
Algorithm 3: DDIM Update

def alpha_cumprod(t, ns=0.0002, ds=0.00025):
"""cosine noise schedule"""
n = torch.cos((t + ns) / (1 + ds)

* math.pi / 2) ** -2
return -torch.log(n - 1, eps=1e-5)

def ddim(map_t, map_pred, t_now, t_next):
"""
estimate x at t_next with DDIM update rule.
"""
αnow = alpha_cumprod(t_now)
αnext = alpha_cumprod(t_next)
map_enc = encoding(map_pred)
map_enc = (sigmoid(map_enc) * 2 - 1) * scale

eps = 1√
1−αnow

* (map_t -
√
αnow * map_enc)

map_next =
√
αnext * x_pred +

√
1− αnow * eps

return map_next

A. Diffusion Model
A.1. Algorithm details

As a supplement to Algorithm 1 and Algorithm 2 de-
scribed in the main paper, we provide the implementation
details in Algorithm 3 for better clarity. Additionally, we in-
troduce the implementation of the “self-aligned denoising”
procedure in Algorithm 4, used in the last 5K iteration train-
ing to address the sampling drift problem (see Section 3.4).
We provide an example in Figure 4 to illustrate the gap be-
tween the training and inference denoising targets.

A.2. More Discussions

As illustrated in Figure 3a, diffusion models for percep-
tual tasks tend to reach a saturation point within the first few
steps, usually between 3-5 steps, making additional diffu-
sion less advantageous. This is in contrast to the require-
ments of generative models for image generation, where
multiple iterations over many steps (from 10 to 50) are of-
ten necessary. Intuitively, in generative tasks such as image
generation, the goal is to produce complete and high-quality
results by progressively incorporating more information at
each time step, thus gradually accumulating and improving
the overall result. Therefore, it may take more time steps
to reach convergence in order to fully accumulate the nec-
essary information. In perceptual tasks, such as semantic
segmentation and object detection, the process from image
to label is a gradual reduction of information, and critical
information sufficient to make a decision needs to be ob-
tained in only a few steps. Therefore, further diffusion has a
limited role in improving the accuracy of predictions, lead-
ing to an early peak within three to five steps. In short, the
diffusion process in a perception task can make decisions
by accumulating the most important information. There-

Algorithm 4: DDP Self-aligned Denoising

def train(images, maps):
"""
images: [b, 3, h, w], maps: [b, 1, h, w]
"""
img_enc = image_encoder(images)
map_t = normal(mean=0, std=1)
map_pred = map_decoder(map_t, img_enc, t=1)
encode map_pred
map_enc = encoding(map_pred.detach())
map_enc = (sigmoid(map_enc) * 2 - 1) * scale
corrupt the map_enc
t, eps = uniform(0, 1), normal(mean=0, std=1)
map_crpt = sqrt(alpha_cumprod(t)) * map_enc +

sqrt(1 - alpha_cumprod(t)) * eps
predict
map_pred = map_decoder(map_crpt, img_enc, t)
loss = objective_func(map_pred, maps)
return loss

𝒚! 𝒚"

Tr
ai
ni
ng

In
fe
re
nc
e

Figure 4. Sampling drift. Denoising targets differ from the train-
ing process and inference process.

fore, DDP can achieve high accuracy in perception tasks
with minimal computational cost.

B. Implementation Details

B.1. Semantic Segmentation

ADE20K. We conduct the experiments of ADE20K [99]
semantic segmentation based on MMSegmentation [20]. In
the training phase, the backbone is initialized with the Ima-
geNet [26] pre-trained weights. We optimize our DDP mod-
els using AdamW [56] optimizer with an initial learning rate
of 6×10−5, and a weight decay of 0.01. The learning rate
is decayed following the polynomial decay schedule with a
power of 1.0. Besides, we randomly resize and crop the im-
age to 512×512 for training, and rescale to have a shorter
side of 512 pixels during testing. All models are trained
for 160k iterations with a batch size of 16 and compared
fairly with previous discriminative-based and non-diffusion
methods.
Cityscapes. The Cityscape dataset includes 5000 high-
resolution images, which contain 2,975 training images,
500 validation images, and 1525 testing samples. The im-
ages are captured from 50 different cities in Germany, cov-

