
A. Pretraining details
We employed the AdamW optimizer [31] with a weight

decay of 0.02 for training our models. The learning rate
was warmed up to 1e-5 (ViT-B/16) and 1e-4 (BERTbase) in
the first 1000 iterations, then decayed to 1e-6 according to a
cosine schedule. The pre-training of BUS required approx-
imately 60 hours and was performed on 8 A100-80G GPUs
using a 4M pre-training dataset for about 20 epochs.

To improve the generalization of vision encoders during
pre-training, we applied RandAugment [9] to random image
crops of size 256 × 256. In the fine-tuning stage for VQA,
image captioning, and visual grounding tasks, we increased
the image resolution. For image-text contrastive learning,
we set the queue size to 65,536 and the momentum coeffi-
cient to 0.995.

A.1. Pretraining data

COCO VG SBU CC3M

image 113K 100K 860K 3M
text 567K 769K 860K 3M

Table 8: Statistics of the pre-training datasets.

image Captions Objects Regions

COCO 0.11M 0.55M 0.45M -
VG 0.10M - 2.0M 3.7M

Table 9: Statistics of objects/regions annotations used in the
pre-training.

Table 8 shows the statistics of the 4M images with texts
used in the pre-training stage. Additionally, we use ob-
ject/region annotations from the COCO [30] and VG [21]
datasets, as shown in Table 9, and provide statistics of ob-
ject and region annotations for each dataset. We follow
the object/region annotations provided by [56], which fil-
ter out some samples due to: 1) invalid annotations (e.g.,
negative values for bounding boxes or boxes being out-
side of the images); 2) boxes being too small (≤ 1%); 3)
highly overlapped textual descriptions of regions ( ≥ 75%),
etc. After pre-processing, we keep 446,873 COCO objects
(from 859,999), 2,043,927 VG objects (from 3,802,349),
and 3,699,598 VG regions (from 5,402,953).

A.2. Pretraining Task

We pre-train our model with five standard objec-
tives: Image-Text Contrastive learning (ITC), Image-
Text Matching (ITM), and Masked Language Modeling
(MLM),Prefix Language Modeling (PrefixLM), Patch-Text

Matching (PTM). These pre-training tasks are optimized
jointly. In this subsection, we will firstly introduce the last
four pre-training task and then give the details of the Patch-
Text Matching .
Image-text Contrastive (ITC) For BUS , We follow the
[26] and apply ITC to align the image representation and
text representation from the unimodal encoders. For the
image, the image feature corresponding to the image [CLS]
token is chosen as the image representation. For the text,
the text token feature corresponding to the text [CLS] token
is the text representation.
Image-Text Matching (ITM) The goal of image-text
matching is to predict whether the input image and text are
matched. We follow the design of [26] and select hard neg-
ative image-text pairs based on the contrastive text-image
similarity. We take the text [CLS] embedding of the multi-
modal encoder’s output as the joint representation, followed
by a Multi-Layer Perceptron (MLP) layer for prediction.
Masked Language Modeling (MLM) The task setup is ba-
sically the same as in BERT [10], where we randomly mask
15% of tokens in text and the model is asked to predict these
masked words with the cross-modal representations.
Prefix Language Modeling (PrefixLM). This task aims to
generate the caption given an image and predict the text seg-
ment subsequent to the cross-modal context as [5]. It opti-
mizes a cross entropy loss by maximizing the likelihood of
text in an autoregressive manner.

A.2.1 Patch-Text Matching

The key component for the bottom-up patch summarization
is the Text Semantic-aware Patch Selector (TSPS) which
needs to predict the fine-grained alignment scores between
the image patches and input text to select the text-relevant
patches. However, such fine-grained patch-text alignment
capabilities of traditional ViT-based models are weak as the
lack of fine-grained patch-text labels. To address the above
difficulties, we introduce a novel pre-training task named
Patch Text Matching (PTM) which facilitates the patch de-
tector training and drives our model to learn the fine-grained
patch-text alignment.

