
Supplementary Material: Interactive Class-Agnostic Object Counting

1. Overview
In the supplementary, we first provide more details about

our approach in section 2.1. Then provide more implemen-
tation details in section 2.2, analyze the time efficiency and
conduct the ablation of the location of the feature refine-
ment module in section 2.4, analyze our method’s robust-
ness in 2.3 and analyze the effectiveness of confidence scal-
ing in the other two class-agnostic visual counters in sec-
tion 2.5. After that, we introduce the interface of our inter-
active system in section 2.6, give more qualitative results in
section 2.7 and section 2.8. Finally, we briefly discuss the
limitation and future work in section 2.9. In addition to the
supplementary material, we also provide a demo video of
our interactive counting system.

2. Supplementary Material
2.1. Additional details for our approach

In this section, we provide additional details for the in-
teraction loop and the IPSE density map segmentation.

2.1.1 Interaction loop

A detailed algorithm for the interaction loop is illustrated in
Algorithm 1. The input visual counter contains the follow-
ing components, a feature extractor f , a spatial-similarity
learning module g, layers before the refinement module in
regression head hb, refinement module Rθr , and layers af-
ter the refinement module in regression head ha. We need
to update Ω with D in each gradient step because the sum-
mation over each region depends on the estimated density
map.

2.1.2 IPSE density map segmentation

A detailed algorithm for IPSE is illustrated in Algorithm 2.
The peak expansion algorithm is shown in Algorithm 3. In
Algorithm 2, background splitting is simply expanding at
a random background peak with iteratively including the
neighbor pixels with the same upper bound, and the small
region merging is merging some small region to its neigh-
bor region. More specifically, the region size upper bound
Tu is set to 1250, and the region size lower bound Tl in the
objective function is set to 250.

Algorithm 1 Interaction loop
Input: Input image: I, Exemplars: E, Gradient steps: N ,
Adaptation learning rate γ, Interaction times: T .
Initalization: User feedback list: Ω = [ ].

1: S = g(f(I), f(E))
2: F = hb(S)
3: Initialize Rθr correspond to F ’s size
4: for T interactions do
5: D = ha(Rθr (F ))
6: Visualize D with IPSE
7: Collect user feedback (R, c), Ω.append((R, c))
8: γ′ = γFC(Ω), N ′ = N

FC(Ω)

9: for N ′ gradient steps do
10: F ′ = Rθr (F )
11: D = hb(F

′)
12: Update Ω with D
13: θr ← θr − γ′∇L(Ω)

Algorithm 2 IPSE Density Map Segmentation Algorithm
Input: Density map: D, Smooth kernel: G, Objective

function:h(R), Region size upper bound: Tu.
Initalization: Foreground region set: Vf = { }, Back-

ground region set: Vb = { }
1: D̃ ←D ∗G
2: S ← sum(D)
3: while S ≥ 1 do
4: p = argmax(D̃)

5: D̃[p]← −∞
6: R = Peak Expansion(D, D̃, p, h(R), Tu)
7: Vf .append(R)
8: S ← S −Rs

9: Vb = Background Spliting (D, D̃)
10: V = Vf ∪ Vb

11: V← Small Region Merging(V)
12: return V

2.2. Additional implementation details

FamNet [2]. For FSC-147 [2] we used the released pre-
trained model. For FSCD-LVIS [1], we train it on one RTX
A5000 machine for 150 epochs, and the learning rate is



Algorithm 3 Peak Expansion Algorithm

Input: Density map: D, Smooth density map: D̃, Peak: p,
Objective function:h(R), Region size upper bound: Tu.
Initalization: Rs = 0, Ri = 0, Region pixel list RL = [ ],
Optimal objective value:P ∗ =∞, Foreground size:Fi = 0,
Background size:Bi = 0.

