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S-1. Language Codes
The MT language codes mentioned in the paper along

with their languages have been shown in Tab. S-1.

Code Language Code Language
EN English ES Spanish
DE German RO Romanian
FR French AF Afrikaans
CS Czech

Table S-1: Conventional MT Language codes.

S-2. Datasets
S-2.1. Details

Multi30k. Multi30k contains images sourced from the
Flickr30k dataset [15] with English captions, profession-
ally translated to German and extended to French and
Czech. Conventionally, previous MMT methods have re-
ported results only on the German and French splits. The
test datasets involve Test2016 and Test2017 which were
proposed in their respective years, along with the MSCOCO
test set which contains 461 challenging out-of-domain in-
stances from the MSCOCO dataset with ambiguous verbs.
WIT. WIT is sourced from Wikipedia images and their de-
scriptions in multiple languages. We use this dataset to
demonstrate results on low-resource and non-english lan-
guage splits, specifically on EN → {RO, AF}, DE → ES
and ES → FR. Apart from this, WIT also contains high-
resource splits for EN → {DE, FR, ES}. These are anno-
tated differently from Multi30k, since the descriptions are
independently written for each image, thus inherently intro-
ducing noise in the paired translation data and increasing the
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dependence on images. We use the exact splits as proposed
in [5] to ensure uniformity. Note that there can however be
some variation in our scores since some images in the train-
ing data could not be downloaded. This does not affect the
test set due to our text-only setting during inference.
Whenever needed, we apply preprocessing for both datasets
following the input data format of respective pre-trained
models.

S-2.2. Licences

All datasets used in this work are publicly available.
WIT1 [10] is available under the CC BY-SA 3.0 license.
The license for Multi30k2 [4] is unknown. Use of images
from Flickr30k3 are subject to Flickr Terms of Use4.

S-3. Hyperparameters
Architectural Details. We combine two pre-trained mod-
els. M-CLIP [1] and mBART [11] to develop a multimodal
multilingual model. mBART is initialized with its unsuper-
vised pre-trained weights.5 For M-CLIP we use the model
variant consisting of an XLM-Roberta-Large6 text encoder
and a CLIP-ViT-B/32 7 image encoder. The specific config-
urations of these models is shown in Tab. S-3.
Choice of Captioning Language. In the main paper, we
demonstrate how captioning on multiple languages harms

1https://github.com/JerryYLi/valhalla-nmt/
releases/tag/v0.1-datasets

2https://github.com/multi30k/dataset
3http://hockenmaier.cs.illinois.edu/

DenotationGraph/
4https://www.flickr.com/help/terms/
5https://huggingface.co/facebook/mbart-large-50
6https://github.com/FreddeFrallan/

Multilingual-CLIP
7https://huggingface.co/openai/

clip-vit-base-patch32
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# samples Multi30k WIT
EN → DE EN → FR EN → RO EN → AF DE → ES ES → FR

Train 29k 29k 40k 18k 133k 122k
Validation 1k 1k 5k 5k 10k 10k

Test 2.5k 2.5k 1k 1k 2k 2k

Table S-2: Dataset statistics for Multi30k and WIT

# Layers # Attention Heads Vocab/Patch Size Embedding Dim Feedforward Dim Projection Dim
mBART 12 16 250k 1024 2048 -

XLM-Roberta-Large 24 12 250k 1024 4096 512
ViT-B/32 12 12 32 768 3072 512

Table S-3: Model statistics for CLIPTrans

Model
Multi30k WIT
EN → DE EN → RO EN → AF AverageTest2016 Test2017 MSCOCO Average

CLIPTrans (Ours) 43.87 37.22 34.49 18.34 17.34
Mapping Network Architectures
CLIPTrans-MLP 41.94 35.96 33.35 -1.43 Unstable 10.49 -6.85
CLIPTrans-Enc 42.29 36.75 35.41 -0.37 17.86 17.54 -0.13
Injection of M-CLIP Embeddings
Before <eos> 43.15 38.14 34.59 -0.10 17.45 16.97 -0.63

Table S-4: Additional Ablations on the Multi30k and WIT dataset
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Figure S-1: Image-caption alignment of all the considered
language pairs in their respective training splits. For each
split, we perform captioning only on the language with
higher similarity.

the performance of the mapping network. Therefore, dur-
ing the first stage, we perform image captioning using a
single language which is chosen on the basis of the image-
caption alignment of that language on the training set with
M-CLIP. This is calculated by finding the mean cosine sim-

ilarity of the images and their captions in the M-CLIP en-
coding space across the training set. A summary of this is
shown in Fig. S-1.