In most object objection and visual grounding datasets,
objects and regions are typically paired with a class label or
text description. Therefore, for each (object/region) bound-
ing box in an image, we can obtain a corresponding text
description (For the object class label, we can transfer it to
a text description using a text template such as “this is a
[Class Label]”). We then transform the bounding box an-
notations into patch-level labels by assigning a label of 1 to
an image patch if it overlaps with the bounding box and 0
otherwise. Different text descriptions and bounding boxes
result in different patch labels, enabling us to generate fine-
grained patch-text labels that serve as supervisory signals



for pre-training our model.
During pre-training, we randomly sample a mini-batch

of images from object detection/visual grounding datasets
such as COCO [30] or VG [21]. For each image, we ran-
domly select an object/region bounding box and translate
the bounding box annotation to the image patch label se-
quence following the aforementioned transformation rule.
We then feed the batch of text descriptions of the bounding
boxes and the images to BUS. We expect the TSPS to pre-
dict all patches that overlap with the bounding box with the
guidance of the bounding box text description.

Once TSPS has predicted the alignment scores between
image patches and text, we calculate the binary cross-
entropy loss between the alignment scores and patch labels
using the following equation:

LPTM =
1

n

n∑
i=1

Yilog (ai) + (1− Yi) log (1− ai) (1)

Here, ai is the alignment score between the ith patch in
the image and the input text, and Yi is the patch label of the
ith patch. Besides, at the beginning of pre-training, as the
PTM loss has not yet converged, thus the performance of
the patch selector is not ideal, we select the image patches
directly based on the attention weights of the image [CLS]
token to other patch tokens by setting the hyper-parameter
β to 0. As the PTM loss gradually converges, we will pro-
gressively set a large value to β.

After calculating the PTM loss LPTM , we then ran-
domly sample a mini-batch of normal image-text pairs from
the dataset of 4M images and calculate the Image-Text Con-
trastive (ITC) loss LITC , Image-Text Matching (ITM) loss
LITM , Masked Language Modeling (MLM) loss LMLM

and Prefix Language Modeling (PrefixLM) loss LPrefix

based on other four pre-training objectives. We assign equal
loss weights to each pre-training loss, and thus the full pre-
training loss is:

L = LITC + LITM + LMLM + LPrefix + LPTM (2)

A.3. Pretraining Schedule

In this subsection, as shown in Algorithm 1, we give a
algorithm of the pretraining schedule of our model BUS .

B. Downstream Task Details

We evaluate BUS on the four downstream vision-
language tasks. The hyperparameters that we use for fine-
tuning on the downstream tasks are listed in Table 10. Fol-
lowing [26], all tasks adopt RandAugment, AdamW opti-
mizer with a weight decay of 0.05 and a cosine learning rate
schedule. Next we introduce the dataset settings in detail.

Algorithm 1: Pre-training of BUS
Input: Large scale pretraining dataset D,

Object/Region Dataset O, the number of
pre-training epochs T , the pre-training
learning rate α, the batch size BD of dataset
D, the batch size BO of dataset O.

1 Initialize the parameters θ of our model M ;
2 for t = 1 to T do
3 Randomly sample a mini-batch of BO Images

{v̂1, v̂2, . . . , v̂BO
} from D ;

4 for i = 1 to BO do
5 Select a object or region ri from image v̂i ;
6 Translate the object class label ŷi to text

description t̂i;
7 Translate the bounding box annotation of ri

to patch annotations Y i = {yi1, yi2, . . . , yin}
;

8 Run forward of M on the mini-batch of
image-text pairs
{{v̂1, t̂1}, {v̂2, t̂2}, . . . , {v̂BO

, t̂BO
}} and

{Y 1, Y 2, . . . , Y BO} to obtain the loss LPTM ;
9 Randomly sample a mini-batch of B Image-Text

Pairs {{v1, t1}, {v2, t3}, . . . , {vBD
, tBD

}}
from D ;

10 Run forward of M on the mini-batch of
image-text pairs
{{v1, t1}, {v2, t3}, . . . , {vBD

, tBD
}} to obtain

the losses LITC , LITM , LMLM , LPrefix ;
11 Calculate the overall loss:
12 L = LITC+LITM+LMLM+LPrefix+LPTM ;
13 Backward the overall loss L and update the

parameters of M using gradient descent with
learning rate α and the average loss L over the
mini-batch:

