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1. Dataset Details

We use ScanNet to evaluate our method. Several splits
are popular in recent scene-level NeRF works, hence we
consider two popular splits to compare to prior work.

ScanNet-Frontal follows the ScanNet split and evalua-
tion protocol from NerfingM VS [6]: eight scenes (0000-01,
0079-00, 0158-00, 0316-00, 052100, 055300, 0616-00,
and 0653_00) are selected, each with 40 images covering a
local region. From these, 35 images are used for training
and 5 are held out for testing. All images are resized to
484 x 648 resolution, and median ground truth scaling is
used for depth evaluation.

ScanNet-Rooms follows the ScanNet split and evalua-
tion protocol from DDP-NeRF [4]: three scenes (0710-00,
0758_00, and 0781_00) were selected, from which 18 to 20
training images and 8 testing images were extracted. All
images are resized to 468 x 624, and median ground truth
scaling is used for depth evaluation. The scenes consid-
ered are 0710-00, 0758_00, and 0781_00. To increase frame
overlap, such that the multi-view photometric objective has
a stronger self-supervised training signal, we included for-
ward and backward context frames for each training image,
using a stride of 5. All other methods were re-evaluated
under these new conditions, using officially released open-
source repositories and the guidelines described in [4].

2. Implementation Details
2.1. Training parameters

We implemented our models using PyTorch [3], with dis-
tributed training across eight V100 GPUs. We used grid
search to select training parameters, including photometric
loss weight oy, = 0.1, virtual camera loss weight o, = 0.5,
virtual camera projection noise o, = 0.25, depth guidance
noise o4 = 0.1, number of ray samples K = 128 and depth

field guidance samples K, = 32, minimum d;,;, = 0.1
and maximum d,,,,, = 5.0 depth ranges, and a batch size
of b = 1 per GPU. We use the AdamW optimizer [2], with
standard parameters 31 = 0.9, 82 = 0.999, a weight decay
of w = 10~4, and an initial learning rate of Ir = 2 - 10~4,
We train for 4000 epochs, and multiply the learning rate by
0.8 at each 1000 epochs. A downsample of 4 is used dur-
ing training for strided ray sampling, and at test time full
resolution estimates are decoded. At each each iteration,
3 additional images are randomly sampled from the same
scene to serve as context. Our self-supervised photometric
objective includes auto-masking and minimum reprojection
error, as introduced in [1].

2.2. Architecture Details

We use K, = K, = K, = 16 as the number of
Fourier frequencies for geometric embeddings (camera cen-
ter, viewing rays, and sampled 3D points respectively), with
maximum resolution y, = p, = p, = 64. Our volumetric
(50 S 67' = Eyor) and ray (50 D E.L = 7‘ay) embeddings
both have dimensionality 126 + 126 = 252. The latent
space S used to encode scene information is of dimension-
ality N; x D; = 1024 x 1024 (an ablation study regarding
this design choice can be found in Sec. 3). Our decoder is
composed of a single cross-attention layer, with GeLU as
the hidden activation function, dropout of 0.1, and 2 atten-
tion heads. A single linear layer is then used to project the
cross-attention output from 252 channels to the desired task
dimensionality: O,. = 4 for radiance, O; = 3 for light, and
Og4 = 1 for depth fields. Alternatively, we experimented
with the deep residual network of [5] as the decoder, achiev-
ing significant improvements in light field novel view syn-
thesis at the expense of slower inference times (Tab. 5 in
the main paper).
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(a) Volumetric rendering predictions
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(b) Depth and light field predictions

Figure 1: Depth and view synthesis performance on ScanNet (scene 0653_00), with varying latent space shapes (larger
values were not considered due to computational constraints). Blue and red lines correspond to predictions decoded from a
shared latent space, and green and yellow lines to predictions decoded from latent spaces with a single representation. We
observe that sharing the latent space between representations not only does not degrade results, but in fact leads to overall
improvements in both view synthesis and depth estimation. These improvements are more noticeable in smaller latent spaces,
particularly for depth and light field estimates, indicating that both representations are compatible for multi-task decoding.

3. Latent Space Dimensionality

Here we analyze the impact that changing the dimen-
sions of the latent space & has on performance, both
in terms of view synthesis (PSNR) and depth estimation
(Abs.Rel.). Two variables are considered: the number IV;
of latent vectors, and the dimensionality D; of these vec-
tors. The results of this analysis are shown in Fig. 1 (blue
and red lines), where we can see that larger latent spaces
indeed leads to an improvement in performance (i.e. bet-
ter view synthesis PSNR and absolute relative depth error),
albeit with diminishing returns. To achieve optimal results
without excessive computational cost, in all experiments we
used a 1024 x 1024 latent space. When experimenting with
smaller dimensionalities, we noticed a gradual decrease in
performance, followed by a steep change around N; = 16
and D; = 128. This sudden “phase transition” indicates the
point at which the latent space becomes unable to properly
encode the scene representation.