S-4. Additional Experiments

Dependence on Mapping Network Architecture. We
have chosen the simplest mapping network for our main
results, however, we also demonstrate variations of the
same by training two additional models with identical
hyperparameters – CLIPTrans-MLP and CLIPTrans-Enc.
CLIPTrans-MLP employs fan MLP mapping network with
the configuration as Linear→ReLU→Linear→PReLU.
CLIPTrans-Enc projects the M-CLIP embedding to the re-
quired size, then applies a single transformer layer with
two self-attention heads. The results of both are shown in
Tab. S-4. While it may be possible to improve (or stabilize)
these results via subsequent hyperparameter tuning, choos-
ing a simple mapping network for CLIPTrans, enables us to
set a lower bound on the results.
Injection of M-CLIP embeddings into mBART. During
pre-training, the first token in the mBART decoder is the
<eos> token which has the <bos> token as its label. To
prevent misalignment with this design choice, we place the
prefix sequence after this token. We ablate this and exper-
iment by placing the prefix tokens before it or at the end



MMT Model Inference EN → DE EN → FR AverageTest2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO
Gumbel-Attention [8]

L+I

57.80 51.20 46.00 - - - -13.97
CAP-ALL [6] 57.50 52.20 46.40 74.30 68.60 62.60 -11.40
GMNMT [14] 57.60 51.90 47.60 74.90 68.60 62.60 -11.13
DCCN [7] 56.80 49.90 45.70 76.40 70.30 65.00 -10.98
Gated Fusion∗ [13] 67.80 61.90 56.10 81.00 76.30 70.50 -2.73
ImagiT [9]

L

55.70 52.40 48.80 74.00 68.30 65.00 -10.97
RMMT∗ [13] 68.00 61.70 56.30 81.30 76.10 70.20 -2.73
VALHALLA [5] 68.80 62.50 57.00 81.40 76.40 70.90 -2.17
VALHALLA∗ [5] 69.30 62.80 57.50 81.80 77.10 71.40 -1.68
CLIPTrans (Ours) 70.22 65.43 61.26 82.48 77.82 72.78

Table S-5: METEOR scores on the Multi30k dataset. Here we let ∗ represent ensembled models. L+I represents both
language and image are used during inference while L means only text is used during inference. Bold represents the highest
score. We see CLIPTrans outperforms state-of-the-art methods across all settings.

Model Under-Resourced Non-English AverageEN → RO EN → AF DE → ES ES → FR
RMMT [13] 23.60 29.60 33.20 36.50 -4.79
UVR-NMT [16] 28.00 32.80 32.70 37.20 -2.84
VALHALLA [5] 30.40 34.20 34.30 37.50 -1.41
CLIPTrans (Ours) 34.36 35.74 34.21 37.73

Table S-6: METEOR scores on the WIT dataset. We observe our method attains the best scores with a substantial margin.

of the sequence. Subsequently, the decoder self-attention
mask is modified. As expected, we notice a slight drop in
performance by placing them at the start. Placing at the
end causes unstable training for all languages, which can be
attributed to the lack of extra self-attention operations un-
dergone by the prefix tokens as compared to placing them
at the start, thus preventing them from properly adapting to
the mBART.
METEOR. We show the METEOR [3] scores on the
Multi30k dataset in Tab. S-5 and on WIT in Tab. S-
6. Notably, CLIPTrans outperforms all previous SOTAs on
METEOR as well.
Additional Results. In order to demonstrate the effec-
tiveness of CLIPTrans for sentences outside the domain of
the CLIP pre-training data, we evaluate on WMT2014 for
EN→DE, FR. Following the undersampled settings in [5],
we take a 100k random subset. Due to the lack of images,
we only train stage 2 of CLIPTrans. As can be seen in Tab.
??, we outperform the baseline across both languages.
For completeness, we also show results in Tab. ?? the EN
→ CS split of Multi30k, and note that we beat the mBART
baseline.

S-5. Limitations

A potential limitation of our method is the computa-
tional cost associated with training larger pre-trained mod-

Model Multi30k(EN → CS) WMT
Test2016 Test2018 EN → DE EN → FR

mBART 35.20 32.02 19.58 29.35
CLIPTrans 36.05 32.53 21.02 30.34

Table S-7: Additional results on WMT and the EN → CS
split of Multi30k.

els. However, our method is general enough to be repli-
cated on smaller or distilled models as well. Further, in
order to take advantages of pre-trained weights, it is limited
to the languages used in the pre-training data for M-CLIP
and mBART. While this can be counteracted via zero-shot
cross-lingual transfer approaches [2, 12], we leave that for
discussion in future works.

S-6. Broader Impact
CLIPTrans can effectively ground images in multi-

ple languages without requiring expensive post-pretraining
steps and demonstrates how to effectively leverage exisiting
pre-trained models in MMT. Beyond MMT, it can be con-
sidered as a generalized approach for developing better mul-
timodal multilingual models using monolingual image cap-
tioning data which is of great practical importance. While
negative impacts of this are hard to predict, it suffers from
the same dataset and societal biases faced by vision and lan-
guage models. While extensive work is being done to miti-
gate this, it is beyond the scope of this paper.
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