range(MAX_EPOCHS):

if e == 0 and not_the_first_task(task_id):
freeze(pet_on)

elif e == NUM_FREEZING_EPOCHS:
unfreeze(pet_on)

for input, target in dataloader:
pred = mask(model(input), task_id) # Eq. (8) in the paper
loss = cross_entropy(pred, target) # Eq. (8) in the paper
optimizer.zero_grad()
loss.backward()
optimizer.step()
ema_update(pet_off, pet_on, alpha) # Eq. (13) in the paper

def inference(model, pet_on, pet_off, input):
pred_on, pred_off = attach(model, pet_on)(input), attach(model, pet_off)(input)
pred = max(softmax(pred_on, dim=-1), softmax(pref_off, dim=-1)) # Eq. (14) in the paper
return argmax(pred)

Table I: 20-Task Benchmark Results on CIFAR100. The
PET modules are inserted into the first 5 transformer blocks
of the standard ViT-B/16 pre-trained on the ImageNet21k
dataset. The “5, 10, 20” indicate the size of PET modules.

Approach PET Module A20 (↑) Ā20 (↑)

L2P [14] Prompt 80.10±0.72 85.29±0.50
DualPrompt [13] Prefix20 82.02±0.32 89.50±0.11
ESN [12] Prompt 80.56±0.94 90.47±1.19

LAE (Ours)

Adapter5 83.89±0.60 92.35±0.55
Adapter10 83.81±0.35 92.32±0.57

LoRA5 83.92±0.36 92.15±0.47
LoRA10 83.35±0.20 91.71±0.88
Prefix10 83.82±0.18 92.07±0.72
Prefix20 83.93±0.28 92.21±0.53

released code, we identified three potential sources of un-
fair comparison: 1) A distinct ImageNet-R train-test split
in contrast to DualPrompt. 2) The model is pretrained on
ImageNet-21k and subsequently fine-tuned on ImageNet-
1K. 3) Varied training strategies, such as the number of
epochs and learning rates. Our initial experiments reveal
that when utilizing DualPrompt’s train-test split, CODA-
Prompt consistently underperforms our LAE. To ensure a
fair evaluation, we adopt CODA-Prompt’s settings for our
experiments and extend our assessment to the Domain-
Net [9] dataset. All results are showcased in Table III,

Table II: 20-Task Benchmark Results on ImageNet-R. The
PET modules are inserted into the first 5 transformer blocks
of the standard ViT-B/16 pre-trained on the ImageNet21k
dataset. The “5, 10, 20” indicate the size of PET modules.

Approach PET Module A20 (↑) Ā20 (↑)

L2P [14] Prompt 59.85±1.38 66.33±2.46
DualPrompt [13] Prefix20 66.61±0.24 76.94±1.39
ESN [12] Prompt 58.65±0.83 70.94±1.88

LAE (Ours)

Adapter5 69.66±1.16 81.69±1.00
Adapter10 69.19±1.25 81.78±0.77

LoRA5 68.91±1.40 80.99±1.17
LoRA10 69.07±1.49 81.12±1.09
Prefix10 69.67±0.86 79.97±0.97
Prefix20 69.34±0.84 79.90±1.08

where we present average forgetting rates instead of aver-
age incremental accuracy.

Sensitive Analysis on EMA’s Weight Decay. Weight de-
cay α plays an important role in the knowledge accumula-
tion of the offline PET module. A small value can lead to
the integration of too much unstable new knowledge during
the learning process, while a large value can result in the
offline PET module being unable to effectively absorb new
knowledge. In all of our experiments in the paper, we set the
weight decay of EMA to 0.9999, which is the default value
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Figure I: Task-by-Task Incremental Accuracy on two 20-task benchmarks. The lines illustrate the task-by-task evaluation
results of L2P [14], DualPrompt [13], ENS [12], and our LAE framework with different PET modules.

Table III: Comparison with CODA-Prompt on 5-task Do-
mainNet Benchmark, 5- and 10-task ImageNet-R bench-
marks. “AN” and “FN” are last incremental accuracy and
last average forgetting for N-task benchmarks respectively.

Approach Joint-FT CODA-Prompt LAE (Prefix10)

DomainNet 5-task
A5 (↑) 74.91 67.11 68.37

F5 (↓) - 13.79 8.33

ImageNet-R
5-task

A5 (↑) 81.08 75.32 76.69

F5 (↓) - 6.09 6.17

10-task
A10 (↑) 81.08 74.31 74.43

F10 (↓) - 5.63 5.22

Table IV: The sensitiveness w.r.t. EMA’s weight decay α.

α 0.999 0.9999 0.99999

A10 (↑) 71.40±1.02 72.66±0.63 72.58±0.40
Ā10 (↑) 78.04±1.03 78.91±0.89 78.67±0.94

in the timm library. Our experimental results in Table IV
demonstrate that this value yields the best performance.
Memory and computation complexity. Our LAE requires
two forward passes (one with θpetoff and the other with
θpeton) per inference sample, yielding computational costs
on par with L2P, DualPrompt, and the contemporary ap-
proach CODA-Prompt. Additionally, due to the constant
number of parameters maintained across all tasks, LAE in-
troduces fewer new parameters, as illustrated in Table V.

C. Prompt Learning and Selection from Pool
L2P [14] and DualPrompt [13] are two representative

approaches that leverage prompt tuning [5] to address the
problem of Continual Learning. L2P first proposes to use

https://github.com/huggingface/pytorch-image-models

Table V: The statistics of introduced parameters by ap-
proaches on 10-task benchmarks. “A10”, “L10” and “P20”
indicate Adapter10, LoRA10 and Prefix20 respectively.

