
Towards Zero-Shot Scale-Aware Monocular Depth Estimation
– Supplementary Material –

Vitor Guizilini Igor Vasiljevic Dian Chen Rares, Ambrus, Adrien Gaidon

Toyota Research Institute (TRI), Los Altos, CA

1. Training Details

We implemented our models using PyTorch [8], with dis-
tributed training across 8 A100 GPUs and TensorFloat-32
precision format. We use the AdamW optimizer [7], with
standard parameters β1 = 0.9, β2 = 0.999, a weight decay
of w = 10−4, batch size of b = 16, and an initial learn-
ing rate of lr1 = 10−4. During the first epoch, we linearly
warm the learning rate up from lr0 = 10−5. Afterwards,
we decay the learning rate by a factor of γ = 0.8 after every
5 epochs for outdoor experiments, and 2 epochs for indoor
experiments, such that lrn+1 = γlrn. In addition to our
proposed encoder-level data augmentation techniques, we
also apply random horizontal flipping with 50% probabil-
ity, and color jittering of (0.5, 0.5, 0.5, 0.1) respectively for
brightness, contrast, saturation and hue.

For resolution jittering, we randomly resize input im-
ages to resolutions between 25% and 150% of the origi-
nal H ×W , independently for the height and width dimen-
sions. Due to network architecture restrictions, we round
up our sampled resolutions to be multiples of 32. For em-
bedding dropout, we randomly select a number of encoder
embeddings between 0% and 50% to remove at each train-
ing iteration. During evaluation we do not perform any sort
of data augmentation. For the loss calculation, we multi-
ply the surface normal regularization term by αN = 0.2,
and the KL-divergence term by αKL = 0.1. To decrease
memory requirements and computational complexity, dur-
ing training we use strided ray sampling [6] to downsample
the decoded image to 1/8 the original resolution.

2. Network Architecture

We use a ResNet18 [4] backbone as the encoder to gen-
erate 960-dimensional image embeddings. Our geometric
embeddings are calculated using F = 16 frequency bands
and µ = 64 as the maximum resolution, resulting in 51-
dimensional vectors. Our latent representation is of dimen-
sionality 1024×1024, with 8 self-attention heads and 8 self-
attention layers for conditioning, including GeLU activa-
tions [5] and dropout of 0.1. We use a single cross-attention

layer for conditioning, and another single cross-attention
layer for decoding, followed by an MLP that projects the
output to a 1-dimensional depth estimate. For uncertainty
estimation, we decode 10 depth maps, from different sam-
pled latent representations, and calculate the pixel-level
mean µij and standard deviations σij . In total, ZeroDepth
has 232, 591, 380 parameters.

3. Extended Depth Estimation Tables

For completeness, in Tables 1 and 2 we provide depth
estimation results for each individual camera of the DDAD
and nuScenes datasets. These results are obtained using the
outdoor variant of ZeroDepth, and were averaged to gener-
ate our entries in Tables 1 and 2 of the main paper. More-
over, in Table 3 we report the full depth estimation results of
our ablation regarding the use of different training datasets
(see Figure 6 of the main paper, where due to space con-
straints we only report KITTI results). In these results we
observe a similar trend: performance consistently degrades
across all evaluation datasets as we consider fewer training
datasets, and the degradation is similar between metric and
median-scaled predictions.

In particular, improvements seem to be correlated with
the number of training tokens available on each dataset:
considering 384 × 640 resolution images, and an encoding
downsample ratio of 4 (Section 3.3, main paper), each im-
age contains a total of 15360 tokens. Therefore, the PD
dataset has roughly 8.5B tokens, followed by TartanAir
with 9.4B, Waymo with 1.5T, and LSD with 1.6T tokens.
Note that this is without considering our proposed encoder-
level data augmentation techniques (Section 3.5, main pa-
per), that further increases training token diversity by (i)
modifying the CNN features used as image embeddings;
and (ii) perturbing the geometric embeddings to cover the
entire camera field of view. Increasing the number of train-
ing tokens by ingesting additional datasets, as well as in-
creasing network complexity to enable proper learning from
such diverse data, are straightforward ways to further in-
crease performance within our framework.
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AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

