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1. Broader Impact and Limitation
Our work aims to address the problem of backdoor detec-

tion and mitigation in reinforcement learning. We believe
that our work provide deep reinforcement learning practi-
tioners additional protection against backdoor attacks thus
contributes positively to the human society and addresses
a critical safety problem for reinforcement learning. Our
method has certain limitations such as sensitive to the adap-
tive attack. However, as we mentioned in the paper, the
adaptive attack would make the backdoor attack less effec-
tive and less stealthy, which is impractical in the real world.

2. Future Work.
Our work manages to solve application issues for com-

petitive reinforcement learning from the security perspec-
tive (e.g., Trojan Attack). There are still several potential
issues for the real-world application of multi-agent rein-
forcement learning, such as its robustness [17, 18, 16, 9],
fairness [20, 19], efficiency [4, 2], etc. We will focus on
addressing potential issues for the real-world application of
multi-agent reinforcement learning in the future work.

3. Detailed Description of Each Environment.
1. Run to Goal: Two agents are initialized on a flat place

with two parallel finish lines. The agent that first
reaches the finish line on its opposite side is determined
as the winner. Two types of agents are experimented in
this environment: ant agents and human agents.

2. You Shall Not Pass: A red agent and a blue agent are
initialized face-to-face near a finish line. The blue agent
aims to pass the finish line while the red tries to prevent
it from passing the line. The blue agent wins if it passes
the finish line; otherwise, the red wins.

3. Sumo: Two agents are set on a limited and circular

area facing one another. The agent which touches the
other and stands till the other falls becomes the winner.
Consistent with [14], we only use human agents in this
environment.

Each game is provided by OpenAI [1] and supported by
Mujoco [12]. The reward for each agent is set according to
the configurations of [1]. We illustrate each game in Fig. 1.
The dimensions of observations and actions for each agent
and environment is shown as below.

4. Calculation of Anomaly Index for T

Following previous work on backdoor detection [13, 5, 3,
15], we apply MAD outlier detection MAD(·) on Rsum to de-
termine whether (pseudo) trigger actions are found. Specif-
ically, we firstly collect the negation of the target agent’s
accumulated reward against a dummy opponent agent within
M steps for 500 times as an array Rarr. Then we calculate
the value of T based on Rarr, where the T can be just tagged
as anomalous (i.e., anomaly index = 4 [5]) against Rarr using
MAD outlier detectors. The anomaly index for a given Rsum
is computed as [8, 13]:

Anomaly Index:
Rsum − Median[Rarr]

C · Median[||Rarr − Median[Rarr]||]
(1)

,
where C represents a constant value and is typically set

as 1.4826 with the assumption that Rsum fits Gaussian distri-
bution [13, 5, 3]. Therefore, we set T as:

T ← 4·C·Median[||Rarr−Median[Rarr]||]+Median[Rarr]
(2)

Accordingly, for each reversed actions, if its correspond-
ing Rsum ≥ T , we determine the actions as trigger actions.
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Figure 1. The illustration of Each Mujoco Game.

Environment Ants Humans
observations / actions

Run-To-Goal 122 / 8 380 / 17
You-Shall-Not-Pass ———- 380 / 17
Sumo 122 / 8 395 / 17

Table 1. The dimensions of observation and action spaces for each
agent and environment

5. The Details of Model Architectures and Im-
plementation Configurations

Following previous work [14], the Trojan agent is built
with Long Short-Term Memory (LSTM) architecture [7] to
achieve both attack efficacy and stealth. The trigger length is
set as 25 with 20% probability by default. The benign agents
are built using multi-layer perceptions (MLP) or LSTM fol-
lowing previous work [1]. Consistent with previous work [1],
we adopt two layers MLP with 128 neurons per hidden-layer
for training benign agents for Run-To-Goal and You-Shall-
Not-Pass. As for Sumo, we implement two layers LSTM
with 128 neurons per hidden-layer. For trojan agents, we
leverage a two-layer LSTM with 128 neurons per hidden-
layer. We implement benign and PolicyCleanse using
PPO [11] with stable baselines [10]. The default parameters
for PPO is policy clip range ϵ = 0.2, discounting factor
γ = 0.995 and generalized advantage estimate parameter
λ = 0.95. For each Trojan model, we inject ≥ 20% poi-
sonous trajectories to achieve the optimal attack efficacy.
PolicyCleanse policy πS(s|θS) is built with two-layer MLP
and each layer has 64 neurons. PolicyCleanse has the same
observation and input spaces as the Trojan agent.

