
A. Model details

A.1. Segmentation head

We train a segmentation head on top of the frozen OWL-
ViT model solely to enforce the one-output-per-pixel con-
straint required by the OWTA metric. The segmentation
head predicts cropped masks within the bounding boxes
predicted by the main model. It consists of a ResNet-26 en-
coder and Hourglass mask heads as described in [4], trained
on Open Images V5 [1, 20].

After training this head on the OWL-ViT model, we ap-
ply the same (frozen) head on object queries in Video OWL-
ViT (without re-training or fine-tuning) to obtain rough seg-
mentation masks.

Example qualitative segmentation masks are shown in
Figure 8.

A.2. Architecture

We provide an overview of architecture hyperparameters
of Video OWL-ViT in Table 7. We use pre-norm [34] in all
transformer layers.

A.3. Data augmentation

We use the following data augmentations for training on
TAO-OW: 1) we randomly left-right flip all frames (jointly)
in a training clip, 2) we randomly invert the temporal axis,
3) we apply random cropping (jointly across all frames in a
clip), and 4) we apply a temporal video mosaic augmenta-
tion. All 6-frame clips used for training are randomly sam-
pled from the training videos at 4FPS.

For cropping, we sample a random 480 ⇥ 640 crop of
the original video and discard bounding boxes if less than
50% of their original box area remains after cropping. For

Figure 8: Example of segmentation masks used for enforc-
ing the non-overlap constraint of the OWTA metric.

Table 7: Video OWL-ViT architecture overview.

Backbone ViT-L/14

Decoder

Layers 6
Heads 8
Hidden dim 1024
MLP size 4096
QKV dim 1024
Dropout rate 0.1

Box head
MLP size 1024
MLP hidden layers 2
MLP activation GELU [15]

temporal video mosaic, we take two processed video clips
of length 6 (with augmentation as described above), con-
catenate them along the time axis, and sample a random
temporal window of length 6 over the joint sequence. We
apply temporal video mosaic to 50% of training samples.

To obtain pseudo-videos from images (incl. individual
TAO-OW training frames), we apply a random crop (of size
50% of height and width of the original image) that sim-
ulates linear camera motion over the image. We similarly
discard bounding boxes if less than 50% of their original
box area remains after cropping.

A.4. Training

We train Video OWL-ViT using the Adam [17] optimizer
with �1 = 0.9, �2 = 0.999, and with a batch size of 32
and a learning rate of 3e-6 for 100k training steps. We clip
gradients to a maximum norm of 1. We linearly “warm up”
the learning rate over the first 1k steps and decay it to 0 over
the course of training using a cosine schedule.

For our loss, we use the same hyperparameters as OWL-
ViT [26], i.e. equal weighting between bounding box, gIoU,
and classification losses, and focal loss coefficients of ↵ =
0.3 and � = 2.

For simplicity, we do not filter class labels in upstream
text-image and detection pre-training, i.e. objects of classes
that are considered ”unknown” in the TAO-OW video track-
ing setting can appear in static images during training, but
are never seen in natural video. We verified that filtering
these classes during upstream pre-training has negligible ef-
fect on our reported metrics.

B. Additional results

B.1. Backbone size

To evaluate the effect of model size, we compare our de-
fault Video OWL-ViT model, which uses a ViT-L/14 back-
bone, to a model variant with a smaller backbone (ViT-B/16
at 768⇥768 resolution). Our results in Table 8 indicate clear



Table 8: TAO open world tracking with Video OWL-ViT
for different ViT backbone size. All metrics in %.

LVIS Known Unknown

ViT Resolution AP APr OWTA D. Re. A. Acc. OWTA D. Re. A. Acc.

B/16 768 27.2 20.6 55.2 64.3 48.9 41.6 48.6 37.9
L/14 672 33.4 31.8 59.0 69.0 51.5 45.4 53.4 40.5

performance gains when using the larger ViT-L/14 back-
bone across all metrics, incl. upstream LVIS detection per-
formance.

B.2. Qualitative results

We show further qualitative results of high scoring tracks
for Video OWL-ViT and our tracking-by-detection baseline
in Figure 9 (TAO-OW) and Figure 10 (YT-VIS). Qualita-
tive results in video format are provided in the supplemen-
tary zip file. Video OWL-ViT generally maintains consis-
tent tracks and avoids transfer of instance predictions across
semantically different objects compared to our tracking-by-
detection baseline.



Figure 9: Qualitative examples for Video OWL-ViT detection and tracking of multiple instances on the TAO-OW validation
set. Tracking-by-detection (odd rows) vs Video OWL-ViT (even rows). Known classes include: cat, dog, zebra. Unknown
classes include: fish, rabbit, hippopotamus. Colors uniquely correspond to query IDs. Numbers indicate objectness scores.
Only the first 6 frames/seconds of each video are shown.



Figure 10: Qualitative examples for Video OWL-ViT detection and tracking of multiple instances on the YT-VIS valida-
tion/test sets. Tracking-by-detection (odd rows) vs Video OWL-ViT (even rows). Known classes include: dog, car, airplane.
Unknown classes include: duck, shark. Colors uniquely correspond to query IDs. Numbers indicate objectness scores. The
video clips are shown at a reduced frame rate (1 FPS).