ZeroDepth

Front

✗

0.100 1.916 11.214 0.188 0.895 0.962 0.983
Front-Left 0.148 2.245 10.011 0.249 0.833 0.932 0.965

Front-Right 0.182 2.934 10.397 0.286 0.771 0.908 0.951
Back-Left 0.165 2.642 10.648 0.269 0.806 0.918 0.957

Back-Right 0.205 3.268 10.484 0.309 0.748 0.893 0.969
Back 0.157 2.656 12.135 0.248 0.813 0.933 0.969

ZeroDepth

Front

✓

0.100 1.950 11.318 0.191 0.889 0.961 0.982
Front-Left 0.151 2.325 10.067 0.254 0.818 0.931 0.965

Front-Right 0.179 3.113 10.874 0.308 0.760 0.893 0.941
Back-Left 0.170 2.555 10.728 0.279 0.782 0.912 0.955

Back-Right 0.206 3.053 10.591 0.332 0.714 0.875 0.930
Back 0.159 2.806 12.627 0.265 0.808 0.917 0.962

Table 1: Per-camera ZeroDepth depth estimation results on the DDAD [2] dataset.
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ZeroDepth

Front

✗

0.150 2.101 7.484 0.240 0.839 0.939 0.969
Front-Left 0.287 4.931 7.300 0.363 0.711 0.862 0.920

Front-Right 0.420 12.247 7.545 0.391 0.690 0.853 0.913
Back-Left 0.193 3.615 7.818 0.291 0.796 0.910 0.952

Back-Right 0.252 2.970 6.411 0.340 0.709 0.866 0.924
Back 0.226 2.516 6.669 0.331 0.732 0.881 0.932

ZeroDepth

Front

✓

0.157 2.154 7.612 0.239 0.822 0.941 0.971
Front-Left 0.259 3.913 7.063 0.341 0.716 0.876 0.929

Front-Right 0.354 6.899 7.043 0.365 0.690 0.851 0.920
Back-Left 0.192 3.095 7.639 0.281 0.789 0.917 0.958

Back-Right 0.230 2.728 6.275 0.321 0.735 0.878 0.930
Back 0.223 2.609 6.693 0.317 0.731 0.883 0.935

Table 2: Per-camera ZeroDepth depth estimation results on the nuScenes [1] dataset.

4. Variational Uncertainty Sampling

In Figure 1 we show an example of predicted variational
uncertainty, and how it can be used to improve depth es-
timation by selecting pixels with higher confidence levels.
As expected (Figure 1a), uncertainty increases with longer
ranges, and is also larger in areas with sudden depth discon-
tinuities (i.e., object boundaries), that are usually smoothed
out to generate a characteristic “bleeding” effect across
modes. By removing as few as 10% of the valid depth pix-
els, we already observe a significant improvement of 30%
in Root Mean Squared Error (RMSE), from 4.044 to 2.859,
mostly due to the removal of areas with bleeding artifacts.
In fact, the overall pointcloud structure (i.e., observed cars,
ground plane and walls) is preserved even when we remove

as much as 50% of valid depth pixels, leading to an RMSE
improvement of 63% relative to the full pointcloud.

5. Full Surround Pointclouds
The DDAD and nuScenes datasets have multiple cameras

in each sample, which enables the reconstruction of full sur-
round pointclouds by combining reconstructions from each
individual camera. This property has been explored in sev-
eral works [3, 9], as a way to generate scale-aware depth
maps by exploiting cross-camera extrinsics as a source of
metric information. In Fig 2 we show examples of Ze-
roDepth pointclouds for each of these datasets, obtained
by overlaying individual pointclouds from the 6 cameras
in a single sample. We emphasize that these are direct
transfer results, generated by evaluating ZeroDepth with-
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✓ 0.104 0.651 4.011 0.174 0.905 0.978 0.995
– TA

✗ 0.103 0.670 4.171 0.187 0.891 0.970 0.991
✓ 0.109 0.697 4.227 0.179 0.899 0.977 0.995