1: L̂ = [p], L = [ ]
2: while L̂ is not empty and Ri < Tu do
3: p̂ = L̂.pop(), L.append(p̂)
4: for p̂n ∈ p̂ ’s neighbour do
5: if p̂n not in any regions then
6: if D[p̂n] > 0 then
7: L̂.append(p̂)
8: Rs ← Rs +D[p̂n], Ri ← Ri + 1
9: RL ← L+ L̂, Fi ← Fi + 1

10: D̃[p̂n]← −∞
11: P ← h(R)
12: if P < P ∗ then
13: R∗ ← R, P ∗ ← P

14: else
15: if Fn > Bn then
16: L̂.append(p̂n)
17: Rs ← Rs +D[p̂n], Ri ← Ri + 1
18: RL ← L+ L̂, Bn ← Bn + 1
19: D̃[p̂n]← −∞
20: return R∗

1 × 10−6. On FSC-147, following [2], we do the test-time
adaptation, on FSCD-LVIS we do not do the test-time adap-
tation for time efficiency.

SAFECount [5]. For FSC-147 we used the released pre-
trained model. For FSCD-LVIS, we train it on one RTX
A5000 machine for 100 epochs, and the learning rate is 2×
10−5. The interactive adaptation gradient steps are set to
30, and the interactive adaptation learning rate is 0.001.

BMNet+ [3]. For FSC-147 we used the released pre-trained
model. For FSCD-LVIS, we train it on one RTX A5000
machine for 100 epochs, and the learning rate is 1 × 10−5.
The interactive adaptation gradient steps are set to 30, and
the interactive adaptation learning rate is 0.001.

DM-Count [4]. For ShanghaiTech and UCF-QNRF, we
used the released pre-trained model.

2.3. Robustness experiment on crowd counting

Our experiment on crowd counting has demonstrated the
effectiveness of our adaptation method from the computa-
tional perspective. But from the human perspective, it may
be possible that the human user cannot easily provide feed-
back for the count ranges needed for crowd counting. This
is not a concern for the small count limit and the count

Level of feedback noise

Dataset Initial error None Moderate Large

ShanghaiTech A 59.60 33.85±0.78 36.15±0.99 40.93±0.65
UCF-QNRF 85.65 58.13±1.04 78.72±2.36 78.14±1.34

Table 1. MAE of the proposed interactive counting method for dif-
ferent levels of feedback noise.

ranges used in the class-agnostic counting setting given
the subitizing ability of humans. But for the count ranges
{[−∞, 0], (0, 10], . . . , (40 50], (50∞)} used in this crowd
counting experiment, a human user might make estimation
mistakes leading to noisy feedback. We therefore perform
an experiment to study the robustness of our method to
noisy feedback. Specifically, we introduce random biases to
the ground truth estimation to simulate mistakes. We con-
sider two estimation biases. For moderate bias, a random
noise of 30% of the count limit is added ([-15, 15]). For
large bias, a random noise of 50% is added([-25, 25]). With
a biased estimation, our approach still can reduce the MAE
by approximately 30% on ShanghaiTech A and 10% on the
other two datasets, as shown in Table 1.

2.4. Additional ablation study

All additional ablation study is conduct on FSC-147 val-
idation set or FSCD-LVIS validation set with FamNet as the
visual counter.

2.4.1 Time efficiency analysis

Table 2 shows the time efficiency comparison with vanilla
adaptation(Adapt the whole regression head). In Table 2 the
average adaptation time(second) for one single click is re-
ported. This experiment is run on RTX A5000, for FSC-147
both of them use 10 gradient steps for one adaptation, and
for FSCD-LVIS is 20. We find that our approach is 11.88%
faster than vanilla adaptation on FSC-147, and 8.92% faster
on FSCD-LVIS. Our method is faster because our method
requires less computation in feedforward, backpropagation,
and parameter updating, as illustrated in Algorithm 1. In
feedforward, we only need to compute the layer before the
refinement module one time, and in backpropagation, we
only need to compute the gradient for the layers after the
refinement module. Also, we only need to update the pa-
rameters in the refinement module.

2.4.2 Location of the refinement module.

The ablation of the location of the refinement module is
shown in Table 3. This experiment is conduct on FSC-147
validation set. Correlation map means directly refine the
spatial correlation map between the exemplar and the input
image. We can find that inserting at the shallow position



Benchmarks FSC-147 Val FSCD-LVIS Val

Vanilla Adaptation 0.179±0.00 0.56±0.04
Refinement Module 0.160±0.00 0.51±0.00

Table 2. Average adaptation time(second) for one single interac-
tion. The mean and the standard error of five experiments with
different seeds are reported.