Method δ1 ↑ δ2 ↑ δ3 ↑ REL ↓ RMS ↓ log10 ↓
Chen et al. 0.757 0.943 0.984 0.166 0.494 0.071
Yin et al. [90] 0.696 0.912 0.973 0.183 0.541 0.082
BTS [44] 0.740 0.933 0.980 0.172 0.515 0.075
AdaBins [3] 0.771 0.944 0.983 0.159 0.476 0.068
DepthFormer [48] 0.815 0.970 0.993 0.137 0.408 0.059
DDP (step 3) 0.825 0.973 0.994 0.128 0.397 0.056

Table 6. Depth estimation on the SUN RGB-D dataset. We re-
port the result of the model trained on the NYU-DepthV2 dataset
and tested on the SUN RGB-D dataset without fine-tuning.

ering various environments such as highways, city centers,
and suburbs. Similar to ADE20K, during training, we load
the ImageNet pre-trained weights and employ the AdamW
optimizer. Following common practice, we randomly resize
and crop the image to 512×1024 for training, and take the
original images of 1024×2048 for testing. We Other hyper-
parameters are kept the same as our ADE20K experiments.

B.2. BEV Map Segmentation

nuScenes. We conduct our experiments of BEV map
segmentation on nuScenes [7], a large-scale multi-modal
dataset for 3D detection and map segmentation. The dataset
is split into 700/150/150 scenes for training/validation/test-
ing. It contains data from multiple sensors, including six
cameras, one LIDAR, and five radars. For camera inputs,
each frame consists of six views of the surrounding envi-
ronment at the same timestamps. We resize the input views
to 256×704 and voxelize the point cloud to 0.1m. Our eval-
uation metrics align with [54] and report the IoU of 6 back-
ground classes, including drivable space, pedestrian cross-
ing, walk-way, stop line, car-parking area, and lane divider,
and use the mean IoU as the primary evaluation metric. We
adopt the image and LiDAR data augmentation strategies
from [8] for training. AdamW is utilized with a weight de-
cay of 0.01 and a learning rate of 5e-5. We take overall
20 training epochs on 8 A100 GPUs with a batch size of
32. Other training settings are kept the same as [54] for fair
comparisons.

B.3. Depth Estimation

KITTI. The KITTI depth estimation dataset is a widely
used benchmark dataset for monocular depth estimation
with a depth range from 0-80m. The stereo images of the
dataset have a resolution of 1242×375, while the corre-
sponding GT depth map has a low density of 3.75% to 5.0%.
Following the standard Eigen training/testing split [28],
we use around 26K left view images for training and 697
frames for testing. We incorporate the DDP model into the
codebase developed by [48] for KITTI depth estimation ex-
periments. We excluded the discrete label encoding module
as the task requires continuous value regression All experi-
mental settings are the same as [48] for a fair comparison.

Method δ1 ↑ δ2 ↑ δ3 ↑ REL ↓ RMSE ↓ log10 ↓
StructDepth [45] 0.817 0.955 0.988 0.140 0.534 0.060
MonoIndoor [41] 0.823 0.958 0.989 0.134 0.526 -
DORN [30] 0.828 0.965 0.992 0.115 0.509 0.051
BTS [44] 0.885 0.978 0.994 0.110 0.392 0.047
DAV [38] 0.882 0.980 0.996 0.108 0.412 -
TransDepth [87] 0.900 0.983 0.996 0.106 0.365 0.045
DPT-Hybrid [61] 0.904 0.988 0.998 0.110 0.357 0.045
AdaBins [3] 0.903 0.984 0.997 0.103 0.364 0.044
DepthFormer [48] 0.921 0.989 0.998 0.096 0.339 0.041
DDP (step 3) 0.921 0.990 0.998 0.094 0.329 0.040

Table 7. Depth estimation on the NYU-DepthV2 val set. We
report the performance of DDP with 3 diffusion steps. The best
and second-best results are bolded or underlined, respectively. ↓
means lower is better, and ↑ means higher is better.