Approach DualPrompt LAE (A10) LAE (L10) LAE (P20)

#Param. (M) 1.03 0.15 0.29 0.29

a pool to store prompts shared across tasks, where a set of
prompts that match the sample are selected from the pool
to predict the sample’s label. In contrast, DualPrompt di-
rectly learns a set of task-specific E-Prompts for each task
and stores them in the pool. During inference, the best-
matched prompts (i.e., the prompts learned for the task that
the sample belongs to) are selected for the given sample.

The performance of these approaches is influenced by
two key factors. 1) The ability to learn optimal prompts for
each task is crucial for achieving better plasticity, i.e., the
ability to learn new knowledge. Better performance can be
achieved only by sufficiently learning new knowledge while
retaining as much previous knowledge as possible. 2) the
ability to accurately select the best-matched prompts for the
inference sample is more critical. Because even if optimal
prompts are learned for each task, inference using the wrong
prompts can still result in poor prediction results. Follow-
ing, we take DualPrompt as an example to investigate these
two abilities of prompt-pool-based approaches.

To begin with, we assume that DualPrompt can learn the
optimal E-prompts for each task. We then evaluate whether
it can accurately select the right E-prompts during infer-
ence. As shown in Figure II, we observe that the E-prompts
selected by DualPrompt are completely accurate after learn-
ing the first task. However, as the number of learned tasks
increases, the accuracy of the prompt selection gradually
decreases. By the time the 10th task is learned, the selec-



Table VI: Evaluation results on all tasks using 10 sets of task-specific E-Prompts. “#E-Prompts” denotes the index of the
E-Prompts, e.g., “1” indicates evaluation using the first task’s E-Prompts.

#E-Prompts 1 2 3 4 5 6 7 8 9 10

A10 (↑) 63.78 66.93 67.57 67.88 68.48 68.38 68.80 68.88 68.87 68.47
Ā10 (↑) 69.11 72.54 72.60 72.63 72.69 72.68 72.72 72.73 72.73 72.69

Table VII: Evaluation results on each task using 10 sets of task-specific E-Prompts. “#E-Prompts” denotes the index of the
E-Prompts, e.g., “1” indicates evaluation using the first task’s E-Prompts.

#E-Prompts 1 2 3 4 5 6 7 8 9 10

Task 1 69.64 73.27 72.77 72.94 73.76 73.10 72.61 72.94 72.44 72.28
Task 2 67.23 71.73 71.03 70.89 71.87 71.03 71.31 71.31 71.59 70.61
Task 3 63.93 67.16 70.90 71.89 70.40 69.90 70.65 70.40 69.40 69.90
Task 4 54.61 60.17 64.52 68.35 67.48 67.30 64.52 64.35 63.65 62.96
Task 5 61.01 64.52 65.64 65.36 68.16 68.16 67.04 65.50 65.22 65.78
Task 6 59.33 63.73 63.73 65.14 66.37 67.43 67.43 66.55 66.20 66.20
Task 7 57.02 58.93 58.41 57.71 57.89 57.71 61.18 62.22 62.39 60.49
Task 8 61.47 61.92 62.14 61.03 61.47 62.81 65.26 68.37 67.26 65.03
Task 9 74.85 76.50 74.70 75.15 75.30 74.70 77.25 77.10 78.89 77.40
Task 10 65.53 67.72 69.36 68.40 68.95 68.95 68.81 69.08 69.63 71.41
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Figure II: The E-Prompts selection accuracy of DualPrompt
on the test set of ImageNet-R.

tion accuracy drops to below 50%. Therefore, we conclude
that if DualPrompt cannot address this issue, it is difficult to
apply it to longer-term Continual Learning scenarios.

In addition, according to Figure 3 in our paper, we ob-
serve that DualPrompt performs worse than our LAE when
learning the first task, regardless of whether our LAE uses
Adapter [2] with fewer parameters, the LoRA [3] with the
equivalent number of parameters, or Prefix [6] (i.e., Du-
alPrompt’s E-Prompt) with slightly more parameters than
DualPrompt. This indicates that Prompt/Prefix may not be
as effective as Adapter and LoRA in learning new knowl-
edge on these two datasets, as well as DualPrompt could
not learn the optimal E-Prompts for the first task because
they did not calibrate the Prefix like our LAE. This suggests
that it is necessary to explore different Parameter-Efficient
Tuning (PET) methods and calibrate PET modules.

Moreover, our naive baseline only uses one set of Pre-
fixes, while DualPrompt learns a set of Prefixes for each
task, totaling 10 sets, yet they achieve similar performance.

We evaluate all 10 tasks using the 10 sets of E-Prompts
learned by DualPrompt separately, and the results in Ta-
ble VI show that the differences in the last and average in-
cremental accuracy using the 2nd-10th sets of E-Prompts
are very small. Table VII presents the prediction results of
each task using each set of E-Prompts, for most tasks, the
prediction results using the 2nd-10th sets of E-Prompts are
very close. These analyses reveal that from the learning
of the second task, task-specific E-Prompts tend to become
homogeneous. According to our analysis in the paper, an
important reason for this is that the adaptation speed of the
Prefix is much slower than classifiers and other PET mod-
ules (i.e., Adapter [2] and LoRA [3]).
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