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1. Additional implementation details
The primary input to our method is a NeRF recon-

struction of a real scene. This reconstruction is obtained
using the ‘nerfacto’ model from NeRFStudio [3], trained
for 30, 000 iterations per scene. Before running Instruct-
NeRF2NeRF, we re-initialize the optimizers in NeRFStu-
dio. In order to specify edits, we use InstructPix2Pix [1],
where users specify the classifier-free guidance weights in
order to explore the desired amount of change for a given
edit. In our method, we inherit this parameter. Below we
list these chosen values for the sequences shown in the pa-
per:

1. Fig. 4 Tree: sI=1.5, sT ∈ [7.5, 12.5]

2. Fig. 8 Tents: sI=1.5, sT =10.0

3. Fig. 4 Person: sI ∈ [1.5, 1.75], sT ∈ [6.5, 7.5]

4. Fig. 1: sI=1.5, sT ∈ [6.5, 7.5]

5. Fig. 4 Bear: sI = 1.5, sT = 6.5

6. Fig. 7: sI ∈ [1.3, 1.5], sT ∈ [6.5, 8.5]

Our process of optimizing for an edited NeRF uses a dif-
fusion model as guidance, which can produce a collection
of temporally varying images (i.e., varying over the course
of optimization). As a result, the optimization process does
not have a single convergence point, as standard NeRF op-
timization does, where all images are sufficiently well ex-
plained by the reconstructed model. Therefore, the edited
NeRF also varies in type and strength of edit over the course
of optimization, and one must select an iteration at which to
terminate optimization and visualize the edited scene. In
practice, the optimal choice for training length is a subjec-
tive decision — a user may prefer more subtle or more ex-
treme edits that are best found at different stages of training.
The results in the paper are shown after a varying number of
iterations, 3000 − 4000 for smaller scenes (e.g., Fig. 1 and

Fig. 4 bear, which both have under 100 images each), and
7000 − 8000 for larger scenes (the remaining scenes, with
over 200-300 images each).

For InstructPix2Pix, we use the public implementation
included in the Diffusers library [4].

2. Limitations

As mentioned in the main paper, our method inherits
many of the limitations of InstructPix2Pix. This includes
(1) the inability to perform large spatial manipulations, (2)
the occasional inability to perform binding between objects
referred to in the instruction and the corresponding scene
objects, and (3) adding or removing large objects. Fur-
thermore, as in DreamFusion, our method uses a diffusion
model on a single view at a time, and thus may suffer from
similar artifacts, such as double faces on added objects. Fi-
nally, it’s worth noting that the edit instructions provided
to InstructPix2Pix are sometimes more relevant to certain
views than others. For example, if the instruction is to “turn
the man into a bear”, not all views may prominently fea-
ture the man, and therefore, certain views may consistently
produce less of an edit or no edit at all. Our framework
can easily incorporate improvements made in the Instruct-
Pix2Pix and its follow up works.

We additionally note that the edited NeRF scenes of-
ten contain slightly blurrier textures when compared to the
originally reconstructed NeRF. Some initial experimenta-
tion suggests that this may be a result of the Stable Dif-
fusion autoencoder, which often does not produce an en-
tirely faithful copy of the original image, even in unedited
regions. The autoencoder, while producing visually compa-
rable results, often creates images with locally similar but
non-identical textures that are not globally 3D-consistent.
To validate this hypothesis, we show an experiment in Fig-
ure 1, where we simply autoencode the input images us-
ing Stable Diffusion (i.e., the same autoencoder used by In-
structPix2Pix) and continue training the NeRF. As a result,
the scene becomes gradually blurrier.



Figure 1: Effects of autoencoder: From left to right: (1) the
input captured image, (2) the original reconstructed NeRF, ren-
dered from the same viewpoint, (3), the original image 1, encoded
and decoded by Stable Diffusion’s autoencoder, (4) a NeRF re-
construction of the autoencoded images, rendered from the same
viewpoint. Below, we show a zoomed-in patch of the eye. We
note that while the input sequence can be reasonably reconstructed
without much loss of detail, and the autoencoded images are sim-
ilarly sharp as the input captured sequence, there are slight per-
turbations in local textures that end up not being 3D-consistent,
resulting in blurry renders in the final recontruction.

Furthermore, over much longer optimization runs (i.e.,
when the process of rendering, editing, and propagating the
edited images back into the NeRF has been repeated many
times), we note a decrease in visual quality. We also largely
attribute this to the effects of the autoencoder.

3. Metrics

In the quantitative evaluation, we report two metrics, a
CLIP Directional Score [2], and a metric we name CLIP
Direction Consistency Score. The CLIP Directional score
measures how much the change in text captions agrees with
the change in the images, and the CLIP Consistency score
measures the cosine similarity of the CLIP embeddings of
each pair of adjacent frames in a render novel camera path.

More formally, for the directional score, we encode a
pair of images (the original and edited NeRFs, rendered at
a given viewpoint), as well as a pair of text prompts that de-
scribe the original and edited scenes, e.g., “a photograph
of a man” and “a photograph of a Tolkien Elf”. Using
these, we compute the directional score described in In-
structPix2Pix [1] and StyleGAN-NADA [2].

For the temporal consistency loss, we encode a pair of
consecutive rendered frames from a novel trajectory, us-
ing both the original NeRF and the edited NeRF. In all,
we are left with four CLIP embeddings, C(oi), C(oi+1),
C(ei), C(ei+1), corresponding to original NeRF renderings
oi, oi+1 and edited NeRF renderings ei, ei+1 for consecu-

tive novel views i and i+ 1. We define the consistency loss
as:

(C(ei)− C(oi)) · (C(ei+1)− C(ei)) (1)

This effectively amounts to measing the change in the
CLIP-space edit direction from frame to frame.
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