
Supplementary Matarial
Dynamic Mesh Recovery from Partial Point Cloud Sequence

Hojun Jang1 Minkwan Kim1 Jinseok Bae1 Young Min Kim1,2

1 Dept. of Electrical and Computer Engineering, Seoul National University
2 Interdisciplinary Program in Artificial Intelligence and INMC, Seoul National University

{j12040208, mkjjang3598, capoo95, youngmin.kim}@snu.ac.kr

A. Additional Implementation Details

In this section, we provide additional details of our
method that could not be included in the main paper. The
order of the description follows that of Section 3 in the main
paper.

A.1. Kinematics Learner

Figure A.1 shows the network architecture related to
generating pose parameters, namely the feature encoder and
the pose generator, which is part of the parameter estimator.
The feature encoder receives the point cloud input and out-
puts the encoded feature, which is passed to the pose gener-
ator. Note that the sequence of motion is further processed
with a transformer encoder and decoder. The VAE architec-
ture of the pose generator fits a Gaussian distribution for the
latent distribution such that the input pose parameters can
be closely reproduced by the encoder-decoder pair. Specif-
ically, the VAE architecture generates the posterior and the
prior distribution of the latent space z conditioned on the
encoded feature. To form the posterior distribution, we con-
catenate the ground truth pose parameters to the feature and
pass it to the MLP layer. We concatenate the latent vector
zt, which is sampled from the distribution, with the encoded
feature Ft and the positional encoding information. Finally,
the concatenated vectors are passed to the transformer de-
coder to form a sequence of pose parameters.

We also use the encoded features F to estimate the root
translations and the shape parameter of the mesh. Each Ft

passes through the translation estimator and the shape esti-
mator, which consists of an MLP layer. To make the shape
parameter to be constant throughout the sequence, we out-
put the average of the estimated parameters.

A.2. Feature Follower

The network architecture of the feature follower is iden-
tical to the feature encoder in the kinematics learner shown
in Figure A.1-(a). We train the feature follower to output

the feature encoding similar to the output of the kinematics
learner.

B. Dataset Details

B.1. Human Motion

We use AMASS dataset [4] to train the kinematics of
the human motion. Since the dataset used for training and
testing the feature follower is SMPL [3] parameters from
CMU dataset [1], we train our kinematics learner excluding
CMU. Also, as we make the input sequence to be 10 fps
and the total number of frame to be 40, we exclude the se-
quence shorter than 4 seconds. From the sequences longer
than 9 seconds, we split the sequence in the period of 5
seconds from the beginning and if the last split has the se-
quence shorter than 4 seconds, it is merged to the former
split. For example, if the length of the sequence is 16 sec-
onds, the frames from the beginning to 5 second will be the
first split and the frames from 5 second to 10 second will be
the second split. The last split will have the frames from 10
second to the last, 16 second. When training, the sequences
longer than 5 seconds are cropped randomly to generate 10
fps, 40 frames input sequence. Finally, the total number of
sequences we use to train the kinematics learner is 17,481.

Now, we outline the dataset used to train the feature fol-
lower. After generating the depth image by projecting the
SMPL model of CMU, using the same process of making
SURREAL dataset [8], we obtain single-view point clouds
which are made to seem as if they are obtained from a single
depth camera. We also split the sequence in the period of 5
seconds similar to the process explained above. The num-
ber of generated single-view point cloud sequences is 2,759.
Then, we spare 200 sequences to the test set randomly and
the rest to the train set of the feature follower.

To generate the motion sequence to train our model
for the spatially partial sequence input, we manipulate the
depth image. We erase the depth information which is in a
random box, which is randomly sized and randomly placed

Figure A.1. The process to generate pose parameters from the input point cloud sequence. (a) shows the feature encoding process and (b)
shows the network architecture of the pose generator. The variables which are written in red letters are the given inputs.

in image. By making a point cloud sequence from that ran-
domly masked depth image, it is possible to obtain a spa-
tially partial point cloud sequence.

B.2. Hand Motion

Since hand motion has less diversity than that of hu-
man motion, we use the dataset having a smaller scale than
the scale of the human motion dataset. We utilize two
MANO [7] fitted hand motion datasets, HanCo [11, 10] and
InterHand2.6M [5]. To train the kinematics learner for the
hand motion input, we use the given train and validation
split of the both datasets. Also, we make the input sequence
of a hand motion to be 5 fps with 40 frames total in a similar
way we make the dataset for human motion. As a result, we
use 1,753 sequences to train the kinematics learner for hand
motion. The sequences, which are not used when training
the kinematics learner, are used to train and test the feature
follower.

We make use of Open3D library [9] to generate single-
view point cloud of a hand. We first render 3D mesh of
a hand and then obtain the depth image from a viewpoint,
which is randomly chosen from an orbit rotating around
the hand. Then, we make the single-view point cloud of
a hand sequence using the Open3D internal function. Since
the point clouds obtained from the Open3D library are too
smooth, we add random noise with σnoise 0.01 to the point
clouds. We set the sequences from capture id: 0
in InterHand2.6M as the test split of the feature follower,
which includes 75 hand motion sequences. The remaining

sequences are being the training split of the feature follower,
and the number of the sequences in the training split is 172.

C. Hyperparameter Setup
We show the hyperparameter settings of our method for

training the kinematics learner and the feature follower, re-
spectively. The weights for the loss terms do not vary
through the input type. That is, loss weights for the hu-
man motion and the hand motion are the same. Also, the
weights for the noisy sequence or the partial input are set
equally.