– PD
✗ 0.105 0.720 4.400 0.192 0.886 0.968 0.990
✓ 0.118 0.858 4.579 0.188 0.881 0.974 0.993

– W
✗ 0.110 0.831 4.552 0.199 0.876 0.962 0.988
✓ 0.121 0.753 4.536 0.198 0.872 0.968 0.991

– LSD
✗ 0.133 0.830 4.562 0.207 0.861 0.963 0.988
✓ 0.102 0.627 4.044 0.172 0.910 0.980 0.996

KITTI

All
✗ 0.100 0.662 4.213 0.181 0.899 0.973 0.992

✓ 0.166 2.889 11.576 0.284 0.808 0.908 0.953
– TA

✗ 0.168 2.927 11.744 0.294 0.791 0.901 0.950
✓ 0.181 2.954 11.988 0.283 0.784 0.902 0.951

– PD
✗ 0.183 3.025 12.238 0.295 0.774 0.893 0.957
✓ 0.198 3.470 12.767 0.328 0.772 0.886 0.949

– W
✗ 0.202 3.657 12.928 0.338 0.765 0.879 0.942
✓ 0.212 4.101 13.809 0.319 0.748 0.852 0.936

– LSD
✗ 0.224 4.231 14.771 0.335 0.726 0.838 0.923
✓ 0.160 2.610 10.814 0.258 0.811 0.924 0.961

DDAD

All
✗ 0.161 2.633 11.034 0.272 0.813 0.915 0.956

✓ 0.250 3.912 7.258 0.330 0.741 0.881 0.931
– TA

✗ 0.266 4.161 7.494 0.341 0.738 0.879 0.928
✓ 0.255 3.812 7.468 0.342 0.727 0.865 0.919

– PD
✗ 0.266 4.239 7.629 0.354 0.712 0.853 0.907
✓ 0.266 4.323 7.925 0.375 0.708 0.846 0.904

– W
✗ 0.281 5.779 8.206 0.418 0.688 0.825 0.883
✓ 0.278 4.411 8.328 0.409 0.671 0.827 0.888

– LSD
✗ 0.303 6.462 8.858 0.421 0.655 0.806 0.861
✓ 0.236 3.566 7.054 0.311 0.747 0.891 0.941

nuScenes

All
✗ 0.255 4.730 7.205 0.326 0.746 0.885 0.935

Table 3: ZeroDepth outdoor depth estimation results using different training datasets. All refers to the use of all 4
considered datasets, and each additional entry indicates the removal of a specific dataset: TA for TartanAir, PD for Parallel
Domain, W for Waymo, and LSD for Large-Scale Driving. We observe a consistent decrease in performance when fewer
training datasets are considered, and this decrease is similar between metric and median-scaled predictions.

out fine-tuning, and these are single-frame results, meaning
that each image was processed independently, and the re-
constructed pointclouds were combined without any post-
processing or alignment procedure. As we can see, these
individual pointclouds seamlessly blend in overlapping ar-
eas, which indicates that our learned scale is consistent
across multi-cameras, including across cameras with dif-
ferent intrinsics, resolutions, and relative vehicle orienta-
tion. Furthermore, as shown by the LiDAR pointclouds
overlaid with the pointclouds, our learned scale is not only
consistent across cameras, but it is also metric, i.e. it aligns
with the “ground-truth” LiDAR information without any re-
quired post-processing.
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(a) Standard deviation (b) 100% (RMSE 4.044)

(c) 90% (RMSE 2.859) (d) 75% (RMSE 2.132)

(e) 50% (RMSE 1.489) (f) 25% (RMSE 1.174)

(g) 10% (RMSE 0.723) (h) 5% (RMSE 0.529)

Figure 1: ZeroDepth pointcloud filtering based on variational uncertainty. In (a) we show the predicted monocular
pointcloud colored based on the standard deviation calculated from 10 samples. Afterwards, we show the same pointcloud
filtered according to standard deviation (lowest to highest), and also report the corresponding RMSE from the filtered depth
map. Even with minimal filtering (e.g., 10%) we already observe significant improvements (30%) in accuracy, mostly by
removing areas with “bleeding” artifacts due to object discontinuities.



(a) DDAD

(b) nuScenes

Figure 2: ZeroDepth full surround metric pointclouds, obtained by overlaying predicted monocular pointclouds from
the six available cameras on the (a) DDAD and (b) nuScenes datasets. LiDAR pointclouds are shown as height maps for
comparison purposes only. No post-processing, scaling, or alignment of any kind was performed. More examples are shown
in our supplementary video.
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