14 θ ← θ − α 1
B

∑B
i=1∇θL(θ; si) ;

15 return M with pre-trained parameters θ ;

VQA. The VQA task [1] requires the model to answer
natural language questions given an image. Most meth-
ods [45, 48, 28, 49] deal with visual question answering
tasks as multi-label classification on pre-defined answer
sets. This strategy achieves strong performance, but it is
not suitable for real-world open scenarios. We conduct
experiment on the VQA2.0 dataset [13], which contains
83k/41k/81k images for training/validation/test. Following
[26], we use both training and validation splits for train-
ing, and incorporate additional training data from Visual
Genome [21]. Following [28], we concatenate the ques-
tion with the object labels and OCR tokens extracted from
image.



Task LR (ViT-L/BERTbase) batch size epochs

VQA 2e-5/5e-6 1024 8
Captioning† 1e-5&8e-7 256 5
Retrieval 1e-5/2e-6 256 5
Visual Grounding 2e-5/2e-6 512 120

Table 10: Finetuning hyperparameters for downstream
tasks. † denotes two stages fine-tuning.

Image Captioning. Image captioning requires generating
a descriptive and fluent caption for a given image. We
evaluate the performance of BUS on two popular datasets:
COCO Caption [30] and NoCaps [2]. We fine-tune BUS on
the training set of COCO Caption and test it on the same
Karpathy split [28, 49] as well as the NoCaps validation
set. To fine-tune BUS on COCO Caption, we follow the ap-
proach in [28] and first train the model with cross-entropy
loss for 5 epochs with a learning rate of 1e-5 and a batch
size of 256. We then further fine-tune the model with CIDEr
optimization [40] for an additional 5 epochs with a smaller
learning rate of 8e-7. We use the best checkpoint on COCO
Caption to predict on the NoCaps validation set. During in-
ference, we use beam search with a beam size of 10 and set
the maximum generation length to 20.

Image-Text Retrieval. We conducted experiments on
both image-to-text retrieval (TR) and text-to-image retrieval
(IR) using the COCO [30] and Flickr30K [37] datasets
and used the widely-used Karpathy split [19] for both.
COCO contains 113k/5k/5k images for train/validation/test,
while Flickr30K contains 29k/1k/1k images for train/val-
idation/test. During fine-tuning, we jointly optimized the
ITC loss and the ITM loss following the approach in [26,
25]. During inference, we first selected the top-k candidates
by computing the dot-product similarity between the image
and text encoder features (We set k = 256 for COCO and
k = 128 for Flickr30K). For efficiency of coarse-grained
ranking, we directly set β to 0 and selected the patch based
on the attention weights of the image [CLS] token to other
patch tokens. During the fine-grained reranking for the top-
k candidates, we set β to 0.8 and reranked the candidates
based on their ITM scores.

Visual Grounding. The task of visual grounding involves
localizing the referred object in an image given a plain text
query. Instead of directly regressing bounding boxes, our
approach concatenates visual features with textual features,
which are then fed into the multi-modal decoder to predict
the object’s coordinates. We evaluate our method on the re-
ferring expression grounding dataset: RefCOCO+[55]. The
RefCOCO+ dataset contains 19K images and 141K queries.

C. Comparison Models
• E2E-VLP [51]: proposes the first end-to-end VLP

method for both V+L understanding and generation,
with a unified Transformer encoder-decoder architec-
ture.

• VinVL [58]: pre-trains a large-scale object-attribute
detection model with much larger amounts of super-
vised data on four public object detection datasets for
extracting better region-based visual feature.

• OSCAR [28]: proposes to use object tags detected in
images as anchor points to ease the learning of cross-
modal alignments, where the input to the Transformer
is a combination of image, text and object tags.

• METER [11]: systematically investigates how to de-
sign and pre-train a fully transformer-based VL model
in an end-to-end manner.

• VLMo [48]: presents a unified vision-language pre-
trained model that jointly learns a dual encoder and a
fusion encoder with a modular Transformer network.