6. The Performance of backdoor attacks for
Sumo(Ants) and Sumo(Humans) Games

We conduct dozens of experiments for implementing
BackdooRL for Sumo (Ants) task. However, we observe that
the trojan agent mostly stay still against the opponent agent,
as shown in Fig. 2, which leads to a very long game time
and tie rate. We also issue this to the authors of BackdooRL.
They attribute such observations to that the agent for Sumo
(Ant) is rather stable thus both agents remain still during the
game.

Algorithm 1 PolicyCleanse
1: Input: Target Agent πT (·); Environment with a random seed;

number of steps in the Performing (N ) and Observing (M )
Phases.

2: Initialize PolicyCleanse policy πS(·; θS)
3: for iteration=1,2,... do
4: Run PolicyCleanse πS(·; θS) against πT (·) in en-

vironment for (M + N) timesteps for collecting
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7: if Rsum is deemed as anomalous based on Section.4.2 then
8: RS(t = N) = 103

9: else
10: RS(t = N) = −103
11: end if
12: Updating PolicyCleanse πS(·; θS) using PPO [11] through
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13: end for

Regarding Sumo (Humans), the Trojan agents would fail
much possibly even though seeing actions different from
benign actions sent by the trigger agent. For examples, the
actions produced by initialized PolicyCleanse would also
possibly trigger the Trojan agent. It is possibly caused by
that the Trojan agent for Sumo (Humans) significantly over-
fits the benign actions from the opponent to preserve its
performance when no trigger actions present.

7. Algorithm for PolicyCleanse

The algorithm for PolicyCleanse is detailed in Algo-
rithm 1.

8. The Details of Mitigation Process

Our mitigation approach requires to interact with the en-
vironment for re-optimizing the Bellman equation, which is
consistent with our threat model. The optiomization process
should let the Trojan agent interact with the environment
to search the â

(n)
T which can lead the optimal performance

of Trojan agent under { ŝ
(t=n)
T , . . . ŝ

(t=∞)
T },and replace the



Figure 2. The illustration of backdoor attacks for Sumo(Ants).
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9. Computation Cost for PolicyCleanse
We still measure the computation cost for implement-

ing PolicyCleanse. We test PolicyCleanse with
NVIDIA 2080 Ti GPU and Intel Xeon E Processors.
PolicyCleanse will take around 357 and 381 minutes
for Ants and Humanoid agents with 2500 optimization itera-
tions. In general, PolicyCleanse would detect at least
one pseudo action within 1000 iterations, which would cost
around 138 and 154 minutes for Ants and Humanoid agents.
As for the mitigation, PolicyCleanse costs close to 2
hours in total for each agent with parallel computation. Com-
pared with training a CRL agent from scratch [1, 6] that
would take millions of iterations for optimization, we think
the cost for PolicyCleanse is acceptable.

10. More results on comparison of accumulated
reward for Trojan agent against Policy-
Cleanse and trigger agents

We here present the comparison of accumulated reward
for different types of Trojan agent (i.e., Dummy and Random
agents) against PolicyCleanse and trigger agents, as shown
in Fig. 3 and Fig. 4.

11. Additional visualization comparison for ac-
tual and reversed (pseudo) triggers

We here conduct additional visualization comparison for
actual and reversed (pseudo) triggers with Humanoid agents
since Humanoid’s actions are more distinguishable than
other agents (i.e., ants). The results are shown in Fig. 5.

12. The pseudo trigger is not a consequence of
the presence of natural Trojans

According to ??, for benign agents, we observe there is
no natural Trojan trigger according to our detection criteria.
Specifically, no Trigger actions can be learned to cause the
catastrophic failure for benign agents (green dotted line).
Moreover, according to ??, most reversed trigger actions

stay close to the action trigger actions but stay away from the
benign actions. Therefore, we do not think that the pseudo
Trigger action is a consequence of the presence of natural
Trojans.

13. Ablation study: The robustness against
adaptive attacks.

To further investigate the robustness of
PolicyCleanse, we evaluate PolicyCleanse
under the worst scenario where the attacker is aware
of our defense mechanism. We consider the attacker
aims to bypass PolicyCleanse through making the
activated Trojan agent’s performance degrade slowly, thus
performs stealthy against PolicyCleanse. Specifically,
the attacker can manipulate the πfail in BackdooRL by
performing Algorithm 2 instead of minimizing Eq.(3).
We conduct experiments using an agent for each game
and its architecture and trigger actions are consistent
with Section.5.1. We test adaptive BackdooRL across
four games and find that the adaptive backdooRL can
successfully learn a Trojan agent πT being able to bypass the
detection of PolicyCleanse. The entire learning procedure of
adaptive BackdooRL typically takes 10-13 iterations across
each game.