To further evaluate the properties of our learned im-
plicit representation, we performed similar experiments in
which two latent spaces are optimized, one containing only
a volumetric representation, and another only a light and
depth field representation. For a fair comparison, both latent

spaces are still trained jointly (i.e., light and depth predic-
tions benefit from virtual volumetric supervision, and volu-
metric predictions benefit from depth field guidance). The
green and yellow lines in Fig. 1 show results using this set-
ting. Interestingly, we observe that maintaining separate la-
tent spaces for each representation not only leads to worse
performance than using a single latent space (as we show
in the main paper), but also that this performance gap in-
creases when smaller latent spaces are used.

This is particularly noticeable in the case of depth and
light field predictions, that experience the “phase transi-
tion” at significantly higher dimensionalities: 128 x 256,
compared to 16 x 128 when using a shared latent space.
We attribute this behavior to the regularization effect that
the volumetric representation has on light and depth field
predictions. As we show in the main paper (Sec. 4.4.2),
jointly learning a volumetric representation has a similar ef-
fect to virtual camera augmentation, promoting the learning
of a multi-view consistent representation for light and depth
field predictions. With smaller model complexities, this
multi-view consistency becomes a key factor in the learn-
ing of a useful representation for accurate predictions from
novel viewpoints.
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Figure 2: Qualitative comparison between DeLiRa and
NerfingMVS [6], for depth estimation from novel view-
points. We show predicted depth maps (top right), depth
error maps (bottom right), and reconstructed pointclouds
using predicted depth and colors (left). Our approach leads
to sharper depth maps, with errors concentrated on discon-
tinuities around object boundaries, as well as better recon-
struction of planar surfaces.

4. Additional Qualitative Results

We also include additional qualitative results to comple-
ment the ones provided in the main paper. In Fig. 2 we
compare depth estimation results from DeLiRa and those
produced by NerfingMVS [0], the previous state of the art
in ScanNet-Frontal. As we can see, our predictions are
sharper, with errors concentrated in discontinuities around
object boundaries. DeLiRa also improves upon Nerfing-
MVS in terms of reconstructing planar surfaces, such as the
left wall and the right computer monitor. These improve-
ments are particularly meaningful given that NerfingMVS
(and most other current approaches) rely on depth priors
from pre-trained networks, while DeLiRa is trained using
only information from the observed scene.

In Fig. 4 we show predicted RGB images and depth
maps obtained using different DeLiRa decoders (cf. Fig.
3 in the main paper). We also provide error maps for both
predictions, in the form of normalized absolute differences.
As a baseline, we show results produced by a model trained
without our contributions (i.e., the multi-view photometric
objective and the joint learning of depth, light, and radiance
fields). Interestingly, this baseline model achieves novel
view synthesis results comparable to our proposed archi-
tecture, however depth estimates are considerably worse.
These are examples of the shape-radiance ambiguity, in
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Figure 3: Qualitative example of depth predictions be-
tween DeLiRa and a traditional monocular depth network.

which accurate novel view synthesis can still be achieved
even with degenerated learned geometries, especially in
cases of limited viewpoint diversity. By introducing the
multi-view photometric objective as additional regulariza-
tion, we promote convergence to the proper scene geometry,
improving depth estimation and, by extension, novel view
synthesis. Furthermore, our learned latent representation
can be queried both in the form of volumetric renderings,
via the radiance field decoder, as well as direct depth color
estimates, via the depth and light field decoders.

Moreover, in Fig. 5 we show additional point clouds gen-
erated from novel viewpoints using different DeLiRa de-
coders, relative to the ground truth point cloud. Each point
cloud is generated by lifting pixel colors to 3D space, us-
ing camera intrinsics and depth information. Ground truth
point clouds use provided RGB images and depth maps,
while predicted pointclouds use estimates for specific de-
coders (radiance for volumetric renderings, and depth and
light fields for single-query renderings).

5. Comparison with Monodepth

Our multi-view photometric regularization is inspired
by the self-supervised loss used in monocular depth es-
timation. For illustrative purposes, we show in Fig. 3 a
qualitative comparison of depth maps from DeLiRa and
monodepth2 [1], a traditional monocular depth network.
Self-supervised depth estimation requires a large amount of
training data to learn accurate predictions, since the multi-
view photometric objective is highly ambiguous and has
several local failure cases (e.g., reflective surfaces, non-
Lambertian objects, textureless areas). In the indoor set-
ting, where these types of surfaces are common, it is thus
highly challenging, and for the example in Fig. 3 the self-
supervised depth network fails to properly capture the ob-
served scene geometry. In contrast, our method maintains a
volumetric representation, which attenuates the effect of the
self-supervised photometric loss, thus allowing for the net-
work to more accurately reconstruct non-Lambertian sur-
faces, using the multi-view photometric loss only as a geo-
metric regularizer that gradually vanishes over time.
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Figure 4: Additional qualitative depth and view synthesis results from unseen viewpoints, using different DeLiRa de-
coders. As a baseline, we show predictions obtained from a model trained without our contributions, leading to a degenerate
learned geometry due to shape-radiance ambiguity (i.e., accurate view synthesis with poor depth predictions). RGB and
depth error maps are calculated as absolute differences and respectively normalized between [0.0,0.5] and [0.0, 1.0].
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Figure 5: Qualitative depth and view synthesis results from unseen viewpoints, using different DeLiRa decoders. The first
column shows ground truth point clouds, while the second and third columns show respectively pointclouds generated using
radiance field predictions, and depth and light field predictions.
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