• SimVLM [49]: different from previous VLP methods
that only use limited (4M-10M) image-text pairs for
pre-training, it proposes a simple VLP model with a
single prefix language modeling objective, which pre-
trains on a extremely large aligned cross-modal data of
about 1.8B noisy image-text pairs. This is also a latest
state-of-the-art method on image captioning.

• ALBEF [26]: introduces a contrastive loss to align
the image and text representations before fusing them
through cross-modal attention, which enables more
grounded vision and language representation learning.

• UNITER [7]: proposes an improved single-stream
VLP method, by designing two new pre-training
strategies: 1) it uses conditional masking on pre-
training tasks instead of random masking strategy, 2) it
designs a new word-region alignment pre-training task
via the use of optimal transport to explicitly encour-
age fine-grained alignment between words and image
regions.

• ALIGN [15]: leverages a noisy dataset of over one
billion image alt-text pairs, obtained without expen-
sive filtering or post-processing steps in the Concep-
tual Captions dataset.

• VLBERT [43]: is a pioneering work to pre-train a
single-stream multi-modal Transformer, which jointly
trains both the Transformer-based cross-modal fusion
and Fast R-CNN image feature extractor in both pre-
training and fine-tuning phases. It is widely used as a
baseline method for VLP models.



Is this the beach?What animal does the 
green kite resemble?

Is this a cheese pizza?What percent is left?

What time is on the clock?Is this place busy?

Is the toilet open?What is the design on the 
shower curtain?

Question1 Question2

Top-70% Top-20% Top-70% Top-20%

Top-70% Top-20% Top-70% Top-20%

Top-70% Top-20% Top-70% Top-20%

Top-70% Top-20% Top-70% Top-20%

What are they taking a break 
from?

What is on the floor leaning 
between the people?

Is this a bus stop?What color is the bus?

Is there graffiti in this scene?Is he doing a dangerous jump?

What color is the microwave?What sort of space is the 
yellow area past the kitchen?

Question1 Question2

Top-70% Top-20% Top-70% Top-20%

Top-70% Top-20% Top-70% Top-20%

Top-70% Top-20% Top-70% Top-20%

Top-70% Top-20% Top-70% Top-20%

Figure 6: The visualization of the VQA cases and the selected text-relevant image patches.

VILT [20]: adopts linear projection and word embed-
ding as the visual and textual encoders, and uses the
visual transformer as the cross-modal encoder to align
and fuse the features of both modalities in an end-to-
end manner.

• VILLA [12]: is the first known effort on large-scale
adversarial training for vision-and-language (V+L)
representation learning.

• XVLM [56]: proposes to learn multi-grained align-
ments which locates visual concepts in the image given
the associated texts, and in the meantime align the texts
with the visual concepts.

• BLIP [25]: proposes a new VLP framework which
transfers flexibly to both vision-language understand-
ing and generation tasks. It effectively utilizes the
noisy web data by bootstrapping the captions.

• UNICORN [53]: proposes a vision-language (VL)
model that unifies text generation and bounding box
prediction into a single architecture.

• LXMERT [45]: is the pioneering work to pre-train a
two-stream multi-modal Transformer, which consists
of an object relationship encoder, a language encoder

and a cross-modality encoder. It is widely used as a
baseline method for VLP models.

• ViLBERT [32]: proposes one of the first work that
extend the BERT architecture to a multi-modal two-
stream VLP model, which processes both visual and
textual inputs in separate streams that interact through
co-attentional transformer layers.

• mPLUG [23]: is a vision-language foundation
model for both cross-modal understanding and gener-
ation and introduces an effective and efficient vision-
language architecture with novel cross-modal skip-
connections.

• TRIPS [16]: is a vision-and-language pre-training
model which reduces the visual sequence progres-
sively with a patch-selection layer in the visual back-
bone for efficient training and inference.

D. Case Study
In this subsection, we visualize more VQA cases and

the selected text-relevant image patches in Figure 6. Note
that these two examples are not cherry-picked. The phe-
nomenon in these examples is commonly observed among
other samples.