Component MAE RMSE

Correlation map 18.71±0.78 64.15±9.69
After first conv 12.79±0.16 47.21±2.05
After second conv 13.63±0.34 48.11±3.95
After third conv 13.87±0.13 51.56±1.62

Table 3. Results of different locations of refinement module on the
regression head of FamNet. The mean and the standard error of
five experiments with different seeds are reported.
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Figure 1. MAE and RMSE with respect to the number of feedback
iterations on SAFECount. We find that confidence scaling can
make the adaptation smoother and improve the final result signifi-
cantly.
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Figure 2. MAE and RMSE with respect to the number of feedback
iterations on BMNet+. We find that confidence scaling can make
the adaptation smoother and improve the final result significantly.

has better performance, and directly refining the correlation
map doesn’t work well.

2.5. Additional analysis on confidence scaling

In the ablation of the adaptation loss in our main paper,
confidence scaling seems less important on FamNet. To fur-
ther analyze its effectiveness, we conduct additional analy-
sis of confidence scaling on SAFECount and BMNet+. As
shown in Fig. 1 and Fig. 2 We can find that confidence scal-
ing can make the adaptation smoother and improve the final
result significantly.

2.6. Interactive Interface

The frontend interface of our interactive software is
shown Fig. 3. In the visualization, We also provide approx-
imate locations of the detected objects by putting some dots
in the regions. The locations of these dots are found auto-
matically, by iteratively selecting a peak of the density map
and performing non-maximum suppression for the neigh-
boring pixels. We also provide a demo video in the supple-
mentary. In the demo video the running time for each inter-
action is around two seconds. This is because in the demo
video one interaction includes four stages: adaptation, den-
sity map display, segmentation, and visualizing the final re-
sult(overlay the image with region boundary and approxi-
mate location for each counted object). Analysis of these
stages, using images from our user study with three interac-
tions each, shows a mean interaction time of 2.07 seconds.
Breakdown: adaptation 0.52s, map display 0.50s, segmen-
tation 0.40s, visualizing the final result 0.64s. Although
segmentation takes less than a second, the full process lasts
over two seconds due to the image save-load-visualize pro-
cess. We aim to optimize our software for increased speed
in the fut.

2.7. Qualitative results of refinement module.

The qualitative results of the feature refinement are
shown in Fig. 4. In this figure, for each example, the first
row shows the initial result, and the second row shows the
result after one interaction. In each row, we show the pre-
diction, the estimated density map, the refined feature map,
and the scale parameters in the refinement module. From
the last three columns, we can find that the spatial-wise re-
finement focuses on the local error that only the parameters
close to the region are updated. Thus the spatial-wise re-
finement contributes more to the refinement of local error.
We also find that channel-wise refinement can refine the fea-
ture map globally and can correct the global error. This also
explains why the channel-wise refinement contributes more
to the final result, as illustrated in the refinement module’s
ablation study in the main paper.

2.8. Additional Qualitative results.

Additional qualitative results on FSC-147 with FamNet
is shown in Fig. 5 and Fig. 6.

2.9. Limitation and future work

Our approach has several limitations. First, the user’s
feedback is for the entire region, not individual objects.
Second, the specified count is a range, not a precise number.
Third, local adaptation may improve global error, due to
the inconsistency between local and global errors. Despite
these limitations, the proposed method provides a practical
way for the user to provide feedback and reduce counting



Figure 3. An illustrative graphical user interface for displaying results and collecting the user’s feedback. The image is segmented into
smaller regions, each region has a moderate size and small density sum. The user can provide feedback by clicking a region and selecting
the count range for that region; a total of two clicks per iteration.

errors in most cases. Also important is the availability of
an intuitive graphical user interface for the user to decide
whether to trust the automated counting results before and
after the adaptation.