NYU-DepthV2. The NYU-DepthV2 is an indoor scene
dataset that consists of RGB and depth images captured at
a resolution of 640×480 pixels. The dataset contains over
1,449 pairs of aligned indoor scenes, captured from 464 dif-
ferent indoor areas. We train DDP using image pairs with
a resolution of 320×240 and with varying depths up to ap-
proximately 10 meters. Following previous work, we evalu-
ate the results on the predefined center cropping by [28]. To
be fair, all experimental configurations were aligned with
the previous method [48].
SUN RGB-D. We use this dataset [74] to evaluate gen-
eralization. To be specific, we assess the performance of
our NYU pre-trained models on the official test set, which
includes 5,050 images, without any additional fine-tuning.
The maximum depth is restricted to 10 meters. Please note
that this dataset is solely intended for evaluation purposes
and is not utilized for training.

C. Experimental Results
In Table 7, we provide the depth estimation performance

of DDP on the NYU-V2 dataset, in addition, in Table 6, we
provide the generalization performance results of DDP on
the SUN-RGBD dataset.

D. Visualization
Figure 5 and Figure 6 visualize the “multiple inference”

property of DDP on the validation sets of Cityscapes and
ADE20K, respectively. These inference trajectories show
that DDP can enhance its performance continuously and
produce smoother segmentation maps by using more sam-
pling steps. Figure 7 presents the BEV map segmentation
results of DDP (step 3) with the ground truths and multi-
view images. Figure 8 and Figure 9 compare the generated
depth estimation results of DDP (step 3) with the ground
truths on the validation sets of KITTI and NYU-DepthV2,
respectively. These results indicate that our method can be
easily generalized to most dense prediction tasks.

E. More Applications
E.1. Combine DDP with ControlNet

Setup. It has been found that compared to the previous
single-shot model, DDP can achieve more continuous and
semantic consistency prediction results. To demonstrate the
benefits of this pixel clustering property, we combined DDP
with the recently popular segmentation mask condition gen-
eration model: ControlNet. We followed the official imple-
mentation of ControlNet for all hyperparameters, including
input resolution and DDIM sampling steps.
Implementation ControlNet [94] improves upon the
original Stable Diffusion (SD) model by adding extra con-
ditions, which is done by incorporating a conditioning net-
work. In the mask-conditional ControlNet, the map gen-
erated by the segmentation model is used as input for
image synthesis. The original segmentation model was
adopted from Uniformaer-S [47] with UperNetHead, which
has 52M parameters and achieves 47.6 mIoU (ss) on the
ADE20K dataset. To make a fair comparison, we replaced
the original segmentation model in the mask-conditional
ControlNet with DDP using the Swin-T backbone, which
has 40M parameters and achieves 47.0 mIoU (ss) on the
ADE20K dataset. Note that all results were obtained with
the default prompt.
Results We select images from the PEXEL website
https://www.pexels.com/ for testing in different
scenarios. The results from the original ControlNet and
the combination of DDP with ControlNet are shown in Fig-
ure 10. ControlNet is designed to achieve fine-grained, con-
trollable image generation, our experiments show that DDP
can produce more consistent results and has advantages in
various scenarios. Moreover, when combined with DDP,
ControlNet produces visually satisfying and well-composed
results, surpassing those of the original ControlNet. Our
experimental results suggest that DDP has great potential to
improve cooperation with other types of foundation models.

https://www.pexels.com/

Ground Truth Step 1 Step 2 Step 3

Figure 5. Visualization of multiple inference on Cityscapes val set.

Ground Truth Step 1 Step 2 Step 4Step 3

Figure 6. Visualization of multiple inference on ADE20K val set.

Image Ground Truth Prediction

Figure 7. Visualization of predicted BEV map segmentation results on nuScenes val set.

Image Ground Truth Prediction

Figure 8. Visualization of predicted depth estimation results on KITTI val set.

Image Ground Truth Prediction Image Ground Truth Prediction

Figure 9. Visualization of predicted depth estimation results on NYU-DepthV2 val set.

Segmentation
(Uniformer-UperNet)

Segmentation
(DDP)

Generation
(Uniformer-UperNet)

Generation
(DDP)

Input image

Figure 10. Control Stable Diffusion with Semantic Map, the Uniformer-UnperNet, and DDP segmentation models are used to predict
segmentation maps as condition input. All results were achieved using the default prompt.