However, we also conduct experiments to verify the ef-
ficacy of the proposed adaptive BackdooRL, the results is
shown in Fig. 6. We find that even though the adaptive attack
can bypass PolicyCleanse, its attack efficacy significantly
decreases (≥ 19.6%) comparing with BackdooRL across
four games, which means that PolicyCleanse can sig-
nificantly alleviate the attack efficacy for current Trojan
attack(i.e.,BackdooRL) across four games. And for Run-To-
Goal(Ants), You-Shall-Not-Pass and Sumo(Human) these
games, the adaptive BackdooRL’s efficacy degrades close
to the benign agents(The trigger agent don’t send triggers).
Such results may be attributed to two reasons: First, the
Trojan policy πfail learned by the Trojan agent through
our considered adaptive attack performs less effective com-
pared with that for BackdooRL, which can be revealed by
its accumulated reward is larger according to Line.6 in Al-
gorithm 2. Secondly, adaptive BackdooRL would make the
Trojan policy πfail fail slower compared with BackdooRL.
As discussed in BackdooRL [14], the neural network for
Trojan agents(e.g., LSTM [7]) has limited memory to re-
member the Trojan policy, therefore BackdooRL proposes
to make πfail fail as quickly as possible. However, the adap-
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Figure 3. The comparison of accumulated reward for Trojan agent (Dummy Agent) against PolicyCleanse and trigger agents.

Figure 4. The comparison of accumulated reward for Trojan agent (Random Agent) against PolicyCleanse and trigger agents.

Trigger I

Trigger  
II

Trigger
III

Trigger
IV

Trigger  
V

Trigger  
VI

Figure 5. Additional visualization comparison for actual and reversed (pseudo) triggers. The left figure within each row is the actual trigger
while the right one represents the corresponding reversed (pseudo) trigger. Triggers I and II are evaluated under Run-To-Goal(Humans),
Trigger III and IV are evaluated under You-Shall-Not-Pass; Trigger V and VI are evaluated under Sumo(Humans).

Algorithm 2 Adaptive BackdooRL
1: Input: PolicyCleanse algorithm with default parameters; Benign policy πwin(s)
2: Output: Adaptive BackdooRL πT (s)

3: Initialize the minimum and maximum accumulated value for Trojan policy as Rmin = −1000 and Rmax = 1000

4: while Rmax −Rmin < 1: do

5: Initialize Trojan policy: πfail(s)← πwin(s)

6: Use PPO [11] to learn πfail(s) by minimizing Eq.(3) until E[
∑∞

t=0 γ
t(R(s(t), a

(t)
T ;πfail))] ≤ Rmax+Rmin

2
against a dummy

agent; ▷ When the E[
∑∞

t=0 γ
t(R(s(t), a

(t)
T ;πfail))] drops close to the threshold, we stop optimizing.

7: Use BackdooRL to learn πT (s) based on πfail and πwin;

8: Implement PolicyCleanse on πT (s) as default;

9: if PolicyCleanse finds a pseudo trigger action within 5,000 iterations then
10: Rmin ← Rmax+Rmin

2

11: else
12: Rmax ← Rmax+Rmin

2

13: end if
14: end while

tive BackdooRL may make the entire Trojan agent hard to
imitate the Trojan policy.

Last but not least, we also summarize the failing speed
for the adaptive BackdooRL and BackdooRL in Fig. 7. We

can see that adaptive BackdooRL would require the Trojan
agent to take significantly more steps for failing compared
with BackdooRL. In the real world, failing speed would also
affect the stealth of Trojan attacks against reinforcement
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Figure 6. The comparison on the attack efficacy of BacdooRL and
our proposed adaptive attack. The failure rate is reported over 500
games. The benign means that the performance of a benign agent.
The value is reported as the median value.
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Figure 7. The comparison on the failing speed of BacdooRL and
our proposed adaptive attack. The failing speed is measured by
the number of steps for failing and is reported over 500 games.
The failing speed for the adaptive BackdooRL is from 14% to 59%
slower than BackdooRL across four games.

learning. This is because if a Trojan agent takes more steps
to fail, it would be more likely to be observed and taken
controlled by the human beings. From this perspective, adap-
tive BackdooRL would behave less stealth in the real world
application compared with BackdooRL.

Considering the attack efficacy and failing speed for the
adaptive BackdooRL, we think the attacker may not have
much incentive to conduct the existing Trojan attack(i.e.,
BackdooRL) and its variants against PolicyCleanse. How-
ever, there may be other advanced Trojan attacks to bypass
PolicyCleanse while preserving the attack efficacy, which
can be explored in the future.
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