In this work, we aim for a system that reduces the user’s
burden so that the user is not asked to delineate or localize
objects. But we envision that localizing an object and de-
lineating its spatial extent would be a stronger form of su-
pervision, and it would be necessary for certain situations.
This will be explored in our future work.
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Prediction Density map Feature map Scale parameters of SP Scale parameters of CH
GT:292.00, Predict:387.77, AE:95.77

GT:292.00, Predict:299.08, AE:7.08

(a) Example 1
GT:637.00, Predict:249.14, AE:387.86

GT:637.00, Predict:381.06, AE:255.94

(b) Example 2
GT:42.00, Predict:84.83, AE:42.83

GT:42.00, Predict:51.19, AE:9.19

(c) Example 3
Figure 4. Qualitative results of the feature refinement. These three examples are from FSC-147 with FamNet as the visual counter. For
each example, the first row is before having any interactive feedback, and the second row is after utilizing one interactive feedback. The
first column shows the ground truth, prediction, and absolute error. The second column shows the estimated density map. The third
column shows the feature map that the refinement module refines. We can know how the feature refinement refines the feature map from
this column. The last two columns show the scale parameters of spatial-wise refinement and channel-wise refinement in the refinement
module.



Before Click 1 After Click 1 Before Click 2 After Click 2
GT:10.00, Predict:51.45, AE:41.45 GT:10.00, Predict:28.86, AE:18.86 GT:10.00, Predict:28.86, AE:18.86 GT:10.00, Predict:22.31, AE:12.31

GT:97.00, Predict:23.25, AE:73.75 GT:97.00, Predict:54.08, AE:42.92 GT:97.00, Predict:54.08, AE:42.92 GT:97.00, Predict:82.18, AE:14.82

GT:250.00, Predict:99.28, AE:150.72 GT:250.00, Predict:140.94, AE:109.06 GT:250.00, Predict:140.94, AE:109.06 GT:250.00, Predict:173.97, AE:76.03

GT:1092.00, Predict:149.19, AE:942.81 GT:1092.00, Predict:394.95, AE:697.05 GT:1092.00, Predict:394.95, AE:697.05 GT:1092.00, Predict:538.21, AE:553.79

GT:18.00, Predict:27.81, AE:9.81 GT:18.00, Predict:14.84, AE:3.16 GT:18.00, Predict:14.84, AE:3.16 GT:18.00, Predict:17.52, AE:0.48

GT:207.00, Predict:48.69, AE:158.31 GT:207.00, Predict:78.37, AE:128.63 GT:207.00, Predict:78.37, AE:128.63 GT:207.00, Predict:98.49, AE:108.51

Figure 5. Additional qualitative results. The examples are from FSC-147 with FamNet as the visual counter. The brighter region is the
selected region, and the red dot is the approximate location of each region generated by peak selection and non-maximum suppression on
each region. Our approach can improve the counting result locally(the selected region) and globally(the whole image).



Before Click 1 After Click 1 Before Click 2 After Click 2
GT:9.00, Predict:31.48, AE:22.48 GT:9.00, Predict:17.06, AE:8.06 GT:9.00, Predict:17.06, AE:8.06 GT:9.00, Predict:10.90, AE:1.90

GT:81.00, Predict:112.37, AE:31.37 GT:81.00, Predict:100.30, AE:19.30 GT:81.00, Predict:100.30, AE:19.30 GT:81.00, Predict:70.38, AE:10.62

GT:11.00, Predict:24.41, AE:13.41 GT:11.00, Predict:16.12, AE:5.12 GT:11.00, Predict:16.12, AE:5.12 GT:11.00, Predict:13.80, AE:2.80

GT:11.00, Predict:42.66, AE:31.66 GT:11.00, Predict:25.58, AE:14.58 GT:11.00, Predict:25.58, AE:14.58 GT:11.00, Predict:21.91, AE:10.91

GT:10.00, Predict:41.91, AE:31.91 GT:10.00, Predict:33.23, AE:23.23 GT:10.00, Predict:33.23, AE:23.23 GT:10.00, Predict:19.66, AE:9.66

GT:25.00, Predict:50.10, AE:25.10 GT:25.00, Predict:40.57, AE:15.57 GT:25.00, Predict:40.57, AE:15.57 GT:25.00, Predict:31.66, AE:6.66

Figure 6. Additional qualitative results. The examples are from FSC-147 with FamNet as the visual counter.