The total epoch of the training is written as Nepoch. When
the number of epoch reaches Nfirst decay and Nsecond decay,
the learning rate lr reduces to lr/4 and lr/10, respec-
tively. maxblock rate denotes the maximum masking ratio
of the sequence, the masking ratio is set randomly below
maxblock rate. Block rate 0.4 means TTot × 0.4 input time
steps are randomly masked. DP refers to the dimension
of the PointNet [6] feature and DF is the dimension of the
Transformer feature, both shown in Section 3.1 in the main
paper. DTF,L and DTF,ff are the latent dimension and the
dimension of the feedforward network model of the Trans-
former layer, respectively. NTF,Layer is the number of layers
in the Transformer network and NTF,Head is the number of
heads in the multi-head attention models.

C.1. Kinematics Learner

We set the the hyperparameters for the kinematics
learner as in Table C.1. Additionally to the hyperparame-

Train-
related

Nepoch 4,000
Nfirst decay 3,000
Nsecond decay 3,500
lr 0.0005

Input-
related

input point cloud 1,024
TTot 40
Nβ 10
maxblock rate 0.4

Network-
related

DP 512
DF 512
DTF,L 256
DTF,ff 1,024
NTF,Layer 4
NTF,Head 8

Loss-
related

waux
θ 0.5

wθ 0.5
wJ 0.5
wvol 1.0
wβ 0.1
wKL 1.0

Table C.1. Hyperparameter setups to train the kinematics learner.

ters written in the given table, the number of pose parame-
ters for the human motion datasets is 66 and the number of
joints is 24. Different from the human motion datasets, the
number of pose parameters for the hand motion datasets is
48 and the number of joints is 21.

C.2. Feature Follower

We report the hyperparameter setups to train the feature
follower in Table C.2. The number of pose parameters and
the joints are equivalent to the training of the kinematics
learner.

Train-
related

Nepoch 2,000
Nfirst decay 1,200
Nsecond decay 1,600
lr 0.0001

Input-
related

input point cloud 1,024
TTot 40
Nβ 10
maxblock rate 0.4

Network-
related

DP 512
DF 512
DTF,L 256
DTF,ff 1,024
NTF,Layer 4
NTF,Head 8

Loss-
related

wF 1.0
waux

θ 0.5
wθ 0.5
wJ 0.5
wβ 0.1

Table C.2. Hyperparameter setups to train the feature follower.

D. Additional Qualitative Results
D.1. Full Sequence Input

We show the mesh recovery results of the pretrained kinematics learner. The kinematics learner reconstructs mesh from
the full point cloud sequence input.

Figure D.1. The result of the kinematics learner reconstructing the mesh sequence from the full point cloud sequence input.

D.2. Noisy Sequence Input

Figure D.2. The results of the feature follower against the baselines in noisy single-view point cloud sequence input. Our method shows
the best qualitative performance over the baselines, VoteHMR [2], Zuo et al. [12] without optimization, and Zuo et al. with additional
optimization.

D.3. Spatially Partial Sequence Input

Figure D.3. The results showing our model generating multiple plausible poses under severely sparse observations. We show sample 3
latent vectors for the pose generation and decode them to generate plusible mesh sequences.

D.4. Temporally Partial Sequence Input

Figure D.4. The result of our model reconstructing mesh sequence even on sequence with empty observations.

D.5. Real Sequence Input

Figure D.5. Mesh recovery results of our method and the baselines. Zuo et al. [12] without additional optimization cannot really match
the point cloud and is inconsistent over the sequence. VoteHMR [2] outputs better result than the Zuo et al. [12] without fitting but the
performance is still weak. The mesh sequence from our model seems to match the best to the point cloud sequence over the baselines.

References
[1] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe,

Iain Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser
Sheikh. Panoptic studio: A massively multiview system for
social motion capture. In The IEEE International Conference
on Computer Vision (ICCV), 2015. 1

[2] Guanze Liu, Yu Rong, and Lu Sheng. Votehmr: Occlusion-
aware voting network for robust 3d human mesh recovery
from partial point clouds. In Proceedings of the 29th ACM
International Conference on Multimedia, MM ’21, page
955–964, New York, NY, USA, 2021. Association for Com-
puting Machinery. 5, 8

[3] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-
ard Pons-Moll, and Michael J. Black. SMPL: A skinned
multi-person linear model. ACM Trans. Graphics (Proc.
SIGGRAPH Asia), 34(6):248:1–248:16, Oct. 2015. 1

[4] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Ger-
ard Pons-Moll, and Michael J. Black. AMASS: Archive of
motion capture as surface shapes. In International Confer-
ence on Computer Vision (ICCV), pages 5442–5451, Oct.
2019. 1

[5] Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori,
and Kyoung Mu Lee. Interhand2.6m: A dataset and baseline
for 3d interacting hand pose estimation from a single rgb im-
age. In European Conference on Computer Vision (ECCV),
2020. 2

[6] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. arXiv preprint arXiv:1612.00593, 2016.
2

[7] Javier Romero, Dimitrios Tzionas, and Michael J. Black.
Embodied hands: Modeling and capturing hands and bod-
ies together. ACM Transactions on Graphics, (Proc. SIG-
GRAPH Asia), 36(6), Nov. 2017. 2

[8] Gül Varol, Javier Romero, Xavier Martin, Naureen Mah-
mood, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning from synthetic humans. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017. 1

[9] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,
2018. 2

[10] Christian Zimmermann, Max Argus, and Thomas Brox.
Contrastive representation learning for hand shape estima-
tion. arXiv preprint arXiv:2106.04324, 2021. 2

[11] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan
Russell, Max Argus, and Thomas Brox. Freihand: A dataset
for markerless capture of hand pose and shape from sin-
gle rgb images. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 813–
822, 2019. 2

[12] Xinxin Zuo, Sen Wang, Minglun Gong, and Li Cheng. Unsu-
pervised 3d human mesh recovery from noisy point clouds.
CoRR, abs/2107.07539, 2021. 5, 8

